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Comprehensive Summary 

 

Hyperbranched polymers with unique topological structures, large number of branching sites and terminal groups have attracted 
much attention, and are expected to possess advanced functionalities compared with their linear polymer counterparts. The devel-
opment of hyperbranched polymers with unique structures is hence highly desired but challenging, especially for sulfur-containing 
polymers which are attractive metal absorbents, optical materials, dielectric materials, and self-healing materials. In this work, six 
hyperbranched polythioamides with various topological structures, well-defined repeating units, satisfying yields (up to 99%), and 
high molecular weights (up to 101 400 g/mol) were successfully designed and synthesized from the catalyst-free multicomponent 
polymerization of elemental sulfur, aromatic alkynes and aliphatic amines, through different monomer combination strategies based 
on the designed three- or four-functional alkyne and amine monomers. The hyperbranched polythioamides possess unique lumi-
nescence property, and strong affinity toward Hg2+, which can be utilized in the fluorescence detection of Hg2+, as well as mercury 
removal from aqueous solutions with high 99.99% efficiency and low mercury residue of 0.1 ppb. Hyperbranched polythioamides 
with unique structures may be developed to a group of fascinating materials and find their potential applications as metal absor-
bents, optoelectronic materials, and mechanically strong materials. 
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Background and Originality Content 

Hyperbranched polymers with unique three dimensional top-
ological structures and large number of branching sites and ter-
minal groups, generally show different solubility,

[1]
 viscosity,

[2]
 

mechanical properties,
[3]

 ionic conductivity,
[4-5]

 and self-assembly 
properties,

[6]
 compared with the corresponding linear polymers, 

and are of great potential in the applications such as coating,
 [7-8]

 
lubricating,

[9]
 light-harvesting,

[10]
 drug sustained release agents 

and membranes,
[11-14]

 polyelectrolytes,
[4-5]

 and luminescent mate-
rials.

[6,15-18]
 On the other hand, sulfur-containing polymers includ-

ing polythioethers,
[19-20]

 polythioesters,
[21-22]

 poly(monothiocarbo-
nate)s,

[23]
 polytrithiocarbonates,

[24]
 polythioureas,

[25]
 polythioam-

ides,
[26]

 polythiophenes,
[27]

 and others, which generally enjoy high 
refractive indices,

[28]
 excellent metal coordination ability,

[25,29-30]
 

self-repairing performance,
[31]

 electrical conductivity,
[27,32-33]

 and 
degradability,

[34-36]
 have attracted much attention as advanced 

materials in the applications including optical materials,
[37]

 sewage 
treatment materials,

[30,38]
 self-healing materials

[31]
 and dielectric 

materials.
[32,33]

 However, limited examples about sulfur-containing 
hyperbranched polymers such as disulfide-containing hyper-
branched poly(amido amine)s with controllable bioreducibility 
and stimuli-responsiveness were developed,

[39-44]
 due to the lack 

of efficient synthetic approaches, and current methods generally 
involve sulfur-bearing smelly and toxic monomers or byproducts. 

Of all the sulfur-containing polymers, polythioamides with 
similar structures as the traditional high-performance polyamides 
such as nylon and Kevlar, were proved to possess high optical 
performance and metal coordination ability,

[26,30]
 and may be 

promising engineering plastics. However, the reports about poly-
thioamide structures and properties are still quite rare, because of 
the restriction of synthetic methods. For example, polythioamides 
were prepared through the conversion from polyamides with the 
utilization of malodorous Lawesson reagents in the risk of hydro-
lytic degradation;

[45]
 polymerizations of dithiocarboxylic acid-O,O- 

diethyl esters or dithioesters with diamines, respectively, were 
also reported to prepare polythioamides, but with expensive 
monomers, harmful byproducts and long reaction time.

[46-47] 

Elemental sulfur, as the main byproduct from petroleum in-
dustry,

[48]
 is an ideal sulfur source for the preparation of sulfur- 

containing polymers, considering its economic and environmental 
benefits.

[26]
 Of all the recently developed synthetic methodologies 

for the direct utilization of elemental sulfur,
[28,49]

 multicomponent 
polymerizations (MCPs) featured with attractive characteristics 
such as great structural diversity, high efficiency, mild condition, 
high atom economy, and simple operation, have proved to be 
advantageous for the preparation of sulfur-containing polymer 
materials, and especially for the synthesis of polythioamides. For 
example, we have developed the catalyst-free MCPs of elemental 
sulfur, aromatic diynes, and aliphatic diamines at 100 °C with mild 
condition to afford linear polythioamides with well-defined struc-
tures.

[48]
 We have also reported the scalable MCPs of elemental 

sulfur, dicarboxylic acids and diamines at 100 °C without catalyst, 
or with base in the case of aromatic diamines, affording linear 
polythioamides with a great diversity of polymer structures, and 
proving their potential in metal ion extractions.

[26]
 Similar MCPs of 

elemental sulfur, aliphatic diamines, and aromatic dialdehydes,
[50]

 
or polymerization of sulfur and benzyl diamines were also re-
ported to produce linear polythioamides.

[51]
 Most recently, poly-

ethyleneimine (PEI) was used as reactant to be crosslinked by 
sulfur and 1,4-diethynylbenzene to afford polymer materials with 
potential application in mercury adsorption, but the structures are 
not well-defined because of the irregular structure of PEI, poten-
tial cross-linking, and poor solubility of the product.

[52] 

In this work, by taking advantage of the unique designability 
of MCP on its monomer structures and the various monomer 

combinations, a series of hyperbranched polythioamides with 
diversified topological structures, well-characterized chemical 
structures, and good solubility were successfully synthesized from 
the MCP of elemental sulfur, aromatic alkynes and aliphatic 
amines. A group of diynes, triyne, tetrayne, diamines, and tri-
amine monomers were designed and synthesized, and various 
monomer combinations including A + B3 + C2, A + B4 + C2, and A + 
B2 + C3 were adopted for the catalyst-free MCP, which is more 
convenient and efficient in terms of monomer synthesis and stor-
age compared with ABn-type monomer strategy with two or more 
kinds of reactive sites in a single molecule.

[53]
 Six hyperbranched 

polythioamides were produced with different topological struc-
tures, structural diversity, satisfied yields and molecular weights 
(Mws), and good solubility. To the best of our knowledge, there 
has been neither report about hyperbranched polythioamide 
structures with well-defined repeating unit structure, nor report 
about hyperbranched polythioamide synthesized directly from 
small molecular monomers. These hyperbranched polythioamides 
enjoy good solubility, unique luminescence, and mercury affinity, 
which could be applied in the fluorescence detection and removal 
of Hg

2+
. 

Results and Discussion 

Synthesis of trithioamides and tetrathioamide model com-
pounds 

Three small molecular model compounds were first designed 
and synthesized. Triphenylamine (TPA)-containing triyne 2a and 
tetraphenylethene (TPE)-containing tetrayne 2b were used to 
synthesize trithioamide 4 and tetrathioamide 5, respectively, with 
S8 and benzylamine 3e in pyridine at 100 °C. Alternatively, tri-
amine 3d could also undergo the same reaction with S8 and phe-
nylacetylene 2e to afford trithioamide 6 (Scheme 1). Although 
there were three or four reaction sites, satisfying isolated yields 
of 60%—72% can be obtained for these model compounds. Their 
structures were characterized by the standard spectroscopy anal-
ysis which will be discussed below. 

Synthesis of hyperbranched polythioamides from the mcps 
of sulfur, amines and alkynes 

A series of diyne, triyne, tetrayne, diamine, and triamine 
monomers 2a—2d and 3a—3d were purchased or prepared ac-
cording to the literatures.

[54-56]
 Three groups of hyperbranched 

polythioamides with each of their structure moieties correspond-
ing to the above-mentioned three model compound structures, 
respectively, were then designed and synthesized from the MCPs 
of sulfur, alkynes, and amines with different monomer combina-
tion strategies (Scheme 2 and Figure 1). 

Through A + B3 + C2 monomer combination with TPA-con-
taining triyne 2a, para- or meso-dibenzylamines 3a/3b, and sulfur 
as the monomers, hyperbranched polymers hb-P1 and hb-P2 were 
both afforded from the MCP with the high concentration of dia-
mines of 0.5 mol/L at 100 °C in 99% yield and high molecular 
weights (Mws) of 44 500 and 40 800 g/mol, respectively, suggest-
ing the high polymerization efficiency of electron-rich aromatic 
alkyne monomer with benzylamine monomers (Scheme 2A and 
Figure S1). When triyne monomer 2a was replaced by tetrayne 2b 
in the MCP with sulfur and benzylamine, hb-P3 with a Mw of 
38 900 g/mol could be afforded in 74% yield through the A + B4 + 
C2 monomer combination (Scheme 2B). If the para-benzylamine 
3a was replaced by dihexylamine 3c, hb-P4 with similar Mw of 
36 100 g/mol but decreased yield was obtained, suggesting that 
benzylamine showed higher reactivity compared with alkylamine 
monomer. When aliphatic triamine 3d was adopted for A + B2 + C3 
monomer combination with sulfur and aromatic diyne monomers 
2c with the loading ratio of 1/8[S8] : [2c/2d] : [3d] = 6.0 : 1.5 : 1.0,   
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Scheme 1  The synthesis route of model compounds 4, 5 and 6 

 

 
hb-P5 with high Mw of 101 400 g/mol could be obtained (Scheme 
2C). Similarly, the MCP of sulfur, 3d, and TPE-containing diyne 2d 
can generate hb-P6 with a large Mw of 71 200 g/mol. Of all the 
three monomer combination strategies, the highest yields could 
be afforded in the A + B3 + C2 manner, and the highest Mws could 
be produced in the A + B2 + C3 manner. 

Even though there are abundant thioamide groups with po-
tential intra- and intermolecular hydrogen bonds existing in the 
structures, the hyperbranched polythioamides generally possess 
satisfying solubility in polar solvents such as DMSO and DMF with 
sonication, which were also partially soluble in THF, except hb-P5 
with large Mw and prepared from phenyldiacetylene monomer 2c 
with poor solubility. The successful synthesis of hb-P1—6 sug-
gested the general applicability of various monomers with multi-
ple functional groups, and the high yields and large Mws of the 
polymer products proved the high efficiency of this MCP of sulfur, 
alkyne, and amine. 

Structural characterization of hyperbranched polythioam-
ides 

The chemical structures of the hyperbranched polythioamides 
hb-P1—6 were confirmed by their IR, 

1
H and 

13
C NMR spectra, 

together with the comparison with those spectra of the corre-
sponding monomers and model compounds. Taking hb-P1 for an 
example, in the 

1
H NMR spectra of hb-P1 and its model compound 

4 with similar structural unit, the terminal alkyne proton reso-
nance at δ 4.13 of monomer 2a has disappeared, and the NH2 

peak from the benzyl (di)amine at δ 1.67 has shifted to δ 10.61 (4) 
and 10.66 (hb-P1), respectively, representing their characteristic 
thioamide proton resonance. Meanwhile, the -CH2- proton peak 
from benzyl amine reactants has shifted from δ 3.68 to 4.75, and 
a new single peak emerged at δ 3.92 in the spectrum of hb-P1, 
representing the -CH2- protons produced from alkyne groups, 
which are in good correspondence with these -CH2- peaks of 4 at 
δ 4.78 and 3.91, respectively, confirming the formation of thio-
amide groups in the hyperbranched polymer (Figures 2A—2D). 
Similarly, in the 

1
H NMR spectrum of hb-P2, the three characteris-

tic peaks also emerged at δ 10.64, 4.75 and 3.93 (Figure S2), and 
the characteristic peaks of -NH- protons on the thioamide groups 
appeared at δ 10.10—10.58 in the 

1
H NMR spectra of hb-P2— 

hb-P6, proving their well-defined hyperbranched polythioamide 
structures (Figure S3—S6). 

Most importantly, in the 
13

C NMR spectra of 4 and hb-P1, the 
characteristic carbon resonances of thioamide groups have 
emerged at δ 201.70 and 200.36, respectively, proving the for-
mation of the HN-C=S groups in the hyperbranched polymer. 
Meanwhile, two -CH2- carbon resonances emerged at δ 51.01 and 
43.83 in the spectrum of hb-P1, corresponding to the peaks at δ 
50.71 and 48.60 in the spectrum of 4, representing the methylene 
groups on each side of the thioamide moiety (Figure 2E—2H). A 
small peak at δ 83.42 could still be observed in the spectrum of 
hb-P1, which was probably associated with the unreacted termi-
nal alkyne moieties. In addition, the characteristic 

13
C NMR peak 

for the thioamide groups in hb-P5 was also found at the same  
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Scheme 2  Multicomponent polymerization of sulfur 1, alkynes 2a—2d and amines 3a—3d through (A) A + B3 + C2, (B) A + B4 + C2 and (C) A + B2 + C3 

methods 

 

 
region at δ 200.33. 

The IR spectra of hb-P1 and 4 were also studied (Figure S7). 
The stretching vibration of ≡C-H and C≡C bonds of 2a located at 
3266 and 2101 cm

-1
, respectively, have disappeared in the spec-

trum of model compound 4, and have significantly decreased in 
the spectrum of hb-P1. The stretching vibration of -NH2 of 3a at 
3309 cm

-1
 has converted to the –NH- stretching vibration at 3176 

(4) and 3279 nm (hb-P1), respectively. Most importantly, the 
strong absorption bands both at 1504 cm

-1
 in the spectra of 4 and 

hb-P1 are associated with the C=S stretching vibration of the thi-
oamide groups.

[26]
 Similarly, these strong resonances appeared at 

1538 and 1531 cm
-1

 in the spectra of model compound 6 and 

hb-P5 (Figure S8), representing their thioamide moieties. 
To prove the existence form of sulfur in the polymer struc-

tures, X-ray photoelectron spectroscopy was measured (Figure 
S9). The binding energies of S 2p were observed at 162.13/163.33 
eV (4) and 162.15/163.32 eV (hb-P1), which were different from 
those of elemental sulfur at 164.23/165.42 eV, proving that sulfur 
has all converted to thioamide moieties in the hyperbranched 
polymer. 

Photophysical properties of hyperbranched polythioamides 

The photophysical properties of the hyperbranched polythio-
amides hb-P1 and hb-P4 prepared from the chromophore-  
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Figure 1  Chemical structures, yields, and molecular weights of hyperbranched polythioamides hb-P1—6. 

 
Figure 2  1H NMR spectra of (A) 2a, (B) 3a, (C) 4, (D) hb-P1. 13C NMR spectra of (E) 2a, (F) 3a, (G) 4, (H) hb-P1 in DMSO-d6. The solvent peaks were marked 

with asterisks.  
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containing monomers were investigated as examples. In the UV- 
vis spectra of their dilute DMF solutions, TPA-containing hb-P1 
possessed absorption maxima at 314 nm, while the TPE-contain-
ing hb-P4 possessed redshifted absorption maxima at 329 nm 
(Figure S10). The photoluminescence spectra of these hyper-
branched polythioamides were then measured in DMF solutions 
and DMF/water mixtures. The emission maxima of their DMF 
solutions were located at 483 (hb-P1) and 486 nm (hb-P4), re-
spectively. When poor solvent, water, was gradually added into 
their DMF solutions, the emission of TPA-containing hb-P1 was 
significantly quenched (Figure 3A), and the emission intensity of 
TPE-containing hb-P4 was gradually increased with the emission 
peak slightly redshifted to 509 nm, demonstrating the aggrega-
tion-enhanced emission property of hb-P4 (Figure 3B). When poor 
solvent water was added to make the molecules aggregate, the 
intramolecular and intermolecular hydrogen bonds among the 
thioamide moieties might form to restrict the free rotation of 
phenyl rings on TPE moieties and enhance the emission. The pho-
toluminescence spectra of the corresponding model compounds 4 
and 5 in DMF/water mixtures also suggested similar phenomena 
(Figure S11). 

 
Figure 3  PL spectra of (A) hb-P1, (B) hb-P4 in DMF/water mixtures with 

different water fractions (fw), concentration: 10 μmol/L. Excitation wave-

length: 330 nm. Calculated by the repeating units of the hyperbranched 

polythioamides. 

Mercury detection and removal with hyperbranched poly-
thioamides 

Mercury pollution in water could cause serious environmental 

and health problems because of the toxicity of mercury species to 
respiratory and nerve systems,

[57]
 the detection and removal of 

mercury ion are hence important and have been widely investi-
gated with the mercury absorbents including biomaterials,

[58]
 co-

valent organic frameworks,
[59]

 traditional diatomite,
[60]

 chitosan,
[61]

 
or modified activated carbon.

[62]
 Linear or hyperbranched poly-

mers with abundant thioamide moieties as well-known ligands for 
Hg

2+
, could hence be developed as Hg

2+
 absorbents,

[30,38]
 and 

hb-P1, hb-P5 and hb-P6 were studied as examples. 
The fluorescence intensity of the DMF solution of hb-P1 was 

gradually decreased in the presence of increasing concentration 
of Hg

2+ 
(Figure 4), which was decreased by half with 8 mg/L Hg

2+
, 

and to 20% with 16 mg/L Hg
2+

. A linear relationship between the 
fluorescence quenching ratio I/I0 and the [Hg

2+
] can be found 

within the measured concentration range. The in situ fluorescence 
quenching of hb-P1 by Hg

2+
 may endow the possibility of mercury 

removal with real time monitoring. To investigate the selectivity of 
the hyperbranched polythioamides among metal ions, solid pow-
der of hb-P1 was added into aqueous solutions of different metal 
ions including Na

+
, K

+
, Pb

2+
, Mn

2+
, Fe

2+
, Fe

3+
, Co

2+
, Ni

2+
, Cu

2+
, Ag

+
, 

Zn
2+

, Cd
2+

, Cr
3+

, Cr
2+

 and Hg
2+

, respectively (Figure S12), suggesting 
high selectivity towards Hg

2+
. 

 
Figure 4  (A) Fluorescence of hyperbranched polythioamide hb-P1 with 

Hg2+ solution ranging from 2 to 16 mg/L in DMF solution, [Polymer] = 40 

mg/L. (B) The plot of relative emission intensity (I/I0) versus [Hg2+] when 

DMF solution of hb-P1 was added with HgCl2, i.e., [Hg2+]0 in DMF solutions 

ranging from 0 to 16 mg/L. I0 = PL intensity in the absence of Hg2+. Inset: 

fluorescence photographs of the resultant solutions taken upon UV irradi-

ation. 

Moreover, solid powders of the hyperbranched polymers were 
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respectively added into 10 mL of aqueous solution of HgCl2. After 
stirring and centrifugation, the insoluble solid was removed by 
filtration, and the remaining concentration [Hg

2+
] in the resulting 

supernatant was measured by Atomic Absorption Spectroscopy. 
With a constant ratio of mP/mHg2+ and the initial concentration 
[Hg

2+
]0 range of 5 to 100 mg/L, the removal efficiencies of hb-P1 

were generally measured to be above 99.92%, and the remaining 
[Hg

2+
] could be decreased to as low as 0.10 μg/L, which was be-

low the limit of drinking water standards of WHO (6 μg/L), U.S. (2 
μg/L), China and EU (1 μg/L) (Figure 5 and Table S1).

[63-64]
 Similarly, 

hb-P5 and hb-P6 also show high removal efficiency, and slightly 
decreased efficiency with low [Hg

2+
]0 compared with hb-P1, may-

be due to the relatively flexible structures compared with hb-P1. 

 
Figure 5  Extraction efficiency of hyperbranched polythioamides with 

different initial concentration of Hg2+. 

Conclusions 

Herein, a series of hyperbranched polythioamides with di-
verse topological structures and well-defined repeating units were 
facilely synthesized through a catalyst-free multicomponent poly-
merization of elemental sulfur, aromatic alkynes and aliphatic 
amines. Based on a group of monomers with double or multiple 
functional groups such as diynes, triyne, tetrayne, diamines, and 
triamine, various A + B3 + C2, A + B4 + C2, and A + B2 + C3 monomer 
combination strategies were adopted to afford six hyperbranched 
polythioamides with satisfying yields (up to 99%) and molecular 
weights (up to 101 400 g/mol), whose well-defined structures 
were fully characterized through 

1
H, 

13
C NMR and IR spectra. The 

luminescence property of the hyperbranched polythioamides with 
TPA and TPE units in the polymer chain was compared, revealing 
that the TPA-containing hyperbranched polythioamide showed 
aggregation-caused fluorescence quenching, and the TPE-contain-
ing polythioamides showed aggregation-enhanced fluorescence. 
Meanwhile, the fluorescence of the polythioamide solution could 
be quenched by Hg

2+
 with a linear relationship in the measured 

concentration range, which may be used for the fluorescence 
detection of Hg

2+
 concentration. Moreover, with the abundant 

thioamide groups in the three dimensional hyperbranched struc-
tures and the strong affinity of the thioamide groups with Hg

2+
, 

even the solid powder of the hyperbranched polymers could be 
used to extract Hg

2+
 conveniently with >99.99% efficiency, and 

low Hg
2+

 residue (as low as 0.1 ppb), demonstrating their poten-
tial application in the treatment of mercury pollution as mercury 
absorbents, which may be further combined with the unique flu-
orescence of the polymer for the real-time monitoring of the mer-
cury removal process. This work demonstrated the straightfor-
ward synthesis from industrial sulfur waste to hyperbranched 
polythioamides with a one-step multicomponent polymerization 

of sulfur, alkynes, and amines, directly converting sulfur waste to 
profitable functional polymer materials with potential application 
in the treatment of environmental pollution, which provides a 
great opportunity for the resource utilization. 

Experimental 

The experimental details of this report are recorded in the 
Supporting Information of this report. 
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The supporting information for this article is available on the 
WWW under https://doi.org/10.1002/cjoc.202100498. 
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