《数据仓库与数据挖掘》实验教学大纲

课程代码

045100931

课程名称

数据仓库与数据挖掘

英文名称

DataWarehouse and Data Mining

课程类别

选修课

课程性质

选修

学时

总学时:48实验学时:16实习学时:0其他学时:0

学分

2.5

开课学期

6

开课单位

计算机科学与工程学院

适用专业

计算机科学与技术(全英创新班)、(全英联合班)

授课语言

英文

先修课程

计算机科学概论

毕业要求(专业培养能力)

1.(工程知识)培养学生熟练掌握英语,掌握扎实的计算机科学与技术专业基本原理、方法和手段等方面的基础知识用于解决复杂工程问题,并通过计算机系统分析、建模和计算等方面的先进方法,为将所学基础知识应用到计算机科学与技术研发和工程实践做好准备。

2.(问题分析)培养学生能够创造性地利用计算机科学基本原理解决计算机领域遇到的问题。

3.(设计/开发解决方案)能够设计针对计算机工程复杂问题的解决方案,设计满足特定需求的计算机软硬件系统,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素。

4.(研究)培养学生具备计算机系统相关知识并对计算机工程复杂问题进行研究,具有计算机系统研发基本能力、具备问题分析和建模的能力,具有系统级的认知能力和实践能力,掌握自底向上和自顶向下的问题分析方法。

课程培养学生的能力(教学目标)

完成课程后,学生将具备以下能力:

1)掌握数据仓库的基本原理和基本知识,培养学生能对业务活动中产生的海量数据的进行采集、清理、存储、分析、使用与维护的能力。[123]

2)掌握数据挖掘的基本原理和基本知识,培养学生利用数据挖掘技术在数据仓库中发现隐藏在海量数据中人们未知的、有价值的信息的能力。[1234]

课程简介

本课程为计算机科学与技术领域的专业选修课程,主要内容包括:数据挖掘的基本知识、数据预处理方法、数据仓库与联机分析处理方法、聚类分析方法、分类方法、关联分析方法。

主要仪器设备与软件

计算机、Python编程环境或MATLAB编程环境

实验报告

包含算法步骤,实验设置,和输出结果。

考核方式

实验报告检查

教材、实验指导书及教学参考书目

[1]JiaweiHan等编著,数据挖掘:概念与技术,机械工业出版社,2012

[2]张良均等编著,Python数据分析与挖掘实战,机械工业出版社,2015

[3]张良均等编著,MATLAB数据分析与挖掘实战,机械工业出版社,2015

制定人及发布时间

龚月姣,201953

《课程名称》实验教学内容与学时分配

实验项目编号

实验项目名称

实验学时

实验内容提要

实验类型

实验要求

每组人数

主要仪器设备与软件

1

数据可视化

4

自选数据集,结合三种以上的数据可视化方法,对数据集进行分析。

验证性

必做

2

计算机、Python编程环境或MATLAB编程环境

2

数据聚类

4

指定数据集,采用两种不同算法完成数据聚类工作,输出结果图表,对算法性能进行对比分析。

验证性

必做

2

计算机、Python编程环境或MATLAB编程环境

3

数据分类

4

指定数据集,采用两种不同算法完成数据分类工作,输出结果图表,对算法性能进行对比分析。

验证性

必做

2

计算机、Python编程环境或MATLAB编程环境

4

综合大作业

4

设想一个应用场景,其中需要用到某类数据挖掘与分析的技术,实现该应用,并撰写一份详细的技术文档或论文。

探索性

必做

4

计算机、Python编程环境或MATLAB编程环境




DataWarehouse and Data MiningSyllabus

CourseCode

045100931

CourseTitle

DataWarehouse and Data Mining

CourseCategory

ElectiveCourse

CourseNature

ElectiveCourse

ClassHours

Total:48  Laboratory: 16

Credits

2.5

Semester

6

Institute

School ofComputer Science and Engineering

ProgramOriented

ComputerScience and Technology

TeachingLanguage

FullEnglish Teaching

Prerequisites

Foundationsof Computer Science

StudentOutcomes (Special Training Ability)

  1. Engineering Knowledge: Anability to apply knowledge of English, solid knowledge ofprofessional basic principles, methods and means of computerscience and technology for solving complex engineering problems,to well prepare the required knowledge applied to the computerscience and technology research & development and engineeringpractice through computer systems analysis, modeling andcalculation and any other aspects of the advanced approach.

  2. Problem Analysis: An abilityto creatively use the basic principles of computer science tosolve the problems encountered in the computer field.

  3. Design / DevelopmentSolutions: An ability to design solutions for computerengineering complex problems, to design computer hardware andsoftware systems that meet with specific requirements, and toembody innovation awareness in the design process and take intoaccount social, health, safety, cultural and environmentalfactors.

  4. Research:An ability to develop computer system-related knowledge andresearch computer engineering complex issues, to develop thebasic capacity of computer systems research & development,systematic cognitive and practice, master the Bottom-up andtop-down problem analysis methods.

TeachingObjectives

Aftercomplete this course, students will have the followingcompetencies:

(1)ability to master the basic principle and basic knowledge of datawarehouse, and to collect, clean, store, analyze, use and maintainthe massive data produced in the business activities. [123]

(2)ability to grasp the basic principles and basic knowledge of datamining, and to use data mining technology to discover the unknownand valuable information hidden in vast amounts of data.[1234]

CourseDescription

Thiscourse is an elective course in the disciplineof computer science and technology. The main contents include:data mining backgrounds, data preprocessing, data warehousing andonlineanalytical processing, clustering analysis, classification, andassociation analysis.

Instrumentsand Equipments

Computers,Python or MATLAB programmingenvironments

ExperimentReport

Shouldcontain the algorithmic procedures, experimental settings, andexperimental results.

Assessment

Experimentalreport

TeachingMaterials and Reference Books

[1]JiaweiHanDataMining: Concepts and Techniques, Third EditionChinaMachine Press2012

[2]LiangjunZhang et al.PythonPractice of Data Analysis and MiningChinaMachine Press2015

[3]LiangjunZhang et al.MATLABData Analysis and Data MiningChinaMachine Press2015

Preparedby Whom and When

Yue-JiaoGong, May 3, 2019

CourseTitle”ExperimentalTeaching Arrangements

No.

ExperimentItem

ClassHours

ContentSummary

Category

Requirements

Numberof Students Each Group

Instruments,Equipments and Software

1

DataVisualization

4

Chooseany datasets, incorporate 3+ data visualization techniques,analyze the datasets.

Verification

Compulsory

2

Computers,Python or MATLAB programmingenvironments

2

DataClustering

4

Destinatedatasets, apply 2 different algorithms to perform data clustering,output the results, make comparisons between the two algorithms.

Verification

Compulsory

2

Computers,Python or MATLAB programmingenvironments

3

DataClassification

4

Destinatedatasets, apply 2 different algorithms to perform dataclassification, output the results, make comparisons between thetwo algorithms.

Verification

Compulsory

2

Computers,Python or MATLAB programmingenvironments

4

TermEssay

4

Findan application scenario that needs data mining techniques,implement the application, finish a technical report or a researchpaper.

Exploratory

Compulsory

4

Computers,Python or MATLAB programmingenvironments