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A B S T R A C T   

Unmanned aerial vehicles (UAVs) have become powerful tools in modern military combat. How to properly 
allocate the tasks of heterogeneous UAVs in a combat is a fundamental and challenging problem. In this paper, 
we formulate the cooperative task allocation of heterogeneous UAVs as a constrained multi-objective optimi
zation problem. To efficiently resolve the formulated problem, we further propose a multi-objective ant colony 
optimization (MOACO) algorithm with a new pheromone updating mechanism and four newly defined heuristic 
information. Simulation results on test cases with different scales and characteristics have shown that the pro
posed methods can perform better than several recently published algorithms, in terms of convergence speed, 
solution quality and solution diversity.   

1. Introduction 

Unmanned aerial vehicle (UAV) has now become a common and 
powerful tool in modern military and civilian domains owning to its 
high mobility and low cost [1,2]. In the main combat mission of military 
UAVs, the Suppression of Enemy Air Defence (SEAD) usually uses het
erogeneous UAVs [3] to work corporately rather than using a single type 
of UAV. Such a heterogeneous system has advantages of strong fault 
tolerance, high performance and good adaptability, but it meets chal
lenges of cooperative task allocation and collective motion control [4,5]. 
Generally, the cooperative task allocation requires properly assigning 
different tasks to multiple UAVs with different kinematic characteristics 
and operational capabilities, so that certain optimization objectives can 
be optimized and the physical and logical constraints of UAVs can be 
satisfied [6]. 

Over the past decade, a number of efforts have been made to solve 
the cooperative task allocation for heterogeneous UAVs. By considering 
different features and constraints, the cooperative task allocation 
problem has been formulated as different kinds of NP-hard problems 
such as vehicle routing problem [7], multiple traveling salesman prob
lem [8], and mixed integer linear programming problem [9]. Existing 
works to solve the cooperative task allocation problem generally can be 
classified into two categories. The first category utilizes deterministic 
algorithms such as branch and bound [10], and dynamic programming 

[11], but these methods have difficulties in tackling multiple optimi
zation objectives and constraints. They can hardly find a feasible solu
tion as the numbers of UAVs and targets grow, because of the 
exponential increase of computational cost. 

The second category utilizes computational intelligence (CI) algo
rithms such as genetic algorithm (GA) [12,13] and particle swarm 
optimization (PSO) [14,15]. For examples, Deng et al. [16] proposed an 
enhanced GA with multi-type genes to solve the problem. Wang et al. 
[17] developed an enhanced GA with opposition-based learning to solve 
the problem. In [15], the task allocation problem is solved by using an 
improved multi-objective quantum-behaved PSO. These CI-based algo
rithms have potential to find global or near global optimal solutions, but 
they ignore the heterogeneity of UAVs and targets during the evolu
tionary searching procedure, which limits their search efficiency and 
solution flexibility in practical applications. By using heuristic infor
mation to reflect the heterogeneity of UAVs, ACO [18] algorithm seems 
to be more suitable than GA and PSO to solve the task allocation for 
heterogeneous UAVs. In the literature [19–21], several preliminary 
ACOs have been proposed to solve the task allocation problem. These 
ACO algorithms either simply formulated the task allocation problem for 
UAVs as a single objective optimization problem, or simply converted 
the multiple objective optimization into the single objective optimiza
tion using a weighted-sum method. Therefore, a multi-objective ACO 
algorithm to solve the task allocation problem of UAV, which can 
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provide decision-makers with a variety of compromise solutions and 
have higher flexibility in practical applications is urgently needed. 

To overcome the above limitations, this paper proposes an effective 
multi-objective ACO to solve the cooperative task allocation for het
erogeneous UAVs. The proposed methods does not require weight set
tings and can provide decision-makers with a set of alternative solutions 
which have trade-offs among multiple objectives. First, the cooperative 
task allocation for heterogeneous UAVs is formulated as a constrained 
multi-objective optimization problem, by considering different parts of 
interest, e.g., UAV, target, task, and path planning. The problem model 
contains three optimization objectives, namely, task benefit, UAV 
damage, and total range, under both physical and logical constraints. A 
new multi-colony strategy and a pheromone updating method are pro
posed in the MOACO to improve the convergence speed and search ef
ficacy. The performance of the proposed MOACO is verified in 
comparison with several recently published methods, with performance 
indices of convergence speed, solution quality and solution diversity. 

The rest of this paper is organized as follows. Section 2 formulates 
the problem model, by detailedly describing problem assumption. Sec
tion 3 provides details of the proposed MOACO. Section 4 conducts 
experiments on the MOACO algorithm. And finally Section 5 draws the 
conclusions. 

2. Task allocation of heterogeneous UAVs 

2.1. Problem assumptions 

In the SEAD operation, three types of tasks are performed sequen
tially for each target [22]. The first task is reconnaissance, which aims to 
reconnoiter the target to improve the attack accuracy. The second task is 
attack, which attacks the target after reconnaissance. The third task is 
verification, which aims to verify whether the attacking purpose has 
been achieved or not. One task of a target could not be performed if its 
predecessor task has not been completed. Each task of a target is 
assigned to one and only one UAV, but one UAV can perform multiple 
tasks of different targets. Fig. 1 shows the schematic of the task alloca
tion in the SEAD operation. The arrows indicate task order of the same 
target. 

As done in [23,24], the following preconditions are adopted to model 
the problem.  

1. The positions of targets are known in advance and kept fixed.  
2. The velocity of each UAV is constant.  
3. All UAVs take off and land on the same platform.  

4. UAVs cannot continuously perform tasks of the same target.  
5. The turning radius of UAV is ignored because it is too small 

compared with the flying distance.  
6. UAVs perform tasks in different altitudes without route intersection. 

Therefore, the spatial dimension of UAVs is identified as two- 
dimensional. 

2.2. Problem definitions 

Tables 1 and 2 list some parameter settings of the problem. The 
parameters are defined based on the works in [15,25]. Specifically, the 
number of targets is labelled as NT, and each target contains three 
different tasks (i.e., Ntype = 3). For the ith target, LT

i denotes the location 
of the target. VT

i represents the reward for completing all tasks of the 
target. MT

i = (1, 2, 3) is the current task type of the target and ET
i is the 

end time of the previous task of the target. Rthreat
i and βi are threat radius 

and threat level, respectively. The threat level indicates probable dam
age caused by the target to UAV. Mk, k = (1, 2, …, NK) indicates the kth 
task. Mtype = (1, 2, 3) denotes the task type, where the numbers 1, 2 and 
3 represent reconnaissance task, attack task and verification task, 
respectively. Tk

belong = i denotes that task Mk belongs to target Ti. 
Three types of UAVs constitute a heterogeneous UAV system for 

SEAD operation: reconnaissance UAV, attack UAV and utility UAV. 
Reconnaissance UAV owns features of small size, light weight and high 
airspeed, but it could not carry heavy load. Its high airspeed guarantees 
excellent performance in the reconnaissance and verification tasks. 
Attack UAV is equipped with weapon units and ammunition to perform 
attack task. Trading speed for endurance and ammunition storage makes 
it unsuitable for reconnaissance task. Expensive utility UAV carries a 
variety of equipments and can perform all tasks, but it has the lower 
airspeed than reconnaissance UAV, and smaller ammunition than attack 
UAV. 

There are NU UAVs in the heterogeneous UAV system. Attributes of 
UAV model are shown in Table 2. Specifically, LU

j denotes the location of 

Fig. 1. Task allocation of heterogeneous UAVs.  

Table 1 
Attributes of targets and tasks.  

Model Attribute Parameter 

Target, Ti Number of the targets NT  

Number of the task types Ntype  

Target location LT
i = (XT

i ,YT
i )

Reward VT
i   

Current task type MT
i   

Task end time ET
i   

Threat radius Rthreat
i   

Threat level βi 

Task, Mk Number of the tasks NK  

Task type Mtype  

Target belong Tk
belong   

Table 2 
Attributes of UAVs.  

Model Attribute Parameter 

UAV, Uj Number of UAVs NU  

Location LU
j = (XU

j ,YU
j )

Speed Speedj  

Cost VU
j   

Detection radius Rj  

Ammunition Aj  

Range limit Sj  

Task capability Pt
j   

Execution time tj  
Attack time Δtattack  
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the jth UAV, j = (1, 2, …, NU). The take-off and landing locations of 
UAVs are set to the map origin by default. Speedj denotes the airspeed of 
the jth UAV. VU

j represents the UAV cost. Rj represents the detection 
radius. Turning radius is not considered in the model. Load parameter Aj 
represents the ammunition of the UAV. By reducing Aj by 1 for each 
attack task, the jth UAV will be unable to perform attack task when 
Aj = 0. Sj is the range limit of UAV. UAV completes the task within the 
range limit and returns to the take-off base. Pt

j ∈ [0,1] represents the 
capability to perform tasks of type t, where 0 indicates that the UAV 
lacks the ability to perform this type of tasks. UAVs perform the same 
type of tasks with identical performance. tj represents the time to com
plete the previous task, namely, execution time. To perform an attack 
task requires time Δtattack. 

When assigning tasks to UAVs, it is a cardinal problem to plan the 
route from UAV to task in advance. Since the requirements for different 
tasks are different, the trajectory of a UAV depends on the type of task 
assigned to the UAV. Reconnaissance and verification tasks require 
careful observation of the target to obtain enough information. There
fore, the UAV circles around the target with detection radius, when 
performing the above two tasks. In order to attack the target at close 
range, the UAV needs to reach the target position and hovers over the 
target for a while to complete the attack task. A UAV needs to return to 
the take-off base immediately once it completes its assigned tasks. 

The path planning of a UAV is based on a two-dimensional plan, 
where the target position and UAV parameters are known. Fig. 2 shows a 
schematic diagram of the path planning. In the figure, U represents the 
take-off base; T1 and T2 represent two targets; Rdetection is the detection 
radius of UAVs; Rthreat is the threat radius of targets; the solid lines and 
circles represent the flight trajectory of a UAV performing reconnais
sance and verification tasks, and the dotted line represents the track of a 
UAV performing attack task. Because the turning radius of UAVs is 
ignored, the route of attack UAVs is the shortest path between the UAV 
and the target. The UAV should follow the shortest path to reach the 
circle and hang around the circle when performing reconnaissance and 
verification tasks. 

Sk
j represents the distance of the path between the jth UAV and the 

kth task. The actual distance ΔS of attack task is the airline distance 
between UAV and target. The ΔS of other tasks are also calculated ac
cording to Fig. 2. However, Sk

j is not equal to the actual distance of the 
UAV to perform the task. When the previous task completion time ET

i of 
target is later than the execution time tj of the UAV, the UAV needs to 
hover a period of time th and embark on next task. Extra hover time 
Δtattack is needed for the UAV to execute attack task. Since hovering 
consumes as much energy as flying, the Sk

j for the path is calculated by 

flight time. 

th =

{
ET

i − tj; ET
i > tj

0; else  

Sk
j =

{
ΔS + th*Speedj; Mtype = (1, 3)
ΔS + (th + Δtattack)*Speedj; Mtype = 2 (1)  

2.3. Optimization objectives and constraints 

Since several UAVs need to take off from the base and return to the 
base after completing their tasks, the task allocation problem can be 
modeled as a multiple travelling salesman problem (MTSP). The essence 
of the problem is to assign NK tasks to NU UAVs and specify the execution 
sequence. To describe the relationship between tasks and UAVs, a 
relation matrix RU

K of size NK * NU is introduced in the model. If task Mk is 
assigned to UAV Uj, RU

K(k, j) = 1. Otherwise, RU
K(k, j) = 0. 

In this study, three optimization objectives are considered in the task 
allocation model: task benefit, UAV damage, and total range. 

Task benefit: Benefit is defined as the overall benefit of performing 
all tasks, and used to ensure that more valuable tasks can be assigned to 
UAVs with high performance. In order to minimize all optimization 
objectives conveniently, the benefit optimization function is converted 
into the residual value of targets, which is calculated by Eq. (2). In 
general, the lower the residual value, the better the completion of the 
tasks: 

Fbenefit =

∑NT
i=1VT

i

[

1 −
∏NU

j=1
∏NK

k=1(Pk
j )

RU
K (k,j)

]

∑NT
i=1VT

i
(2) 

UAV damage: The damage objective is defined to assess the total loss 
of UAVs in task execution. In the SEAD operation, target is the cardinal 
threat to UAVs, so the UAV damage is calculated based on the UAV value 
VU

j and the threat level of the target βi. (i = Tk
belong for task Mk belongs to 

ith target) UAVs can perform tasks even though the detection radius is 
less than the threat radius of the target. But in this case, the damage to 
UAV is more severe. UAVs performing attack tasks will have a close 
range to the target, and thus they will subject to greater threats. ω(k, j) 
describes whether the UAV works within the target threat range. If the 
UAV works within Rthreat

i , ω(k, j) = 1. Otherwise, ω(k, j) = 1.5. The 
damage objective can be calculated by Eq. (3). 

Fdamage =

∑NU
j=1

∑NK
k=1βiVU

j RU
K (k, j)ω(k, j)

∑NU
j=1VU

j
(3) 

Total range: The total range objective is used to assess the resource 
consumption of UAVs, which is related to the total flying time of UAVs. 
The calculation method of distance is proposed in Eq. (1). The total 
range also includes the return distance of all UAVs to the base, and the 
time required for one UAV to return to the base is represented by tback. 
The total range function is given by Eq. (4). 

Frange =

∑NU
j=1(tj + tback)Speedj

∑NU
j=1SU

j
(4) 

To achieve the above goals, the UAVs should satisfy certain physical 
and logical constrains. Physical constraints are related to the limited 
performance and resources of UAV, e.g., capacity constraint, ammuni
tion constraint and range constraint. Logical constraints are related to 
task requirement, e.g., sequence constraints and allocation principle. 
Specifically, if the kth task is assigned to the jth UAV, the following 
conditions must be satisfied.  

1. Capacity constraint: The selected UAV must have the capacity to 
perform this kind of task. 

Fig. 2. Path planning of UAVs.  
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2. Ammunition constraint: The UAV has enough ammunition Aj left to 
carry out the attack task.  

3. Range constraint: Due to the limited load, the total distance for UAV 
to perform the tasks and return to the take-off base should be less 
than the range limit. The return distance is calculated as tback * Speedj.  

4. Sequence constraints: Tasks of the same target should be performed 
in sequence. Therefore, the task cannot be executed if the type Mtype 
is inconsistent with the current task type MT

i of the target.  
5. Allocation principle: A task can only be assigned to one UAV. 

Based on the above definitions, the cooperative task allocation in 
heterogeneous UAV system can be described by Eq. (5). 

min(Fbenefit,Fdamage,Frange) (5)  

s.t. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PK
j > 0;

Aj > 0; when Mtype == 2
Mtype == MT

i ;

(tj + tback)*Speedj <= Sj;

3. Proposed MOACO Algorithm 

In this section, the general framework of the proposed MOACO is 
presented, followed by the implementation details of the important 
components. 

3.1. Algorithm framework 

Fig. 3 illustrates the overall framework of the proposed MOACO al
gorithm. Generally, the proposed MOACO contains two kinds of ant 
colonies to search for the solution set and an archive to keep the non- 
dominated solutions found during the search procedure. The first kind 
of ant colonies is called single-objective ant colony, each of which fo
cuses on optimizing one objective. For this kind of ant colony, the 
heuristic information is defined based on the specific objective assigned 
to the colony, and the pheromone is updated based on the newly con
structed solutions of the corresponding colony. The second kind of ant 
colony is called multi-objective ant colony, which is utilized to search 
for trade-off solutions. For this kind of ant colony, the heuristic infor
mation is the aggregation of multiple optimization objectives, and the 
pheromone is updated based on the solutions in the archive. 

The psoducode of the proposed MOACO is shown in Algorithm 1, 
which contains the following seven steps: 

Step 1: Set algorithm parameters and initialize the heuristic 
information. 
Step 2: Construct ant colonies and corresponding pheromone matrix. 
Step 3: Each ant constructs a new solution and the three objective 
values of the constructed solution are calculated. 
Step 4: Update the pheromone matrices of the three single objective 
ant colinies based on the solutions newly constructed. 
Step 5: Update the Pareto archive based on the newly constructed 
solutions. When the archive size exceeds the limit, remove the 
redundant solutions according to the crowding degree. 
Step 6: Update the pheromone matrix of the multi-objective ant 
colony based on the solutions in pareto archive. 
Step 7: If the termination condition is not met, return to Step 3. 
Otherwise, output the non-dominated solutions as the final results. 

In the following parts, the major steps related to the above 
mentioned procedures are described. 

Algorithm 1. MOACO algorithm 

Fig. 3. The framework of the MOACO.  
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3.2. Solution construction 

To solve a task allocation problem, NK tasks need to be assigned to NU 
UAVs. Each ant represents a solution to the task assignment problem, 
which needs to select NK possible edges between UAVs and tasks. The 
selection probability P(j, k) of the edge connecting the jth UAV and the 
kth task is calculated by heuristic information H(j, k) and pheromone τj, 

kas in Eq. (6). 

P(j, k) =
[
τj,k

]α[H(j, k)]β
∑NU

j=1
∑NK

k=1RU
K (k, j)

[
τj,k

]
α[H(j, k)]β

(6)  

Parameters α and β indicate the importance of pheromone and heuristic 
weight, respectively. After each task is assigned, the status of UAV and 
target is updated. The change of UAV position leads to the dynamic 
update of Sk

j and selected probability for other tasks. 
There are NU * NK edges between UAVs and tasks in the mathemat

ical sense. However, some edges may not be selected due to constraints. 
To solve this problem, the probability P(j, k) of selecting a forbidden 
edge is set to 0. An edge is called forbidden edge if it satisfies at least one 
of the following six conditions.  

1. The task has been completed.  
2. The predecessor task is performed by the same UAV.  
3. The UAV is short of ammunition to perform attack task.  
4. The UAV does not have the capacity to perform this type of task.  
5. The UAV cannot complete the task and return to the base within the 

range limit.  
6. The tasks of each target need to be performed in sequence. This task 

cannot be executed if the predecessor task is not completed. 

The schematic diagram of ant path selection process is illustrated in 
Fig. 4. UAV1, UAV2, UAV3 represent the reconnaissance, attack and 
utility UAVs, respectively. The solid line indicates that the task has been 
assigned to the UAV. There are five tasks assigned and it is going to 
assign the sixth task. The serial numbers of assigned tasks represent the 
execution sequence. The dotted line indicates that the edge between the 
task and the UAV is available for next selection. There is no line between 
task3 and UAV2 because the UAV2 can only perform attack tasks. UAV3 
may lack ammunition so it cannot perform task8. Task9 is not connected 
with any UAV for the predecessor task8 is not completed. Select the next 
task to execute from all possible edges and update the relationship be
tween remaining tasks and all UAVs. The above procedure is repeated 

until all tasks have been assigned. If none of the remaining edges are 
selectable, the current solution is discarded. The ant will reconstruct a 
solution. 

3.3. Pareto archive 

The Pareto archive is introduced in the MOACO algorithm as an elite 
strategy for storing non-dominated solutions in each generation. In each 
iteration, the newly constructed solutions in all ant colonies are inserted 
into the Pareto archive, and the non-dominated sorting algorithm is 
performed to rank the solutions in the archive. To maintain the archive, 
dominated solutions will be removed, and all non-dominated solutions 
are kept in the archive. 

If the number of non-dominated solutions is larger than a predefined 
size NP, more solutions will be removed according to their crowding 
distances in the archive, so as to keep the archive size to be NP. The 
crowding distance is calculated as in [26]. It should be noted that the 
non-dominated solutions in the archive are provided as the final outputs 
for decision makers to select trade-off solutions according to their 
preferences. 

3.4. Multiple heuristics for multi-objective optimization 

In the proposed algorithm, there are multiple matrices storing heu
ristic information which are defined based on the optimization objec
tives. The heuristic information of each edge is weighted and aggregated 
by multiple matrices. Follows are two alternative strategies for setting 
the weights:  

1. Dynamic setting strategy [27]: In this strategy, different weights are 
assigned to the ants dynamically in each iteration.  

2. Fixed setting strategy [28]: In this strategy, every objective has the 
same importance, and thus all ants are assigned with the same weight 
during the entire algorithm. 

Generally, the dynamical setting strategy can introduce more search 
diversity and will slow down the convergence rate, while the fixed 
setting strategy will reduce the search diversity. To balance the 
exploring and exploiting ability of the algorithm, a new multiple ant 
colony algorithm with hybridized setting strategy is proposed. 

For a combinatorial optimization problem with N optimization ob
jectives, the whole ant colony is divided into N + 1 sub ant colonies. 
Each optimization objective corresponds to one sub ant colony with a 

Fig. 4. Construction process of an ant solution.  
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size of Nsub. The last sub ant colony optimizes all the objectives at the 
same time, whose size is larger than the sum of other colonies. Since the 
UAV task allocation problem we study has three optimization objectives 
(i.e., benefit, damage and range), the corresponding MOACO algorithm 
contains four sub ant colonies: Cbenefit, Cdamage, Crange and Call. 

To calculate the heuristic information of each sub ant colony, we 
firstly define the fitness value for each optimization objective. For the 
edge connects jth UAV and kth task, the fitness value of benefit B(j, k) is 
defined as the product of task capability Pj and target reward VT

i (i =

Tk
belong). The fitness value of damage D(j, k) is calculated by threat level βi 

and UAV cost VU
j . The fitness value of range S(j, k) is the reciprocal of the 

distance. The specific calculations are given by Eq. (7). 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(j, k) = Pj*VT
i

D(j, k) = 1
/
(βi*VU

j )

S(j, k) = 1
/

Sk
j

(7) 

In the above equations, the cost and the task capacity of UAV, the 
threat level and the reward of target are constants. Therefore, damage 
and benefit matrices are stationary and shared by all sub ant colonies 
during the entire algorithm run. However, the distance of the edge Sk

j is 
dynamic. When an edge is successfully selected by the ant, the selected 
UAV will move to the selected location, and the distance between the 
UAV and remaining tasks will be updated. Hence, the initial distance 
matrix will change during the construction process. 

The heuristic information matrices of the three single objective sub 
ant colonies, namely, Cbenefit, Cdamage and Crange, are defined as the cor
responding edge fitness value matrices in Eq. (8), Eq. (9), and Eq. (10), 
respectively. 

Hbenefit = B (8)  

Hdamage = D (9)  

Hrange = S (10) 

Since the last sub ant colony Call aims to optimize all objectives at the 
same time, its heuristic information matrix is the aggregation of the 
above three matrices, which is defined by Eq. (11). 

Hall =
B

sum(B)
+

D
sum(D)

+
S

sum(S)
(11)  

3.5. Pheromone update 

In the proposed algorithm, each sub ant colony has its own phero
mone matrix τ. As in the ant colony system (ACS) [29], there are two 
pheromone update operations. The first operation is global pheromone 
update operation, which is performed at the end of each iteration. In the 
global pheromone update operation, ants leave fixed amount of phero
mones Q on the edges they traversed and the pheromone on each edge 
will partially evaporate, which can be expressed by Eq. (12). 

τj,k(t) = τj,k(t − 1)*(1 − ρ) + Q*n (12)  

where ρ denotes global pheromone evaporation rate, n denotes the 
number of ants traverse the edge between the jth UAV and kth task and t 
represents the current iterations. The second method is local pheromone 
update. 

The pheromone of each single objective optimization ant colony, 
Cdamage, Cbenefit and Crange, updates according to the solutions in each 
colony. As for the last sub ant colony Call, the solutions in the approxi
mation Pareto set are selected to update pheromone. Specifically, at the 
end of each iteration, the pheromone is updated according to the non- 
dominated solutions in the Pareto archive instead of the individuals in 
the colony. In this way, the Call can maintain a relatively high search 
diversity, which is good for finding more trade-off solutions. 

4. Simulation studies 

4.1. Simulation settings 

In order to verify the performance of the proposed MOACO algo
rithm, a test scenario based on SEAD operation is firstly described in this 
section. The heterogeneity of both UAVs and targets, kinematic char
acteristics, and the constraints are considered in the scenario setting. 

The targets are deployed in a 100 × 100 km2 rectangle area, and all 
UAVs are also flying within the rectangle area. Six targets and ten UAVs 
are involved in the simulation. Table 3 shows the details of the targets. 

In the simulation, ten UAVs are constructed to perform reconnais
sance, attack, and verification tasks. Uj (j = 1, 2, 3) are reconnaissance 
UAVs (Type 1). Uj (j = 4, 5, 6) are attack UAVs (Type 2). Uj (j = 7, 8, 9, 
10) are utility UAVs (Type 3). The parameter settings of the above three 
types of UAVs are given in Table 4. The performance, ammunition, and 
range of UAVs are limited and diverse. 

Fig. 5 illustrates the initial locations of the UAVs and targets. The six 
targets are marked by the diamonds, and the take-off base of UAVs is 
marked by the triangle at origin. 

In order to further verify the performance of the MOACO algorithm, 
this paper studies the algorithm performance under different scale 
problems. In addition to the above test scenario 1, we set up another five 
test scenarios. The number configurations of targets and UAVs are 
shown in Table 5. In Tests 2 and 3, the number of targets and UAVs 
decreased. In Test 4, we mainly change the location of targets and 
related parameters of UAVs. In Tests 5 and 6, we studied the change of 
algorithm performance when the problem scale becomes larger. 

Besides the proposed algorithm, the greedy algorithm and three 
multi-objective optimization algorithms, standard multi-objective par
ticle swarm optimization (SMOPSO), standard multi-objective ant col
ony optimization (SMOACO) and the variant (MOACO*) of the multi- 
objective multiple ant colony optimization, are used to solve the task 
allocation problem in this paper and the performance comparisons are 
carried out. 

There is a greedy algorithm for each optimization objective, which 
obtains only one solution with the best fitness value. The SMOPSO al
gorithm is based on the multi-layer encoding strategy and the constraint 

Table 3 
Attributes of targets.  

Target no. Position/km Reward Threat level Threat radius Tasks 

1 (30,20) 200 0.1 1.2 1–3 
2 (20,80) 250 0.15 1.4 4–6 
3 (40,70) 350 0.25 1.2 7–9 
4 (75,50) 500 0.3 1.6 10–12 
5 (85,90) 400 0.4 1.8 13–15 
6 (90,25) 300 0.2 1.4 16–18  

Table 4 
Attributes  of UAVs.  

Parameter UAV 1–3 UAV 4–6 UAV 7–10 

Type 1 2 3 
Position/km (0,0) (0,0) (0,0) 
Cost 100 120 170 
Speed/(km h− 1) 180 140 150 
Range limit 800 1000 900 
Detection radius 1.6 0 2.0 
Ammunition 0 2 1 
Attack time/h 0 0.1 0.1 
Reconnaissance capacity 0.92 0 0.91 
Attack capacity 0 0.95 0.94 
Verification capacity 0.93 0 0.95  
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scheduling method introduced in [15], but uses the Pareto archive in the 
MOACO algorithm as the solution evaluation method. The comparison 
with SMOPSO is adopted to prove the performance superiority of ACO 
algorithm in solving task allocation problem. The SMOACO algorithm 
utilizes the aggregation of three optimization objective values with the 
fixed weights as the heuristic information, and globally updates phero
mone. The MOACO* algorithm is based on multiple ant colonies strategy 
in MOACO with normal pheromone update. Both ACO algorithms use a 
Pareto archive as the solution evaluation method. The comparisons with 
them are used to verify the validity of the multiple ant colonies strategy 
and the improved pheromone update method. 

The detailed parameters of these algorithms are listed in Table 6. ω 
represents the inertia weight of SMOPSO algorithm. These algorithms 
have the same size of population (N = 100), iteration (I = 500) and 
maximum size of Pareto archive (NP = 80). To improve the accuracy, all 
multi-objective algorithms run for 50 times independently. 

Two performance evaluation indices, inversion generation distance 
(IGD) and hyper volume (HV) are proposed to compare the compre
hensive performance of multi-objective algorithms. Reference solution 
set S* to calculate IGD is constructed by dominance relation. HV is 
calculated by reference point Z=(1, 1, 1). The solution set with the lower 
IGD and the larger HV value has better convergence and uniformity. The 
simulation environment is an Intel (R) Core(TM) i7-9750H CPU with 
8 GB RAM. The algorithms are coded in MATLAB R2019a. 

4.2. Algorithms performance comparison 

Table 7 shows the optimal values for each objective generated by 
multiple algorithms, with the best comparison values marked in bold. 
For multi-objective algorithms, the optimal objective fitness values are 
the average of 50 runs. 

The greedy algorithm obtains the solution with the minimum benefit 
and damage fitness values at the cost of other objective values and it 
only returns a specific solution. The MOACO algorithm obtains the so
lution with the smaller range fitness value than greedy algorithm, since 
the distance information is changing in the searching. And it obtains the 
minimum benefit and damage fitness value in all multi-objective algo
rithms. Preserving the ability to search the boundary solutions, the 
SMOPSO and MOACO* algorithms get the smaller single objective 
fitness values than SMOACO algorithm. For Test 2, the small number of 
UAVs and targets leads to few possible solutions. Hence, almost all al
gorithms can get the optimal objective fitness values. 

Fig. 6 compares the IGD standard deviation, IGD mean and HV mean 

Fig. 5. Locations of UAV base and targets.  

Table 5 
The scale of test scenarios.  

Test no. Target UAV 

1 6 10 
2 3 5 
3 5 6 
4 6 9 
5 8 12 
6 10 15  

Table 6 
Related parameters of algorithms.  

Algorithm Parameters 

SMOPSO [15] ω = 1.2, C1 = C2 = 2 
SMOACO [30] α = β = 1, ρ = 0.2, Q = 5 
MOACO* α = 1, β = 2, ρ = 0.2, Q = 10, Nsub = 10 
MOACO α = 1, β = 2, ρ = 0.2, Q = 10, Nsub = 10  

Table 7 
Optimal objective values for the six test scenarios.  

Alogrithm Greedy SMOPSO SMOACO MOACO* MOACO 

Objective Test      

Benefit 1 0.1800 0.1817 0.1819 0.1810 0.1800  
2 0.1800 0.1800 0.1800 0.1800 0.1800  
3 0.1811 0.1812 0.1826 0.1815 0.1811  
4 0.2100 0.2117 0.2130 0.2110 0.2100  
5 0.1800 0.1832 0.1849 0.1821 0.1800  
6 0.1800 0.1867 0.1922 0.1862 0.1843 

Damage 1 0.4145 0.4198 0.4245 0.4209 0.4175  
2 0.3114 0.3115 0.3115 0.3115 0.3115  
3 0.5015 0.5345 0.5687 0.5326 0.5045  
4 0.4250 0.4263 0.4293 0.4266 0.4250  
5 0.4397 0.4426 0.4496 0.4423 0.4397  
6 0.4611 0.4641 0.4687 0.4678 0.4632 

Range 1 0.1776 0.1880 0.1972 0.1825 0.1735  
2 0.1870 0.1863 0.1868 0.1861 0.1852  
3 0.2412 0.2383 0.2404 0.2368 0.2290  
4 0.2340 0.2303 0.2327 0.2299 0.2196  
5 0.1700 0.1782 0.1809 0.1748 0.1646  
6 0.1597 0.1596 0.1645 0.1527 0.1513  
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of the final Pareto solution sets. The IGD mean and standard deviation 
(Std) values of the MOACO algorithm are both lowest in all algorithms, 
which improves its high convergence and stability. The highest hyper 
volume also indicates MOACO a better solution set. 

Fig. 7 illustrates the IGD trend of multi-objective algorithms for six 
test scenarios. In all test scenarios, the MOACO algorithm converges 
faster than others, and the MOACO* algorithm always converges faster 
than SMOACO algorithm. Fig. 7(a)–(f) represents the IGD trend in Test 1 

to Test 6 in turn. In Fig. 7(a), the IGD values of all algorithms decreased 
rapidly before generation 200, and then all tended to converge. The IGD 
convergence value of MOACO algorithm is obviously smaller than those 
of other algorithms, and its IGD value declines fastest, indicating the 
MOACO algorithm has the highest convergence rate. The IGD conver
gence values of other algorithms are similar. Compared to SMOACO, 
MOACO* converges faster, which proves that the effectiveness of mul
tiple ant colonies strategy. The comparison between MOACO and 
MOACO* indicates the improved pheromone update method enhances 
the convergence rate. There is no clear relationship between the IGD 
convergence rates of SMOACO and SMOPSO algorithms. 

In Fig. 7(a) and (b), the IGD of the algorithms almost converge 
together, owing to the small scale of problem and the limited solution 
space. With the expansion of the scenarios scale, the gap of IGD 
convergence value between MOACO and other algorithms is gradually 
increasing. Generally, these tests show that the MOACO algorithm deals 
with the cooperative task allocation for heterogeneous UAVs effectively. 

4.3. Allocation plans analysis 

Figs. 8, 9, 10 describe three representational task allocation plans of 
test scenario 1 generated by MOACO algorithm. In these Gantt charts, 
the A in A-B represents the target number, and the B is the task number. 

Solution 1 has the lowest total range objective value. In this solution, 
the good task execution sequence reduces the extra range cost caused by 
the unfinished front-end tasks. But high-value integrated UAVs (7–10) 
perform more tasks in this plan results in greater UAV cost. 

Solution 2 is outstanding in benefit objective, indicating that the 

Fig. 6. IGD standard deviation, mean and HV mean.  

Fig. 7. IGD trends of multi-objective algorithms for six test scenarios.  
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allocation plan has a high mission success rate. In this plan, all the attack 
tasks are performed by attack UAV (4–6). And the reconnaissance tasks 
are performed by the UAV (1–3) with high reconnaissance capacity. 
Efforts are made to let the efficient UAV to perform corresponding task, 
which will also lead to the increase of cost and distance. 

Solution 3 performs well in cost objective. The targets with a high 
threat level are allocated to attack UAV and reconnaissance UAV to 
achieve the lower cost value. High-value UAVs have fewer dispatches. 

5. Conclusions 

This paper formulates the cooperative task allocation problem of 
heterogeneous UAVs as a constrained multi-objective optimization 
problem which contains three optimization objectives. An efficient ant 
colonies optimization algorithm with multiple ant colonies (named 
MOACO) is proposed to solve the formulated problem. In the proposed 
MOACO, a new pheromone updating mechanism and four new heuristic 
information are specifically designed to improve the search efficiency 
and solution diversity. The proposed MOACO is tested on six scenarios 
with different scales and the simulation results have shown that the 
proposed algorithm performed better than several recently published 
algorithms, in terms of solutions quality and diversity. 
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