Ioannis (Yiannis) Vardaxoglou


基本信息

职称:微电子学院教授、博导、硕导

头衔:英国皇家工程院院士 (FREng)、IEEE Fellow

Title: Professor, Doctoral & Graduate Supervisor, School of Microelectronics           

Honor: Fellow of the Royal Academy of Engineering (FREng), Fellow of the Institution of Electrical and Electronic Engineers (FIEEE)

联系方式:meyvard@scut.edu.cn

招生专业

个人简介

Yiannis Vardaxoglou,现任华南理工大学微电子学院学术院长、教授。博士毕业于英国肯特大学,并于1988年加入拉夫堡大学任讲师,1992年晋升为高级讲师,1998年成为无线通信学教授。2006至2012年担任拉夫堡大学电子、电气与系统工程学院院长。他在拉夫堡大学创立了有36年历史的无线通信研究组(WiCR),并建立了移动通信研究中心(CMCR)。作为英国工程与物理科学研究理事会(EPSRC)重大挑战项目资助的Symeta研究中心主任,他领导团队在尖端无线通信技术领域开展广泛研究。其当前研究主要聚焦超材料结构、射频/微波/毫米波工程的增材制造(3D打印)技术。他曾作为首席研究员主持EPSRC重大挑战项目面向射频、微波与太赫兹应用的3D超材料合成,该项目获500万英镑资助。他长期担任多家企业顾问,持有六项专利,并任Antrum公司技术总监。其研究获得工业界资助及18项EPSRC科研资助。他发表超500篇同行评审期刊及会议论文(被引用超12000次),著有关于频率选择表面(FSS)的专著。曾任英国工程技术学会(IET)天线与传播专业网络执行委员会主席,并连续五年担任IEEE天线与传播学会(APS)杰出讲师项目主席。他创办的拉夫堡天线与传播会议(LAPC)已持续举办十余年,多次主持IEE/IET学术活动,并担任欧洲天线与传播会议(EuCAP)指导委员会委员,2007年任EuCAP大会主席。

Professor Yiannis Vardaxoglou, Academic Dean and Professor of the School of Microelectronics, South China University of technology, completed his Ph.D. in Electronics (1987) at the University of Kent, UK. He joined Loughborough University as a lecturer in 1988 and was promoted to Senior Lecturer in 1992 and Professor of Wireless Communications in 1998. He served as the Dean of the School of Electronic, Electrical and Systems Engineering at Loughborough University from 2006-2012. He established the 36-year-old Wireless Communications Research (WiCR) group at Loughborough University and founded the Centre for Mobile Communications Research (CMCR). He was the director of Symeta research centre funded by an EPSRC Grand Challenge award, researching in a wide-ranging topics applicable to cutting-edge wireless communications technology. His current research focuses primarily on metamaterial structures, additive manufacturing (3D printing) for RF/micro/mm wave engineering. He was the principal investigator of a prestigious EPSRC’s Grand Challenge £5M award: Synthesizing 3D Metamaterials for RF, Microwave and THz Applications. He has served as a consultant to various industries, holds six patents and is the Technical Director of Antrum Ltd. He has attracted research funding from industry and has been awarded 18 EPSRC research grants. He has published over 500 refereed journals and conference proceeding papers (with over 12000 citations) and has written a book on FSS. He was Chairman of the Executive Committee of the IET’s Antennas and Propagation Professional Network in the UK and chaired the IEEE’s distinguish lecturer program of the Antennas and Propagation Society (APS) for five years. He founded the Loughborough Antennas & Propagation Conference (LAPC), which has run over a decade. He has chaired numerous IEE//IET events and has served on the Steering Committee of the European Conference on Antennas and Propagation, EuCAP. He was the General Chair of EuCAP ‘07. 

教育经历

1981-09至1987-07  肯特大学,电子技术,博士

1978-09至1981-07  肯特大学,数学物理,学士

工作经历

2025-05至今     华南理工大学         校长顾问(国际事务)

                  华南理工大学微电子学院      学术院长、教授

2024-11至2025-03  香港城市大学太赫兹与毫米波国家重点实验室  访问教授

1998-09至2021-12  英国拉夫堡大学电子电力与系统工程学院  教授

1992-09至1998-08  英国拉夫堡大学电子电力与系统工程学院  高级讲师

1988-01至1992-08  英国拉夫堡大学电子电力与系统工程学院  讲师

研究方向

电磁超材料、天线技术、3D打印材料

学术任职

Fellow of the Institution of Engineering and Technology (IET)

Fellow of the Royal Academy of Engineering (FREng)

Fellow of the Institution of Electrical and Electronic Engineers (FIEEE)

代表性科研成果

[1]Vardaxoglou, Y. and Alexandridis, AA. (2024) Frequency selective surface with a bistable auxetic geometry, Electronics Letters, 60(12), ISSN: 0013-5194. DOI:10.1049/ell2.13258.

[2]Bevilacqua, F., Capozzoli, C., Curcio, F., D'Agostino, F., Ferrara, F., (2024) Phaseless Characterization of Flat Sources with a Planar Wide-Mesh Scanning Strategy, 18th European Conference on Antennas and Propagation (EuCAP), 1-5 https://ieeexplore.ieee.org/abstract/document/10501266  

[3]Bevilacqua, F., Capozzoli, A., Curcio, C., D’Agostino, F., Ferrara, F., Gennarelli, C., Guerriero, R., Liseno, A., Migliozzi, M., Vardaxoglou, Y. (2023) Experimental validation of a phaseless, non-redundant planar spiral scanning for antenna characterisation, IET Microwaves, Antennas and Propagation, 17(8), pp.651-666, ISSN: 1751-8725. DOI:10.1049/mia2.12357.

[4]Bevilacqua, F., Capozzoli, A., Curcio, C,. D’Agostino, F., Ferrara, F., Guerriero, R., .(2023) Reflectivity Reconstruction with Planar Wide-Mesh Scanning Adopting Phaseless Near-Field Data: Numerical Validation17th European Conference on Antennas and Propagation (EuCAP), 1-5https://ieeexplore.ieee.org/abstract/document/10133670/  

[5]Goulas, A., McGhee, J., Whittaker, T., Ossai, D., Mistry, E., Whittow, W.,(2022), Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing, Additive Manufacturing  55,102844, https://www.sciencedirect.com/science/article/pii/S2214860422002433 

[6]Bevilacqua, F., Capozzoli, A., Curcio, C., D’Agostino, F., Ferrara, F., Guerriero, R., .(2022) Reflectivity reconstruction from only amplitude non-redundant near-field data: numerical validation, Antenna Measurement Techniques Association Symposium (AMTA), 1-5, https://doi.org/10.23919/AMTA55213.2022.9954950 

[7]Whittaker, T., Zhang, S., Powell, A., Stevens, C. J., Vardaxoglou, J. Y. C., & Whittow, W. (2022). 3D printing materials and techniques for antennas and metamaterials: a survey of the latest advances. IEEE Antennas and Propagation Magazine, 65(3), 10-20. doi:10.1109/map.2022.3229298

[8]Goulas, A., McGhee, J., Whittaker, T., Ossai, D., Mistry, E., Whittow, W., .Engstrom, D. (2022). Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing. Additive Manufacturing, 55. doi:10.1016/j.addma.2022.102844

[9]Cheng, Q., Hao, Y., McGhee, J., Whittow, W., Vardaxoglou, J. C., Mittra, R., & Zhang, S. (2022). Dual circularly polarized 3-D printed broadband dielectric reflectarray with a linearly polarized feed. IEEE Transactions on Antennas and Propagation, 70(7), 5393-5403. doi:10.1109/tap.2022.3142735

[10]Álvarez, H. F., Cadman, D., Goulas, A., de Cos Gómez, M. E., Engstrom, D., Vardaxoglou, J. C., & Zhang, S. (2021). 3D conformal bandpass millimeter-wave frequency selective surface with improved fields of view. Scientific Reports, 11(1). doi:10.1038/s41598-021-91218-y

[11]Zhang, S., Arya, R. K., Whittow, W., Cadman, D., Mittra, R., & Vardaxoglou, J. C. (2020). Ultra-wideband flat metamaterial GRIN lenses assisted with additive manufacturing technique. IEEE Transactions on Antennas and Propagation, 69(7), 3788-3799. doi:10.1109/tap.2020.3044586

[12]Hayat, T., Afzal, M. U., Ahmed, F., Zhang, S., Esselle, K. P., & Vardaxoglou, J. (2021). The Use of a Pair of 3D-Printed near Field Superstructures to Steer an Antenna Beam in Elevation and Azimuth. IEEE Access, 9, 153995-154010. doi:10.1109/ACCESS.2021.3126700

[13]Maggiorelli, F., Paraskevopoulos, A., Vardaxoglou, J. C., Albani, M., & Maci, S. (2021). Profile Inversion and Closed Form Formulation of Compact GRIN Lenses. IEEE Open Journal of Antennas and Propagation, 2, 315-325. doi:10.1109/OJAP.2021.3059468

[14]Maggiorelli, F., Paraskevopoulos, A., Vardaxoglou, J., Albani, M., & Maci, S. (2021). Notes on Profile Inversion and Closed Form Formulation of Compact GRIN Lenses. IEEE Open Journal of Antennas and Propagation, 2, 976-977. doi:10.1109/OJAP.2021.3112780

[15]Goulas, A., Chi-Tangyie, G., Zhang, S., Wang, D., Ketharam, A., Vaidhyanathan, V., . . . Engstrom, D. (2020). Direct ink writing of bismuth molybdate microwave dielectric ceramics. Ceramics International, 47(6), 7625-7631. doi:10.1016/j.ceramint.2020.11.102

[16]Goulas, A., Chi-Tangyie, G., Wang, D., Zhang, S., Ketharam, A., Vaidhyanathan, V., . . . Engstrom, D. (2020). Microstructure and microwave dielectric properties of 3D printed low loss Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> ceramics for LTCC applications. Applied Materials Today, 21. doi:10.1016/j.apmt.2020.100862

[17]Goulas, A., Chi-Tangyie, G., Wang, D., Zhang, S., Ketharam, A., Vaidhyanathan, V., . . . Engstrom, D. (2020). Additively manufactured ultra-low sintering temperature, low loss Ag<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub> ceramic substrates. Journal of the European Ceramic Society, 41(1), 394-401. doi:10.1016/j.jeurceramsoc.2020.08.031

[18]McGhee, J., Whittaker, T., Moriarty, J., Northedge, J., Zhang, S., Cadman, D., . . . Vardaxoglou, J. C. (2020). Fabrication of artificial dielectrics via stereolithography based 3D-printing. In 14th European Conference on Antennas and Propagation (EuCAP 2020); 2020 14th European Conference on Antennas and Propagation (EuCAP). Copenhagen, Denmark: IEEE. doi:10.23919/EuCAP48036.2020.9135734

[19]Goulas, A., Zhang, S., McGhee, J., Cadman, D., Whittow, W., Vardaxoglou, J. C., & Engstrom, D. (2020). Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices. Materials & Design, 193. doi:10.1016/j.matdes.2020.108871

[20]Hayat, T., Afzal, M. U., Ahmed, F., Zhang, S., Esselle, K. P., & Vardaxoglou, J. C. (2020). Low-cost ultrawideband high-gain compact resonant cavity antenna. IEEE Antennas and Wireless Propagation Letters, 19(7), 1271-1275. doi:10.1109/LAWP.2020.2997966

[21]Wang, D., Siame, B., Zhang, S., Wang, G., Ju, X., Li, J., . . . Reaney, I. M. (2020). Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. Journal of the European Ceramic Society, 40(12), 4029-4034. doi:10.1016/j.jeurceramsoc.2020.04.025

[22]Chiotellis, N., Zhang, S., Vardaxoglou, J. C., & Grbic, A. (2020). X wave radiator implemented with 3D printed metamaterials. IEEE Transactions on Antennas and Propagation, 68(7), 5478-5486. doi:10.1109/tap.2020.2978280

[23]Gheisari, R., Chamberlain, H., Chi-Tangyie, G., Zhang, S., Goulas, A., Lee, C. -K., . . . Engstrom, D. (n.d.). Supplementary Information Files for ' Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout'. doi:10.17028/rd.lboro.11663052

[24]Gheisari, R., Chamberlain, H., Chi-Tangyie, G., Zhang, S., Goulas, A., Lee, C. -K., . . . Engstrom, D. (2020). Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout. Virtual and Physical Prototyping, 15(2), 133-147. doi:10.1080/17452759.2019.1708026

[25]Lee, C. -K., Zhang, S., Bukhari, S. S., Cadman, D., Vardaxoglou, J. Y. C., & Whittow, W. (2020). Complex Permittivity Measurement System for Solid Materials Using Complementary Frequency Selective Surfaces.. IEEE Access, 8, 7628-7640. doi:10.1109/ACCESS.2020.2963919

[26]Wang, D., Zhang, S., Wang, G., Vardaxoglou, J. C., Whittow, W., Cadman, D., . . . Reaney, I. M. (2019). Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas. Applied Materials Today, 18. doi:10.1016/j.apmt.2019.100519

[27]Whittaker, T., Whittow, W., & Vardaxoglou, J. C. (n.d.). Artificially Engineered Capacitors for Discrete High Frequency Electronic Circuitry - Data set. doi:10.17028/rd.lboro.9977378

[28]Whittaker, T., Whittow, W., & Vardaxoglou, J. C. (2019). Artificially engineered capacitors for discrete high-frequency electronic circuitry. IEEE Transactions on Microwave Theory and Techniques, 68(1), 74-86. doi:10.1109/TMTT.2019.2950224

[29]Goulas, A., Zhang, S., Cadman, D., Järveläinen, J., Mylläri, V., Whittow, W., . . . Engstrom, D. (2019). The impact of 3D printing process parameters on the dielectric properties of high permittivity composites. Designs, 3(47). doi:10.3390/designs3040050

[30]Lee, C. -K., McGhee, J., Tsipogiannis, C., Zhang, S., Cadman, D., Goulas, A., . . . Whittow, W. (2019). Evaluation of microwave characterization methods for additively manufactured materials. Designs, 3(4). doi:10.3390/designs3040047

[31]Vallecchi, A., Cadman, D., Whittow, W., Vardaxoglou, J., Shamonina, E., Stevens, C. J., & Vardaxoglou, J. C. (2019). 3-D printed bandpass filters with coupled vertically extruded split ring resonators. IEEE Transactions on Microwave Theory and Techniques, 67(11), 4341-4352. doi:10.1109/tmtt.2019.2934456

[32]Zhang, S., Cadman, D., Whittow, W., Wang, D., Chi-Tangyie, G., Ghosh, A., . . . Vardaxoglou, J. C. (2019). 3D Antennas, Metamaterials, and Additive Manufacturing. In 2019 IEEE MTT-S International Wireless Symposium, IWS 2019 - Proceedings. Guangzhou, China, China. doi:10.1109/IEEE-IWS.2019.8803909

[33]Bukhari, S. S., Vardaxoglou, J. C., & Whittow, W. (2019). A metasurfaces review: Definitions and applications. Applied Sciences, 9(13), 2727. doi:10.3390/app9132727

[34]Zhang, S., Cadman, D., Vardaxoglou, J. C., Mittra, R., & Whittow, W. (2019). Enabling Additive Manufacturing for Microwave and Mm-wave Components Fabrication. In 2019 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019 - Proceedings. doi:10.1109/ICMMT45702.2019.8992908

[35]Zhang, S., Whittow, W., Cadman, D., Mittra, R., & Vardaxoglou, J. C. (2019). Additive Manufacturing for High Performance Antennas and RF Components. In 2019 IEEE MTT-S International Wireless Symposium (IWS). IEEE. doi:10.1109/ieee-iws.2019.8803912

[36]Wang, D., Zhang, S., Zhou, D., Song, K., Feteira, A., Vardaxoglou, J. C., . . . Reaney, I. M. (2019). Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites. Materials, 12(9), 1370. doi:10.3390/ma12091370

[37]Rayner, P., Zhang, S., Cadman, D., Vardaxoglou, J. C., & Whittow, W. (2019). Wearable and meshed wideband monopole antennas and their interactions with the human body. IET Microwaves, Antennas & Propagation, 13(14), 2412-2418. doi:10.1049/iet-map.2018.5862

[38]Faouri, S. S., Mostaed, A., Dean, J. S., Wang, D., Sinclair, D. C., Zhang, S., . . . Reaney, I. M. (2019). High quality factor cold sintered Li2MoO4BaFe12O19 composites for microwave applications. Acta Materialia, 166, 202-207. doi:10.1016/j.actamat.2018.12.057

[39]Sharma, S. K., Xin, H., Wu, B. I., Vardaxoglou, J. C., & Chan, C. H. (2018). Guest Editorial Special Cluster on Three-Dimensional Printed Antennas and Electromagnetic Structures. IEEE Antennas and Wireless Propagation Letters, 17(11), 1998-2002. doi:10.1109/LAWP.2018.2877472

[40]Zhang, S., Cadman, D., & Vardaxoglou, J. (2018). Additively Manufactured Profiled Conical Horn Antenna With Dielectric Loading. IEEE Antennas and Wireless Propagation Letters, 17(11), 2128-2132. doi:10.1109/lawp.2018.2871029

[41]Le, A. T., Tran, L. C., Huang, X., Guo, Y. J., & Vardaxoglou, J. C. (2018). Frequency-domain characterization and performance bounds of ALMS loop for RF self-interference cancellation. IEEE Transactions on Communications, 67(1), 682-692. doi:10.1109/tcomm.2018.2867514

[42]Bukhari, S., Whittow, W., Vardaxoglou, J. C., & Maci, S. (2018). Equivalent circuit model for coupled complementary metasurfaces. IEEE Transactions on Antennas and Propagation, 66(10), 5308-5317. doi:10.1109/TAP.2018.2860052

[43]Goulas, A., Gheisari, R., Ghosh, A., Wang, D., Vaidhyanathan, V., Reaney, I. M., . . . Engstrom, D. (2018). Additive manufacturing of metal/ceramic metamaterial structures for RF applications [Abstract]. Boston, Massachusetts: © IEEE. Retrieved from https://www.2018apsursi.org/Papers/ViewPapers.asp?PaperNum=2127

[44]Le, A. T., Nan, Y., Tran, L. C., Huang, X., Guo, Y. J., & Vardaxoglou, Y. (2018). Analog Least Mean Square Loop for Self-Interference Cancellation in Generalized Continuous Wave SAR. In IEEE Vehicular Technology Conference Vol. 2018-August. doi:10.1109/VTCFall.2018.8690717

[45]Hou, Z. J., Yang, Y., Chiu, L., Zhu, X., Dutkiewicz, E., Vardaxoglou, J. C., & Xue, Q. (2018). A W-Band Balanced Power Amplifier Using Broadside Coupled Strip-Line Coupler in SiGe BiCMOS 0.13- µm Technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(7), 2139-2150. doi:10.1109/tcsi.2017.2779174

[46]Lee, C. -K., Bukhari, F., Vardaxoglou, J. C., & Whittow, W. (2018). Optimisation of the Q factor of a complementary frequency selective surface. In Loughborough Antennas & Propagation Conference (LAPC 2017) (pp. 285-288). Loughborough, UK: IET. doi:10.1049/cp.2017.0294

[47]Whittaker, T., Whittow, W., & Vardaxoglou, J. C. (2018). Parasitic inductance control of multi-layer ceramic capacitors using metamaterials. In European Conference on Antennas and Propagation (EuCAP) Vol. 12. London. Retrieved from https://www.eucap2018.org/

[48]Ahopelto, J., Benini, A., Bilotti, F., Casali, B., Chazelas, J., Gerini, G., . . . Zayats, A. (2018). The Electromagnetic framework of 'Nanoarchitectronics'. In 2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings (pp. 2071-2072). doi:10.1109/APUSNCURSINRSM.2018.8608863

[49]Allen, B., Drysdale, T., Zhang, S., Whittow, W., Vardaxoglou, J., & Coon, J. (2018). Reduction of orbital angular momentum radio beam divergence using a 3D printed planar graded index lenses. In IET Conference Publications Vol. 2018. London.

[50]Pandey, S., Arya, R. K., Mittra, R., Zhang, S., Cadman, D., Whittow, W., & Vardaxoglou, Y. (2018). Offset-fed Metal-only Reflectarray Antenna Design Using 3D-Cross Elements. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE. doi:10.1109/apusncursinrsm.2018.8609038

[51]Zhang, S., Whittow, W., & Vardaxoglou, J. (2018). Meta-atoms and artificially engineered materials for antenna applications. In R. Mittra (Ed.), Developments in Antenna Analysis and Synthesis Volume 1 (pp. 351-405). The Institution of Engineering and Technology (IET).

[52]Whittaker, T., Whittow, W., & Vardaxoglou, J. C. (2018). Meta-atom loaded patch antenna. In IET Conference Publications Vol. 2018. IET. Retrieved from https://digital-library.theiet.org/content/conferences/cp746?pageSize=100&page=1

[53]Whittaker, T., Whittow, W., & Vardaxoglou, J. C. (2018). Equivalent circuit modelling of meta-atoms. In European Conference on Antennas and Propagation (EuCAP) Vol. 12. London. Retrieved from https://www.eucap2018.org/

[54]Zhang, S., Cadman, D., Whittow, W., & Vardaxoglou, J. C. (2018). Enabling extrusion based additive manufacturing for RF applications: Challenges and opportunities. In IET Conference Publications Vol. 2018. London.

[55]Aliyu, U. A., Ushendibaba, E., Chauraya, A., & Vardaxoglou, J. C. (2018). Antenna for low frequency applications. In IET Conference Publications Vol. 2018.