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Abstract— This letter reports on the suppression of
reverse leakage current (I r) in β-Ga2O3 Schottky bar-
rier diodes (SBDs) through Schottky barrier modification
by a low power CF4-plasma treatment prior to Schot-
tky metal deposition. Revealed by an x-ray photoelectron
spectroscopy (XPS) analysis, the fluorine-plasma treatment
brought an incorporation of fluorine ions and depletion of
silicon donors in the near surface region of the β-Ga2O3,
and thus raised its surface potential by around 0.14 eV. Fur-
thermore, insulating GaFx was likely created at the Schottky
interface. Attributed to the fluorine-plasma- modified Schot-
tky barrier, a reduced I r by around four orders of magnitude
and enhanced blocking voltage (V block) from 150 V to 470 V
at I r = 100μ A/cm2 have been achieved without degrading
the forward characteristics. Different from the untreated
device whose I r was purely governed by the thermionic field
emission (TFE), the fluorine-plasma-treated SBD showed a
greatly suppressed TFE-current until a space-charge limited
current (SCLC) started to dominate at around −500 V.

Index Terms—β-Ga2O3, plasma treatment, Schottky bar-
rier diodes, reverse leakage current, space-charge limited
current.

I. INTRODUCTION

IN RECENT years, β-Ga2O3 semiconductor has attracted
great research interest due to its superior material proper-

ties. The ultra-wide bandgap of ∼4.8 eV, which corresponds to
a wavelength of about 260 nm, makes β-Ga2O3 an intrinsically
suitable candidate towards high performance solar-blind deep-
ultraviolet (DUV) detectors [1]–[3]. Featuring a relatively
large atom density and good radiation tolerance, β-Ga2O3 is
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also promising for X-ray and high-energy particle detection
applications [4]–[6]. Moreover, β-Ga2O3 shows a great poten-
tial for next-generation high-voltage power electronics, since
its critical electric field is up to 8 MV/cm and the projected
Baliga’s figure of merit (BFoM) exceeds 3 GW/cm2 [7], [8].

As a fundamentally important device, Schottky barrier
diodes (SBDs) based on β-Ga2O3 have been extensively devel-
oped for all aforementioned applications. Remarkably, over
1 kV breakdown voltage (VB) has been achieved in β-Ga2O3
power SBDs by many researchers through careful electric field
management [9]–[12]. However, a relatively high reverse leak-
age current (Ir ) in the β-Ga2O3 SBDs, which mainly results
from an emission of majority carriers over a relatively low
potential barrier (typically ∼1 eV), remains a critical challenge
for both power switching and sensing applications, since it will
lead to a large power consumption, high noise level, low effi-
ciency and reliability issues. Therefore, leakage current reduc-
tion and Schottky barrier modulation are essential for devel-
oping better-performance β-Ga2O3 Schottky devices [13].

A previous study showed that exposure of the Pt/β-Ga2O3
Schottky interface to a hydrofluoric acid could increase its
Schottky barrier height and decrease the Ir , in which a
diffusion of fluorine (F) atoms into β-Ga2O3 was claimed
but lacked direct confirmation [14]. On the other hand,
F-based plasma treatments have been successfully adopted
in GaN-based SBDs [15]–[17] and high electron mobility
transistors (HEMTs) [18]–[20] for effective Schottky barrier
modulation. However, performance degradation was recently
observed in CF4-plasma-treated β-Ga2O3 SBDs [21], [22],
in terms of decreased forward current and increased ideality
factor and Ir . In these studies, surface damage was likely
generated due to the non-optimized treatment conditions, and
it could be partially recovered by a subsequent annealing
process.

In this work, through a low power CF4-plasma surface treat-
ment, we successfully achieved Schottky barrier modification
in β-Ga2O3 SBDs and reduced the Ir by around four orders
of magnitude, while maintaining good forward characteristics.
An x-ray photoelectron spectroscopy (XPS) study confirmed
the incorporation of F ions and formation of insulating GaFx
at the β-Ga2O3 Schottky contact after treatment.

II. DEVICE STRUCTURE AND FABRICATION

The sample used in this study consisted of an 8-μm thick
Si doped β-Ga2O3 drift layer grown on a conductive (001)
β-Ga2O3 substrate. The non-linear 1/C2-V plot in Fig. 1(a)
indicated a non-uniform doping in the drift layer. The net
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Fig. 1. (a) The measured C-V and 1/C2-V curves of the β-Ga2O3 SBD
without F-plasma treatment. (b) The extracted net doping concentration
(ND-NA) from C-V measurement.

Fig. 2. Comparison of (a) forward and (b) reverse I-V characteristics for
the β-Ga2O3 SBDs with and without F-plasma treatment.

doping concentration (ND – NA) was determined to be
2.8 ∼4 ×1016 cm−3, as shown in Fig. 1(b). The fabrication
process of the SBDs began with sample cleaning using acetone
and isopropanol, followed by a deionized (DI) water rinse.
After cleaning, the Ohmic cathode electrode (Ti/Al/Au) was
deposited on backside of the sample by blanket e-beam
evaporation. Then the sample was loaded into a reactive ion
etch (RIE) system and a CF4-plasma treatment was performed
on the front side of the sample for 1 minute with a low
RF power of 50 W. The chamber pressure and CF4 gas
flow rate were 10 mTorr and 25 sccm, respectively. Finally,
circular- shaped anode electrodes with a diameter of 100 μm
were formed by evaporating the Schottky metal (Ni/Au) onto
the sample surface. To make comparison, a control sample
without going through the F-plasma treatment process was
co-prepared. Prior to the Schottky metal deposition, XPS
measurements were performed on both samples to reveal how
the F plasma affected the surface condition and chemical
composition of the β-Ga2O3.

III. RESULTS AND DISCUSSION

Fig. 2(a) plots the forward current-voltage (I -V ) curves
of the fabricated β-Ga2O3 SBDs with and without F-plasma
treatment. The two devices showed quite comparable on-state
performances with close-to-unity ideality factors and the
forward current densities both exceeding 0.2 kA/cm2 at a
bias of +2 V. A similar specific on-resistance (Ron,sp) of
∼4.6 m�•cm2 was obtained. The turn-on voltages (Von),
extracted at a current density of 1 A/cm2, were 0.95 V
and 0.82 V for the F-plasma-treated and untreated SBDs,
respectively.

Fig. 2(b) compares the reverse I -V characteristics of
the fabricated β-Ga2O3 SBDs with and without F-plasma

TABLE I
BENCHMARK OF KEY PARAMETERS IN Ga2O3 SBDS

Fig. 3. T -dependent forward I-V characteristics of the β-Ga2O3 SBDs
(a) with and (b) without F-plasma treatment, and (c) the corresponding
Richardson’s plots in a temperature range of 25 to 250 ◦C.

treatment in a semi-log scale. The Ir in the untreated SBD
increased obviously with the increase of the bias voltage and
reached to ∼3×10−4 A/cm2 at −200 V. On the other hand, the
F-plasma-treated SBD exhibited a Ir of ∼5 × 10−8 A/cm2 at
−200 V, approximately 4 orders of magnitude lower than the
untreated one. Therefore, an On/Off current ratio (IO N /IO F F )
at −200 V as high as 4 × 109 was achieved. Moreover,
the blocking voltage (Vblock) of the device, which was defined
at an Ir of 100 μA/cm2 and corresponded to an IO N /IO F F >
106, was significantly enhanced by the proposed F-plasma
treatment from 150 V to 470 V, among the highest in all
reported β-Ga2O3 SBDs.

Table I benchmarks the device characteristics in our
study with the other state-of-the-art β-Ga2O3 SBDs. The
outstanding reverse blocking capability and well-maintained
on-state performance in our device indicated that Schottky
barrier modification was achieved by the proposed F-plasma
treatment without degrading the quality of the Schottky con-
tact. It should be noted that the chamber pressure in our
CF4-plasma treatment process was much lower than that in
previous reports [21], [22]. The lower chamber pressure led to
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Fig. 4. (a) Valence band spectra, (b) F 1s core-level spectra and (c) Si 2s
core-level spectra of the β-Ga2O3 samples with and without F-plasma
treatment.

fewer ion-substrate collisions during treatment and less plasma
damage onto the device [23].

The temperature (T )-dependent forward I -V characteristics
of the β-Ga2O3 SBDs with and without F-plasma treat-
ment are shown in Fig. 3, alongside with the corresponding
Richardson’s plots. The F-plasma-treated SBD showed an
increased Schottky barrier height (SBH) of 1.31 eV compared
to the untreated device of 1.18 eV, in good agreement with
the 0.13 V positive shift in Von. Compared to a theoretical
value taking the electron effective mass of 0.342 m0 [24],
the effective Richardson’s constant (A∗) extracted in our
devices (20 ∼ 23 A/cm2K2) was relatively small. The effects
of a high tunneling current could be a possible reason for the
untreated SBD [25], [26], while the low A∗ in the F-plasma-
treated device suggested a presence of dielectric interfacial
layers [27], probably GaFx as discussed later.

Previous reports showed that the F-plasma treatment on
GaN-based devices suffered from thermal stability issues,
for example, threshold voltage shifting at elevating temper-
atures [28]. In our study, no performance degradation was
observed for the F-plasma treated Ni/β-Ga2O3 SBDs after
the high temperature test up to 250 ◦C. However, higher
temperature stability has not been studied yet and further
investigation is needed.

As shown in the valence band spectra in Fig. 4 (a), the
F-plasma treatment shifted the surface Fermi level in β-Ga2O3
toward the valence band by ∼0.14 eV, which corresponded to
an increase in the surface potential and should be responsible
for the higher SBH and Von observed in the F-plasma-treated
β-Ga2O3 SBD. Fig. 4 (b) and (c) compare the F 1s and Si 2s
core-level spectra, respectively, between the β-Ga2O3 samples
with and without F-plasma treatment. Apparently, the F 1s
peak located at ∼686.0 eV with a shoulder on the higher bind-
ing energy side, which corresponded to GaFx [29], appeared
after F-plasma treatment, confirming an incorporation of F ions
into the β-Ga2O3 and the formation of insulating GaFx at the
surface [15], [20]. On the other hand, the Si 2s peak vanished
in the F-plasma-treated sample, suggesting a removal of silicon
(Si) dopant from the near surface region of the β-Ga2O3.
During treatment, the CF4 plasma likely reacted with Si atoms
to form volatile SiF4, which was then flushed out of the RIE
chamber. Thus, it was concluded that the proposed F-plasma
treatment could simultaneously enlarge the effective SBH and

Fig. 5. The Ir of the F-plasma-treated β-Ga2O3 SBDs plotted in a full-
log-scale.

surface depletion width in a β-Ga2O3 SBD, mainly due to the
strong electronegativity of the incorporated F ions together
with a depletion of Si dopants. The removal of Si dopant
occurred only in the near surface region, much shallower than
a Ni/β-Ga2O3 Schottky depletion depth, which would hardly
affect the SBD’s forward conduction.

As confirmed by the curve fitting in Fig. 2(b), a pure
thermionic field emission (TFE) model well described the Ir
in the untreated SBD with an SBH of 0.79 eV [32]. This
value was lower than the SBH extracted from the forward
I -V characteristics (1.18 eV), which could be caused by the
injection of electrons into the defect mini-band rather than the
conduction band [33] or the inhomogeneity of the Schottky
barrier height [34], [35].

On the other hand, the Ir in the F-plasma-treated SBD
showed a much smaller dependency on the bias voltage
below −240 V and a hump at around −500 V, suggesting a
different leakage mechanism from the untreated device. Such
improvement was attributed to not only a higher and wider
Schottky barrier but also the influence of the insulating GaFx,
which effectively blocked the tunneling current and might also
passivate the interface states [16]. A parallel leakage path
dominated the measured Ir in the F-plasma-treated SBD at a
low reverse bias (<240 V), and the Ir could be fitted well up
to a reverse bias of 500 V based on the TFE model including
a fixed specific parallel resistance of 3 × 109�cm2. The
fitted SBH value for the F-plasma-treated SBD was 1.09 eV,
obviously larger than that of the untreated device (0.79 eV),
confirming a successful Schottky barrier modification by the
proposed F-plasma treatment.

Fig. 5 plots the Ir of the F-plasma-treated β-Ga2O3 SBD
in a full-log scale. It was found that the Ir showed a sudden
increase at around −500 V, which could be modeled by
a space-charge limited current (SCLC) conduction near the
traps-filled-limit voltage (VTFL) [30], [31], [33]. Under a high-
level reverse bias, the electrons that injected into the depletion
region could be partly captured by traps until the VTFL was
reached, at which point a soft breakdown usually occurred.

IV. CONCLUSION
A CF4-plasma treatment process has been developed for

leakage current reduction in β-Ga2O3 SBDs. Through an
incorporation of F ions and removal of Si dopants, as well as a
formation of insulating GaFx at the Schottky interface, Schot-
tky barrier modification was realized. The F-plasma-treated
device showed significantly enhanced reverse characteristics
including a ∼104× lower Ir and > 3× higher Vblock , while
maintaining good on-state performances.
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