林镇宏
职称:长聘教授

个人简介

林镇宏(1977-),中国籍,广东惠来人,海外高层次引进人才,长聘教授,博士生导师,2002年于清华大学汽车工程系毕业取得学士和硕士学位,2008年于加州大学戴维斯分校交通研究所和土木与环境工程系毕业取得硕士和博士学位。在美国能源部橡树岭国家实验室工作14年升至Distinguished Research Scientist后,于2022年回归祖国加盟华南理工大学未来技术学院。师从欧阳明高、Dan Sperling、Joan Ogden、范悦悦和David Greene。

他曾发表过100多篇专业文章,其中期刊文章70多篇,根据谷歌学者统计,总引用数超5000,H指数39,多次入选斯坦福大学全球前 2% 顶尖科学家榜单(年度(2021-2023)和终身影响力)。他长期主持美国能源部、交通部和阿美石油公司的交通能源项目,因开发汽车能源转型选择模型MA3T和参与自动驾驶汽车能源影响评估而两次获得美国能源部科学研发奖项。他是美国科学院燃油经济性研究委员会成员,参与撰写了美国国会委托、美国交通部赞助的第三期燃油经济性技术评估报告。林镇宏是Transportation Part D, iScience, Int. Journal of Sustainable Transportation, Energy Policy等学术期刊的编委,是Journal of Renewable and Sustainable Energy的主编。

作为“能源与碳决策”团队负责人,林镇宏将继续围绕能源转型展开自然科学和社会科学有机结合的交叉研究。他热衷于利用自身的多学科背景,系统性地发现、评估、优化、设计和应用“技术-基建-行为-政策”(TIBP)解决方案,以帮助实现碳减排、环保、产业升级、能源安全及可持续、社会公平等社会目标。基于这个学术理念,林镇宏发表过电动汽车优化设计(针对续航里程、轻量化)、替代燃料基建规划(针对充电、加氢)、消费者价值和选择(针对里程焦虑、免费充电、动力系统选择)、以及对交通能源政策的评价(针对燃油经济性政策的效率和公平性)等学术成果。他的“能源与碳决策”团队将包括交通、建筑、电力和工业制造的能源技术专家教授,采用深度交叉团队合作方式,克服传统学科思维壁垒,以国家需求和社会价值为导向,开发储能、车网互动、能源互联网的技术和算法,探索多行业能源转型和互动的学科交叉解决方案。

电子邮件

Zhenhong@scut.edu.cn

办公地址

未来技术学院B1-410 (办公室为410)

个人网页

https://www.researchgate.net/profile/Zhenhong-Lin

https://scholar.google.com/citations?user=fQ4QCeoAAAAJ&hl=en

教育背景

2004-2008年,加州大学戴维斯分校,博士(土木与环境工程专业)

2003-2004年,加州大学戴维斯分校,硕士(交通技术与政策专业)

2000-2002年,清华大学,硕士(动力机械与工程专业)

1996-2000年,清华大学,学士(汽车工程专业)

工作经历          

2022/10-至今,华南理工大学,长聘教授

2008-2022,美国橡树岭国家实验室,2008-2010研究助理,2010-2013研究员,2013-2021高级研究员,2021-2022杰出研究员

2015-2020,田纳西大学,兼职副教授

2008/01-2008/06,加州空气资源委员会,空气资源工程师

2007/07-2007/12,全球能源决策咨询公司,高级咨询员

2006/03-2006/09,美国国家环境保护局,能源分析员(实习) 

标志性成果

1.Lin Z.* Mostly positive implications of long-haul truck electrification. Joule. 2021 Oct 20;5(10):2548–50.

2.Lin, Z.*, Xie, F. and Ou, S., 2020. Modeling the External Effects of Air Taxis in Reducing the Energy Consumption of Road Traffic. Transportation Research Record, Oct. 2020. doi:10.1177/0361198120952791

3.Greene, D. L., Ogden, J. M., & Lin, Z. (2020). Challenges in the designing, planning and deployment of hydrogen refueling infrastructure for fuel cell electric vehicles. eTransportation, 100086.

4.Hao, X., Lin, Z.*, Wang, H., Ou, S., & Ouyang, M. (2020). Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: an expanded total ownership cost approach. Applied Energy, 275, 115394.

5.Maness, M., & Lin, Z.* (2019). Free Charging: Exploratory Study of Its Impact on Electric Vehicle Sales and Energy. Transportation Research Record. https://doi.org/10.1177/0361198119844966

6.Kontou, E., Liu, C., Xie, F., Wu, X. and Lin, Z., 2019. Understanding the linkage between electric vehicle charging network coverage and charging opportunity using GPS travel data. Transportation Research Part C: Emerging Technologies, 98, pp.1-13.

7.Ou, Shiqi, Zhenhong Lin*, Liang Qi, Jie Li, Xin He, Steven Przesmitzki, 2018. The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China. Energy Policy, 121:597-610

8.McCollum, David L., Charlie Wilson, Michela Bevione, Samuel Carrara, Oreane Y. Edelenbosch, Johannes Emmerling, Celine Guivarch, Panagiotis Karkatsoulis, Ilkka Keppo, Volker Krey, Zhenhong Lin, Eoin O Broin, Leonidas Paroussos, Hazel Pettifor, Kalai Ramea, Keywan Riahi, Fuminori Sano, Baltazar Solano Rodriguez & Detlef P. van Vuuren , 2018. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 3:664-673.

9.Lin, Zhenhong*, Shiqi Ou, Amgad Elgowainy, Krishna Reddi, Mike Veenstra, Laura Verduzco. 2018. A method for determining the optimal delivered hydrogen pressure for fuel cell electric vehicles. Applied Energy 216:183-194. doi: https://doi.org/10.1016/j.apenergy.2018.02.041

10.Xie, Fei, and Zhenhong Lin*. 2017. Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice. Energy Policy 108:299-311. doi: https://doi.org/10.1016/j.enpol.2017.05.060.

11.Lin, Z.*, Li, J. & Dong, J. (2014). Dynamic Wireless Charging: Potential Impact on Plug-in Electric Vehicle Adoption. Society of Automotive Engineers Technical Papers 2014-01-1965 

12.Lin, Z.* (2014). Battery Electric Vehicles: Range Optimization and Diversification for U.S. Drivers. Transportation Science 48(4):635-650. http://dx.doi.org/10.1287/trsc.2013.0516 

13.Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38(0), 44 – 55. doi: http://dx.doi.org/10.1016/j.trc.2013.11.001 

14.Lin, Z.*, Dong, J., & Greene, D. L. (2013). Hydrogen vehicles: Impacts of DOE technical targets on market acceptance and societal benefits. International Journal of Hydrogen Energy, 38(19), 7973–7985. doi: http://dx.doi.org/10.1016/j.ijhydene.2013.04.120 

15.Lin, Z.* (2012). Measuring Range Anxiety: the Substitution-Emergency-Detour (SED) Method. World Electric Vehicles Journal 2012, 5, 8-13.

16.Lin, Z.*, Dong, J., Liu, C., & Greene, D. (2012). Estimation of Energy Use by Plug-In Hybrid Electric Vehicles: Validating Gamma Distribution for Representing Random Daily Driving Distance Transportation Research Record, 2287(1), 37-43. doi: http://dx.doi.org/10.3141/2287-05 

17.Dong, J., & Lin, Z. (2012). Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure. Transportation Research Part D: Transport and Environment, 17(5), 405-412. doi: http://dx.doi.org/10.1016/j.trd.2012.04.003 

18.Lin, Z.*, & Greene, D. L. (2011). Promoting the Market for Plug-In Hybrid and Battery Electric Vehicles: Role of Recharge Availability. Transportation Research Record, 2252(1), 49-56. doi: http://dx.doi.org/10.3141/2252-07 

19.Lin, Z.*, & Greene, D. L. (2011). Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers. Transportation Research Record, 2252(1), 99-106. doi: http://dx.doi.org/10.3141/2252-13 

20.Lin, Z.*, & Greene, D. (2011). Predicting Individual Fuel Economy. SAE International Journal of Fuels and Lubricants, 4(1), 84-95. doi: http://dx.doi.org/10.4271/2011-01-0618 

21.Lin, Z.*, Ogden, J., Fan, Y., & Chen, C.-W. (2008). The Fuel-travel-back Approach to Hydrogen Station Siting. International Journal of Hydrogen Energy, 33(12), 3096-3101. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.01.040 

22.Lin, Z.*, Chen, C.-W., Ogden, J., & Fan, Y. (2008). The Least-cost Hydrogen for Southern California. International Journal of Hydrogen Energy, 33(12), 3009-3014. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.01.039 

23.Lin, Z.*, Zhou, M., & Ouyang, M. (2002). Improvement of Solenoid Controlled Valve for Electronic Diesel Injection System. Automotive Engineering, 24(3), 217-220. doi: http://dx.doi.org/10.3321/j.issn:1000-680X.2002.03.010 

24.He, B., Lin, Z., & Ouyang, M. (2002). Simulation on Direct Hydrogen Fuel Cell Engine Performance. Automotive Engineering, 24(6), 494-498. doi: http://dx.doi.org/10.3321/j.issn:1000-680X.2002.06.008