个人简介
许言午,华南理工大学未来技术学院,长聘教授,博士生导师,人工智能及医学影像研究方向。WHO数字健康咨询委员会专家,新加坡眼科研究所SERI客聘研究员,IEEE高级会员,中国生物医学工程学会科技创新与产业促进工作委员会委员,中国医药教育协会智能眼科分会常委、数字疗法工作委员会常委,北京卫生法学会大数据与互联网人工智能医疗专委会委员。主要从事计算机视觉、机器学习理论及其应用研究,共发表了140余篇国际期刊及会议论文,谷歌引用6300余次,申请国际专利20多件和中国专利70多件。目前担任Springer Nature旗下Medical Imaging和BioMedical Engineering Online期刊编委,中华医学会主办“中国科技期刊卓越行动计划”英文期刊Intelligent Medicine创刊编委,以及多个SCI期刊的客座主编。担任医疗影像顶会MICCAI和IPMI组委,AAAI、ACPR、ACCAS等国际学术会议组委及PC委员,眼科医学影像国际会议OMIA和国际比赛平台iChallenge创始主席。先后获聘公安部引智计划特聘专家、浙江省特聘专家、北京市特聘专家。欢迎报名与联系:xuyanwu@scut.edu.cn
个人网页
https://sites.google.com/site/xuyanwu1982/home
教育背景
2004.09 – 2009.07,工学博士, 中国科学技术大学(USTC), 计算机应用技术。
2000.09 – 2004.07,工学学士, 中国科学技术大学(USTC), 计算机科学与理论。
工作经历
2023.07 – 至今,华南理工大学未来技术学院,长聘教授
2020.12 – 至今,智慧医疗人工智能首席顾问,Topcon(拓普康)中国
2020.01 – 至今,客聘研究员/教授,新加坡眼科研究所(SERI)
2019.09 – 至今,专家,数字健康(Digital Health)咨询专委会, 世界卫生组织 (WHO)
2016.07 – 至今,客聘研究员/教授,中科院(CAS)宁波工研院慈溪医工所
2017.07 – 2018.07,科学家,中央研究院,广州视源电子科技股份有限公司(CVTE)
2011.08 – 2017.06,研究员,视觉影像研究所,新加坡资讯通信研究院(I2R, A*STAR)
2009.07 – 2011.07,博士后研究员,计算机工程学院,新加坡南洋理工大学(NTU)
承担项目
1. 鹏城实验室大规模医疗健康仿真实验系统, 项目编号 SZCG2022000163, 4339.5万人民币,主持,2022.6 – 2023.6
2.国家工信部—国家药监局“人工智能医疗器械创新任务揭榜”项目, 全国10家,唯一眼科项目,主持, 2022.8 – 2023.12
3.新加坡国家科研基金项目(新加坡工程理事会, BEP-POV), 闭角青光眼筛查系统(AGAR+), 150万新加坡元,主持,2015.10 – 2017.9
4.新加坡国家科研基金项目(新加坡工程理事会, BEP-POC), 高清晰前房角及房水成像技术及系统, 50万新加坡元,联合主持,2016.10 – 2018.3
5. 新加坡国家科研基金项目(新保健集团, RRG), 基于实时视线跟踪的自动低视力复健系统(ARIANA), 25万新加坡元,联合主持,2016.10 – 2018.9
6.新加坡国家科研基金项目(新加坡科研局拓展开发公司, ETPL), 基于眼底影像的疾病筛查云平台(ALPACIA), 180万新加坡元,联合主持,2013.3 – 2015.9
标志性成果
论文:
[1] Fang, H., Yin, P., Chen, H., Fang, Y., Chen, W., Yuan, J., Risa, H., Liu, J. L. & Xu, Y.* (2022). Lens structure segmentation from as-oct images via shape-based learning. Computer Methods and Programs in Biomedicine (CMPB), IF2021=7.027, JCR-Q1, 107322
[2] Zhang, X., …, Xu, Y.*, Higashita, R. & Liu, J. (2022). Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using as-oct images. Medical Image Analysis (MedIA), IF2021=13.828, JCR-Q1, 102499
[3] Fang, H., Li, F., ..., Zhang, X. & Xu, Y.* (2022). Adam challenge: Detecting age-related macular degeneration from fundus images. IEEE Transactions on Medical Imaging (TMI), IF2021=11.037, JCR-Q1, 41(10), 2828–2847
[4] Li, F., ..., Xu, Y.*, Ting, D. S. & Zhang, X. (2022). Digital gonioscopy based on three-dimensional anterior segment optical coherence tomography: An international multicenter study. Ophthalmology, IF2021=14.277, JCR-Q1, 129(1):45-53
[5] Yang, Y., ..., Xu, Y*., Zhang, W. & Zhang, T. (2021). Robust collaborative learning of patch-level and image-level annotationsfor diabetic retinopathy grading from fundus image. IEEE Transactions on Cybernetics (T-CYB), IF2019=11.079, JCR-Q1
[6] Lei, B., Cheng, N., Tan, E. -L., Frangi, F. A., Yang, P., Elazab, A., Du, J., Xu, Y.* & Wang, T. (2020). Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early alzheimer’s disease. Medical Image Analysis (MedIA), IF2020=8.545, JCR-Q1, 61, 101652.
[7] Yin, P., Xu, Y.*, Zhu, J., Liu, J., Yi, C., Huang, H. & Wu, Q. (2021). Deep level set learning for optic disc and cup segmentation. Neurocomputing (NC), IF2020=5.719, JCR-Q1, 464, 330–341.
[8] Fu, H., Li, F., Sun, X., Cao, X., ..., Zhang, X. & Xu, Y. *(2020). Age challenge: Angle closure glaucoma evaluation in anterior segment optical coherence tomography. Medical Image Analysis (MedIA), IF2020=8.545, JCR-Q1, 66, 101798.
[9] Fu, H., Xu, Y.*, Lin, S., Wong, D. W. K., Baskaran, M., Mahesh, M., Aung, T. & Liu, J. (2020). Angle-closure detection in anterior segment oct based on multi-level deep network. IEEE Transactions on Cybernetics (T-CYB), IF2020=11.448, JCR-Q1, 50(7), 3358–3366.
[10] Fu, H., Baskaran, M., Xu, Y.*, Lin, S., Wong, D. W. K., Liu, J., Mahesh, M., Perera, S. A. & Aung, T. (2019). A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. American Journal of Ophthalmology (AJO), IF2020=5.258, JCR-Q1, 201, 37–45.
[11] Fu, H., Cheng, J., Xu, Y.*, Wong, D. W. K., Liu, J. & Cao, X. (2018). Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging (TMI), IF2020=10.048, JCR-Q1, 37(7), 1597–1605.
[12] Fu, H., Cheng, J., Xu, Y.*, Zhang, C., Wong, D. W. K., Liu, J. & Cao, X. (2018). Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Transactions on Medical Imaging (TMI), IF2020=10.048, JCR-Q1, 37(11), 2493–2501.
[13] Fu, H., Xu, Y., Lin, S., Zhang, X., Wong, D. W. K., Liu, J., Frangi, A. F., Baskaran, M. & Aung, T. (2017). Segmentation and quantification for angle-closure glaucoma assessment in anterior segment oct. IEEE transactions on medical imaging (TMI), IF2020=10.048, JCR-Q1, 36(9), 1930–1938.
[14] Guo, Y., Chen, Q., Cao, J., ...,Xu, Y.* & Tan, M. (2020). Closed-loop matters: Dual regressionnetworks for single image super-resolution, In Ieee/cvf conference on computer vision and pattern recognition (cvpr).
[15] Yan, Y., Tan, M., Xu, Y.*, Cao, J., Ng, K.-P. M., Min, H. & Wu, Q. (2019). Oversampling forimbalanced data via optimal transport, In Thirty-third aaai conference on artificial intelligence (aaai-19).
部分对跨国企业进行商业许可的PCT专利:
[1] US9715640.B2. Robust graph representation and matching of retina images.
[2] US9501823.B2. Methods and systems for characterizing angle closure glaucoma for risk assessment or screening.
[3] US10145669.B2. Reducing speckle noise in optical coherence tomography images.