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Unmanned aerial vehicles (UAVs) have become powerful tools in modern military combat. How to properly
allocate the tasks of heterogeneous UAVs in a combat is a fundamental and challenging problem. In this paper,
we formulate the cooperative task allocation of heterogeneous UAVs as a constrained multi-objective optimi-
zation problem. To efficiently resolve the formulated problem, we further propose a multi-objective ant colony
optimization (MOACO) algorithm with a new pheromone updating mechanism and four newly defined heuristic

information. Simulation results on test cases with different scales and characteristics have shown that the pro-
posed methods can perform better than several recently published algorithms, in terms of convergence speed,
solution quality and solution diversity.

1. Introduction

Unmanned aerial vehicle (UAV) has now become a common and
powerful tool in modern military and civilian domains owning to its
high mobility and low cost [1,2]. In the main combat mission of military
UAVs, the Suppression of Enemy Air Defence (SEAD) usually uses het-
erogeneous UAVs [3] to work corporately rather than using a single type
of UAV. Such a heterogeneous system has advantages of strong fault
tolerance, high performance and good adaptability, but it meets chal-
lenges of cooperative task allocation and collective motion control [4,5].
Generally, the cooperative task allocation requires properly assigning
different tasks to multiple UAVs with different kinematic characteristics
and operational capabilities, so that certain optimization objectives can
be optimized and the physical and logical constraints of UAVs can be
satisfied [6].

Over the past decade, a number of efforts have been made to solve
the cooperative task allocation for heterogeneous UAVs. By considering
different features and constraints, the cooperative task allocation
problem has been formulated as different kinds of NP-hard problems
such as vehicle routing problem [7], multiple traveling salesman prob-
lem [8], and mixed integer linear programming problem [9]. Existing
works to solve the cooperative task allocation problem generally can be
classified into two categories. The first category utilizes deterministic
algorithms such as branch and bound [10], and dynamic programming
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[11], but these methods have difficulties in tackling multiple optimi-
zation objectives and constraints. They can hardly find a feasible solu-
tion as the numbers of UAVs and targets grow, because of the
exponential increase of computational cost.

The second category utilizes computational intelligence (CI) algo-
rithms such as genetic algorithm (GA) [12,13] and particle swarm
optimization (PSO) [14,15]. For examples, Deng et al. [16] proposed an
enhanced GA with multi-type genes to solve the problem. Wang et al.
[17] developed an enhanced GA with opposition-based learning to solve
the problem. In [15], the task allocation problem is solved by using an
improved multi-objective quantum-behaved PSO. These Cl-based algo-
rithms have potential to find global or near global optimal solutions, but
they ignore the heterogeneity of UAVs and targets during the evolu-
tionary searching procedure, which limits their search efficiency and
solution flexibility in practical applications. By using heuristic infor-
mation to reflect the heterogeneity of UAVs, ACO [18] algorithm seems
to be more suitable than GA and PSO to solve the task allocation for
heterogeneous UAVs. In the literature [19-21], several preliminary
ACOs have been proposed to solve the task allocation problem. These
ACO algorithms either simply formulated the task allocation problem for
UAVs as a single objective optimization problem, or simply converted
the multiple objective optimization into the single objective optimiza-
tion using a weighted-sum method. Therefore, a multi-objective ACO
algorithm to solve the task allocation problem of UAV, which can
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Task allocation

Fig. 1. Task allocation of heterogeneous UAVs.

provide decision-makers with a variety of compromise solutions and
have higher flexibility in practical applications is urgently needed.

To overcome the above limitations, this paper proposes an effective
multi-objective ACO to solve the cooperative task allocation for het-
erogeneous UAVs. The proposed methods does not require weight set-
tings and can provide decision-makers with a set of alternative solutions
which have trade-offs among multiple objectives. First, the cooperative
task allocation for heterogeneous UAVs is formulated as a constrained
multi-objective optimization problem, by considering different parts of
interest, e.g., UAV, target, task, and path planning. The problem model
contains three optimization objectives, namely, task benefit, UAV
damage, and total range, under both physical and logical constraints. A
new multi-colony strategy and a pheromone updating method are pro-
posed in the MOACO to improve the convergence speed and search ef-
ficacy. The performance of the proposed MOACO is verified in
comparison with several recently published methods, with performance
indices of convergence speed, solution quality and solution diversity.

The rest of this paper is organized as follows. Section 2 formulates
the problem model, by detailedly describing problem assumption. Sec-
tion 3 provides details of the proposed MOACO. Section 4 conducts
experiments on the MOACO algorithm. And finally Section 5 draws the
conclusions.

2. Task allocation of heterogeneous UAVs
2.1. Problem assumptions

In the SEAD operation, three types of tasks are performed sequen-
tially for each target [22]. The first task is reconnaissance, which aims to
reconnoiter the target to improve the attack accuracy. The second task is
attack, which attacks the target after reconnaissance. The third task is
verification, which aims to verify whether the attacking purpose has
been achieved or not. One task of a target could not be performed if its
predecessor task has not been completed. Each task of a target is
assigned to one and only one UAV, but one UAV can perform multiple
tasks of different targets. Fig. 1 shows the schematic of the task alloca-
tion in the SEAD operation. The arrows indicate task order of the same
target.

Asdone in [23,24], the following preconditions are adopted to model
the problem.

1. The positions of targets are known in advance and kept fixed.
2. The velocity of each UAV is constant.
3. All UAVs take off and land on the same platform.
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Table 1
Attributes of targets and tasks.
Model Attribute Parameter
Target, T; Number of the targets N
Number of the task types Nype
Target location Lf = x1.Y)
Reward vr
Current task type M
Task end time ET
Threat radius Rihreat
Threat level Bi
Task, My Number of the tasks Ng
Task type Mype
Target belong K jone
Table 2
Attributes of UAVs.
Model Attribute Parameter
UAV, U; Number of UAVs Ny
i U _ (xU
Location Ly = (x7.Y/)
Speed Speed;
Cost VJ”
Detection radius R;
Ammunition A;j
Range limit Sj
Task capability PJ‘
Execution time t
Attack time Atgtack

4. UAVs cannot continuously perform tasks of the same target.

5. The turning radius of UAV is ignored because it is too small
compared with the flying distance.

6. UAVs perform tasks in different altitudes without route intersection.
Therefore, the spatial dimension of UAVs is identified as two-
dimensional.

2.2. Problem definitions

Tables 1 and 2 list some parameter settings of the problem. The
parameters are defined based on the works in [15,25]. Specifically, the
number of targets is labelled as N7, and each target contains three
different tasks (i.e., Nype = 3). For the ith target, LT denotes the location
of the target. V! represents the reward for completing all tasks of the
target. M = (1,2, 3) is the current task type of the target and ET is the
end time of the previous task of the target. R"™ and p; are threat radius
and threat level, respectively. The threat level indicates probable dam-
age caused by the target to UAV. My, k=(1, 2, ..., Nx) indicates the kth
task. Myye = (1, 2, 3) denotes the task type, where the numbers 1, 2 and
3 represent reconnaissance task, attack task and verification task,
respectively. T’,jehmg = i denotes that task My belongs to target T;.

Three types of UAVs constitute a heterogeneous UAV system for
SEAD operation: reconnaissance UAV, attack UAV and utility UAV.
Reconnaissance UAV owns features of small size, light weight and high
airspeed, but it could not carry heavy load. Its high airspeed guarantees
excellent performance in the reconnaissance and verification tasks.
Attack UAV is equipped with weapon units and ammunition to perform
attack task. Trading speed for endurance and ammunition storage makes
it unsuitable for reconnaissance task. Expensive utility UAV carries a
variety of equipments and can perform all tasks, but it has the lower
airspeed than reconnaissance UAV, and smaller ammunition than attack
UAV.

There are Ny UAVs in the heterogeneous UAV system. Attributes of
UAV model are shown in Table 2. Specifically, LjU denotes the location of
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R detection

Fig. 2. Path planning of UAVs.

the jth UAV, j=(1, 2, ..., Ny). The take-off and landing locations of
UAVs are set to the map origin by default. Speed; denotes the airspeed of
the jth UAV. VjU represents the UAV cost. R; represents the detection

radius. Turning radius is not considered in the model. Load parameter A;
represents the ammunition of the UAV. By reducing A; by 1 for each
attack task, the jth UAV will be unable to perform attack task when
A;j=0. S; is the range limit of UAV. UAV completes the task within the
range limit and returns to the take-off base. P} € [0,1] represents the

capability to perform tasks of type t, where O indicates that the UAV
lacks the ability to perform this type of tasks. UAVs perform the same
type of tasks with identical performance. t; represents the time to com-
plete the previous task, namely, execution time. To perform an attack
task requires time Atgyqck.

When assigning tasks to UAVs, it is a cardinal problem to plan the
route from UAV to task in advance. Since the requirements for different
tasks are different, the trajectory of a UAV depends on the type of task
assigned to the UAV. Reconnaissance and verification tasks require
careful observation of the target to obtain enough information. There-
fore, the UAV circles around the target with detection radius, when
performing the above two tasks. In order to attack the target at close
range, the UAV needs to reach the target position and hovers over the
target for a while to complete the attack task. A UAV needs to return to
the take-off base immediately once it completes its assigned tasks.

The path planning of a UAV is based on a two-dimensional plan,
where the target position and UAV parameters are known. Fig. 2 shows a
schematic diagram of the path planning. In the figure, U represents the
take-off base; T; and T, represent two targets; Rdetection j¢ the detection
radius of UAVs; R™ is the threat radius of targets; the solid lines and
circles represent the flight trajectory of a UAV performing reconnais-
sance and verification tasks, and the dotted line represents the track of a
UAV performing attack task. Because the turning radius of UAVs is
ignored, the route of attack UAVs is the shortest path between the UAV
and the target. The UAV should follow the shortest path to reach the
circle and hang around the circle when performing reconnaissance and
verification tasks.

SJIF represents the distance of the path between the jth UAV and the
kth task. The actual distance AS of attack task is the airline distance
between UAV and target. The AS of other tasks are also calculated ac-
cording to Fig. 2. However, SJ’-‘ is not equal to the actual distance of the

UAV to perform the task. When the previous task completion time E! of
target is later than the execution time ¢ of the UAV, the UAV needs to
hover a period of time t;, and embark on next task. Extra hover time
Atgqack is needed for the UAV to execute attack task. Since hovering
consumes as much energy as flying, the S]’-‘ for the path is calculated by
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flight time.
El —1; E >y
th = ’
0; else
st — AS + t,,*Speedj; My = (1,3) 6))
b ) AS + (t/, + Atanuck)*speed/; Ml)'l)e =2

2.3. Optimization objectives and constraints

Since several UAVs need to take off from the base and return to the
base after completing their tasks, the task allocation problem can be
modeled as a multiple travelling salesman problem (MTSP). The essence
of the problem is to assign Nk tasks to Ny UAVs and specify the execution
sequence. To describe the relationship between tasks and UAVs, a
relation matrix R}(’ of size Ng * Ny is introduced in the model. If task M is
assigned to UAV Uj, R{(k,j) = 1. Otherwise, RY(k,j) = 0.

In this study, three optimization objectives are considered in the task
allocation model: task benefit, UAV damage, and total range.

Task benefit: Benefit is defined as the overall benefit of performing
all tasks, and used to ensure that more valuable tasks can be assigned to
UAVs with high performance. In order to minimize all optimization
objectives conveniently, the benefit optimization function is converted
into the residual value of targets, which is calculated by Eq. (2). In
general, the lower the residual value, the better the completion of the
tasks:

SV = T4 T ()

N
Vi

UAV damage: The damage objective is defined to assess the total loss
of UAVs in task execution. In the SEAD operation, target is the cardinal
threat to UAVSs, so the UAV damage is calculated based on the UAV value
VY and the threat level of the target fi. (i = T}, for task M belongs to
ith target) UAVs can perform tasks even though the detection radius is
less than the threat radius of the target. But in this case, the damage to
UAV is more severe. UAVs performing attack tasks will have a close
range to the target, and thus they will subject to greater threats. w(k, j)
describes whether the UAV works within the target threat range. If the
UAV works within R, @(k, j)=1. Otherwise, w(k, j)=1.5. The
damage objective can be calculated by Eq. (3).

S BV RY (k. j)oo(k, )
Fiamage = 0 3)
Zavy

Total range: The total range objective is used to assess the resource
consumption of UAVs, which is related to the total flying time of UAVs.
The calculation method of distance is proposed in Eq. (1). The total
range also includes the return distance of all UAVs to the base, and the
time required for one UAV to return to the base is represented by tpack-
The total range function is given by Eq. (4).

(2

Frenert =

E]{V:u] (t; + tback)speedj
Ny
/':bl SJ'U

Frange = @

To achieve the above goals, the UAVs should satisfy certain physical
and logical constrains. Physical constraints are related to the limited
performance and resources of UAV, e.g., capacity constraint, ammuni-
tion constraint and range constraint. Logical constraints are related to
task requirement, e.g., sequence constraints and allocation principle.
Specifically, if the kth task is assigned to the jth UAV, the following
conditions must be satisfied.

1. Capacity constraint: The selected UAV must have the capacity to
perform this kind of task.
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Fig. 3. The framework of the MOACO.

2. Ammunition constraint: The UAV has enough ammunition A; left to
carry out the attack task.

3. Range constraint: Due to the limited load, the total distance for UAV
to perform the tasks and return to the take-off base should be less
than the range limit. The return distance is calculated as tpqck * Speed,.

4. Sequence constraints: Tasks of the same target should be performed
in sequence. Therefore, the task cannot be executed if the type My,
is inconsistent with the current task type M of the target.

5. Allocation principle: A task can only be assigned to one UAV.

Based on the above definitions, the cooperative task allocation in
heterogeneous UAV system can be described by Eq. (5).

min(Fbenefih Fdamage7 Frange) (5)

s.t.

Pf > 0;

A; > 0;

Mlype == M,T7

(5 + tback)*Speedf <=8

when My, ==2
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3. Proposed MOACO Algorithm

In this section, the general framework of the proposed MOACO is
presented, followed by the implementation details of the important
components.

3.1. Algorithm framework

Fig. 3 illustrates the overall framework of the proposed MOACO al-
gorithm. Generally, the proposed MOACO contains two kinds of ant
colonies to search for the solution set and an archive to keep the non-
dominated solutions found during the search procedure. The first kind
of ant colonies is called single-objective ant colony, each of which fo-
cuses on optimizing one objective. For this kind of ant colony, the
heuristic information is defined based on the specific objective assigned
to the colony, and the pheromone is updated based on the newly con-
structed solutions of the corresponding colony. The second kind of ant
colony is called multi-objective ant colony, which is utilized to search
for trade-off solutions. For this kind of ant colony, the heuristic infor-
mation is the aggregation of multiple optimization objectives, and the
pheromone is updated based on the solutions in the archive.

The psoducode of the proposed MOACO is shown in Algorithm 1,
which contains the following seven steps:

Step 1: Set algorithm parameters and initialize the heuristic
information.

Step 2: Construct ant colonies and corresponding pheromone matrix.
Step 3: Each ant constructs a new solution and the three objective
values of the constructed solution are calculated.

Step 4: Update the pheromone matrices of the three single objective
ant colinies based on the solutions newly constructed.

Step 5: Update the Pareto archive based on the newly constructed
solutions. When the archive size exceeds the limit, remove the
redundant solutions according to the crowding degree.

Step 6: Update the pheromone matrix of the multi-objective ant
colony based on the solutions in pareto archive.

Step 7: If the termination condition is not met, return to Step 3.
Otherwise, output the non-dominated solutions as the final results.

In the following parts, the major steps related to the above
mentioned procedures are described.

Algorithm 1. MOACO algorithm

Algorithm 1: MOACO algorithm

1 Set parameters: N(number of all ants), I(number of iteration), Ngyup, Np, Q, p, , B;

2 Input the details of UAVs, targets and tasks;
3 Initialize heuristic information and pheromone matrices;

4 Construct three single objective ant colonies and multi objectives ant colony Cy;; ;

5 for i=1:] do
6 for j=1:N do
7 Calculate the distance matrix between UAVs and tasks;
8 for k=1:Ng do
9 Calculate selection probability;
10 Select next task and UAV by roulette;
11 Update UAV state and distance matrix;
12 Add the selected task into tabu list;
13 Calculate the objective optimization functions value;
14 Reset tabu list, UAVs and targets state;
15 Update pareto archive P;
16 while The number of the individuals in P exceeds Np do
17 Calculate the crowding degree of each individual;
18 Remove the individual with the minimum crowding degree;
19 Update peromone matrices of single objective ant colinies;
20 Update peromone matrix of the Cy;; ant colony;
21 Pheromone evaporation;
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3.2. Solution construction

To solve a task allocation problem, Nk tasks need to be assigned to Ny
UAVs. Each ant represents a solution to the task assignment problem,
which needs to select Ni possible edges between UAVs and tasks. The
selection probability P(j, k) of the edge connecting the jth UAV and the
kth task is calculated by heuristic information H(j, k) and pheromone 7;,
xas in Eq. (6).

[54] “[H G )Y

PUR) = SN ST RY (k) (14 [H (G k) °

Parameters o and g indicate the importance of pheromone and heuristic
weight, respectively. After each task is assigned, the status of UAV and
target is updated. The change of UAV position leads to the dynamic
update of S]’.‘ and selected probability for other tasks.

There are Ny * Nk edges between UAVs and tasks in the mathemat-
ical sense. However, some edges may not be selected due to constraints.
To solve this problem, the probability P(j, k) of selecting a forbidden
edge is set to 0. An edge is called forbidden edge if it satisfies at least one
of the following six conditions.

. The task has been completed.

. The predecessor task is performed by the same UAV.

. The UAV is short of ammunition to perform attack task.

. The UAV does not have the capacity to perform this type of task.

. The UAV cannot complete the task and return to the base within the
range limit.

6. The tasks of each target need to be performed in sequence. This task

cannot be executed if the predecessor task is not completed.

g~ wWwN =

The schematic diagram of ant path selection process is illustrated in
Fig. 4. UAV1, UAV2, UAV3 represent the reconnaissance, attack and
utility UAVSs, respectively. The solid line indicates that the task has been
assigned to the UAV. There are five tasks assigned and it is going to
assign the sixth task. The serial numbers of assigned tasks represent the
execution sequence. The dotted line indicates that the edge between the
task and the UAV is available for next selection. There is no line between
task3 and UAV2 because the UAV2 can only perform attack tasks. UAV3
may lack ammunition so it cannot perform task8. Task9 is not connected
with any UAV for the predecessor task8 is not completed. Select the next
task to execute from all possible edges and update the relationship be-
tween remaining tasks and all UAVs. The above procedure is repeated
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until all tasks have been assigned. If none of the remaining edges are
selectable, the current solution is discarded. The ant will reconstruct a
solution.

3.3. Pareto archive

The Pareto archive is introduced in the MOACO algorithm as an elite
strategy for storing non-dominated solutions in each generation. In each
iteration, the newly constructed solutions in all ant colonies are inserted
into the Pareto archive, and the non-dominated sorting algorithm is
performed to rank the solutions in the archive. To maintain the archive,
dominated solutions will be removed, and all non-dominated solutions
are kept in the archive.

If the number of non-dominated solutions is larger than a predefined
size Np, more solutions will be removed according to their crowding
distances in the archive, so as to keep the archive size to be Np. The
crowding distance is calculated as in [26]. It should be noted that the
non-dominated solutions in the archive are provided as the final outputs
for decision makers to select trade-off solutions according to their
preferences.

3.4. Multiple heuristics for multi-objective optimization

In the proposed algorithm, there are multiple matrices storing heu-
ristic information which are defined based on the optimization objec-
tives. The heuristic information of each edge is weighted and aggregated
by multiple matrices. Follows are two alternative strategies for setting
the weights:

1. Dynamic setting strategy [27]: In this strategy, different weights are
assigned to the ants dynamically in each iteration.

2. Fixed setting strategy [28]: In this strategy, every objective has the
same importance, and thus all ants are assigned with the same weight
during the entire algorithm.

Generally, the dynamical setting strategy can introduce more search
diversity and will slow down the convergence rate, while the fixed
setting strategy will reduce the search diversity. To balance the
exploring and exploiting ability of the algorithm, a new multiple ant
colony algorithm with hybridized setting strategy is proposed.

For a combinatorial optimization problem with N optimization ob-
jectives, the whole ant colony is divided into N+ 1 sub ant colonies.
Each optimization objective corresponds to one sub ant colony with a

Fig. 4. Construction process of an ant solution.
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size of Ngy. The last sub ant colony optimizes all the objectives at the
same time, whose size is larger than the sum of other colonies. Since the
UAV task allocation problem we study has three optimization objectives
(i.e., benefit, damage and range), the corresponding MOACO algorithm
contains four sub ant colonies: Cenefit, Cdamage> Crange and Cai.

To calculate the heuristic information of each sub ant colony, we
firstly define the fitness value for each optimization objective. For the
edge connects jth UAV and kth task, the fitness value of benefit B(j, k) is
defined as the product of task capability P; and target reward V! (i =
Tk

belong
and UAV cost ij_ The fitness value of range S(j, k) is the reciprocal of the

). The fitness value of damage D(j, k) is calculated by threat level j;

distance. The specific calculations are given by Eq. (7).

B(.K) = P*V]
DG.K) =1/ (B+VY) @
Sk =1/t

In the above equations, the cost and the task capacity of UAV, the
threat level and the reward of target are constants. Therefore, damage
and benefit matrices are stationary and shared by all sub ant colonies
during the entire algorithm run. However, the distance of the edge S}’.‘ is
dynamic. When an edge is successfully selected by the ant, the selected
UAV will move to the selected location, and the distance between the
UAV and remaining tasks will be updated. Hence, the initial distance
matrix will change during the construction process.

The heuristic information matrices of the three single objective sub
ant colonies, namely, Cpenefits Cdamage and Crange, are defined as the cor-
responding edge fitness value matrices in Eq. (8), Eq. (9), and Eq. (10),
respectively.

Hyeneit = B (8)
Hdamnge =D (9)
Hrange =S (10)

Since the last sub ant colony Cgy aims to optimize all objectives at the
same time, its heuristic information matrix is the aggregation of the
above three matrices, which is defined by Eq. (11).

B D N

Ha = sum(B) * sum(D) * sum(S)

(€8]

3.5. Pheromone update

In the proposed algorithm, each sub ant colony has its own phero-
mone matrix 7. As in the ant colony system (ACS) [29], there are two
pheromone update operations. The first operation is global pheromone
update operation, which is performed at the end of each iteration. In the
global pheromone update operation, ants leave fixed amount of phero-
mones Q on the edges they traversed and the pheromone on each edge
will partially evaporate, which can be expressed by Eq. (12).

5ul0) = Tl = 1*(1 = p) + Q*n a2)

where p denotes global pheromone evaporation rate, n denotes the
number of ants traverse the edge between the jth UAV and kth task and t
represents the current iterations. The second method is local pheromone
update.

The pheromone of each single objective optimization ant colony,
Cdamages Chenefit and Crange, updates according to the solutions in each
colony. As for the last sub ant colony Cgy, the solutions in the approxi-
mation Pareto set are selected to update pheromone. Specifically, at the
end of each iteration, the pheromone is updated according to the non-
dominated solutions in the Pareto archive instead of the individuals in
the colony. In this way, the Cg; can maintain a relatively high search
diversity, which is good for finding more trade-off solutions.
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4. Simulation studies
4.1. Simulation settings

In order to verify the performance of the proposed MOACO algo-
rithm, a test scenario based on SEAD operation is firstly described in this
section. The heterogeneity of both UAVs and targets, kinematic char-
acteristics, and the constraints are considered in the scenario setting.

The targets are deployed in a 100 x 100 km? rectangle area, and all
UAUVs are also flying within the rectangle area. Six targets and ten UAVs
are involved in the simulation. Table 3 shows the details of the targets.

In the simulation, ten UAVs are constructed to perform reconnais-
sance, attack, and verification tasks. U; (j =1, 2, 3) are reconnaissance
UAVs (Type 1). U; (j =4, 5, 6) are attack UAVs (Type 2). U; (j=7, 8, 9,
10) are utility UAVs (Type 3). The parameter settings of the above three
types of UAVs are given in Table 4. The performance, ammunition, and
range of UAVs are limited and diverse.

Fig. 5 illustrates the initial locations of the UAVs and targets. The six
targets are marked by the diamonds, and the take-off base of UAVs is
marked by the triangle at origin.

In order to further verify the performance of the MOACO algorithm,
this paper studies the algorithm performance under different scale
problems. In addition to the above test scenario 1, we set up another five
test scenarios. The number configurations of targets and UAVs are
shown in Table 5. In Tests 2 and 3, the number of targets and UAVs
decreased. In Test 4, we mainly change the location of targets and
related parameters of UAVs. In Tests 5 and 6, we studied the change of
algorithm performance when the problem scale becomes larger.

Besides the proposed algorithm, the greedy algorithm and three
multi-objective optimization algorithms, standard multi-objective par-
ticle swarm optimization (SMOPSO), standard multi-objective ant col-
ony optimization (SMOACO) and the variant (MOACO*) of the multi-
objective multiple ant colony optimization, are used to solve the task
allocation problem in this paper and the performance comparisons are
carried out.

There is a greedy algorithm for each optimization objective, which
obtains only one solution with the best fitness value. The SMOPSO al-
gorithm is based on the multi-layer encoding strategy and the constraint

Table 3
Attributes of targets.

Target no. Position/km Reward Threat level Threat radius Tasks
1 (30,20) 200 0.1 1.2 1-3
2 (20,80) 250 0.15 1.4 4-6
3 (40,70) 350 0.25 1.2 7-9
4 (75,50) 500 0.3 1.6 10-12
5 (85,90) 400 0.4 1.8 13-15
6 (90,25) 300 0.2 1.4 16-18
Table 4
Attributes of UAVs.
Parameter UAV 1-3 UAV 4-6 UAV 7-10
Type 1 2 3
Position/km (0,0) (0,0) (0,0)
Cost 100 120 170
Speed/(kmh™1) 180 140 150
Range limit 800 1000 900
Detection radius 1.6 0 2.0
Ammunition 0 2 1
Attack time/h 0 0.1 0.1
Reconnaissance capacity 0.92 0 0.91
Attack capacity 0 0.95 0.94
Verification capacity 0.93 0 0.95
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Table 5
The scale of test scenarios.
Test no. Target UAV
1 6 10
2 3 5
3 5 6
4 6 9
5 8 12
6 10 15
Table 6
Related parameters of algorithms.
Algorithm Parameters
SMOPSO [15] 0=12,C=Cr=2

SMOACO [30] a=p=1,p=02,Q=5
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scheduling method introduced in [15], but uses the Pareto archive in the
MOACO algorithm as the solution evaluation method. The comparison
with SMOPSO is adopted to prove the performance superiority of ACO
algorithm in solving task allocation problem. The SMOACO algorithm
utilizes the aggregation of three optimization objective values with the
fixed weights as the heuristic information, and globally updates phero-
mone. The MOACO* algorithm is based on multiple ant colonies strategy
in MOACO with normal pheromone update. Both ACO algorithms use a
Pareto archive as the solution evaluation method. The comparisons with
them are used to verify the validity of the multiple ant colonies strategy
and the improved pheromone update method.

The detailed parameters of these algorithms are listed in Table 6. @
represents the inertia weight of SMOPSO algorithm. These algorithms
have the same size of population (N=100), iteration (I=500) and
maximum size of Pareto archive (Np = 80). To improve the accuracy, all
multi-objective algorithms run for 50 times independently.

Two performance evaluation indices, inversion generation distance
(IGD) and hyper volume (HV) are proposed to compare the compre-
hensive performance of multi-objective algorithms. Reference solution
set S* to calculate IGD is constructed by dominance relation. HV is
calculated by reference point Z=(1, 1, 1). The solution set with the lower
IGD and the larger HV value has better convergence and uniformity. The
simulation environment is an Intel (R) Core(TM) i7-9750H CPU with
8 GB RAM. The algorithms are coded in MATLAB R2019a.

4.2. Algorithms performance comparison

Table 7 shows the optimal values for each objective generated by
multiple algorithms, with the best comparison values marked in bold.
For multi-objective algorithms, the optimal objective fitness values are
the average of 50 runs.

The greedy algorithm obtains the solution with the minimum benefit
and damage fitness values at the cost of other objective values and it
only returns a specific solution. The MOACO algorithm obtains the so-
lution with the smaller range fitness value than greedy algorithm, since
the distance information is changing in the searching. And it obtains the
minimum benefit and damage fitness value in all multi-objective algo-
rithms. Preserving the ability to search the boundary solutions, the
SMOPSO and MOACO* algorithms get the smaller single objective
fitness values than SMOACO algorithm. For Test 2, the small number of

MOACO* a=1,=2,p=0.2,Q=10, Ny =10 UAVs and targets leads to few possible solutions. Hence, almost all al-
MOACO a=1,=2,p=0.2,Q=10, Nyp=10 gorithms can get the optimal objective fitness values.
Fig. 6 compares the IGD standard deviation, IGD mean and HV mean
Table 7
Optimal objective values for the six test scenarios.

Alogrithm Greedy SMOPSO SMOACO MOACO* MOACO

Objective Test

Benefit 1 0.1800 0.1817 0.1819 0.1810 0.1800
2 0.1800 0.1800 0.1800 0.1800 0.1800
3 0.1811 0.1812 0.1826 0.1815 0.1811
4 0.2100 0.2117 0.2130 0.2110 0.2100
5 0.1800 0.1832 0.1849 0.1821 0.1800
6 0.1800 0.1867 0.1922 0.1862 0.1843

Damage 1 0.4145 0.4198 0.4245 0.4209 0.4175
2 0.3114 0.3115 0.3115 0.3115 0.3115
3 0.5015 0.5345 0.5687 0.5326 0.5045
4 0.4250 0.4263 0.4293 0.4266 0.4250
5 0.4397 0.4426 0.4496 0.4423 0.4397
6 0.4611 0.4641 0.4687 0.4678 0.4632

Range 1 0.1776 0.1880 0.1972 0.1825 0.1735
2 0.1870 0.1863 0.1868 0.1861 0.1852
3 0.2412 0.2383 0.2404 0.2368 0.2290
4 0.2340 0.2303 0.2327 0.2299 0.2196
5 0.1700 0.1782 0.1809 0.1748 0.1646
6 0.1597 0.1596 0.1645 0.1527 0.1513
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Fig. 6. IGD standard deviation, mean and HV mean.

of the final Pareto solution sets. The IGD mean and standard deviation
(Std) values of the MOACO algorithm are both lowest in all algorithms,
which improves its high convergence and stability. The highest hyper
volume also indicates MOACO a better solution set.

Fig. 7 illustrates the IGD trend of multi-objective algorithms for six
test scenarios. In all test scenarios, the MOACO algorithm converges
faster than others, and the MOACO* algorithm always converges faster
than SMOACO algorithm. Fig. 7(a)-(f) represents the IGD trend in Test 1
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to Test 6 in turn. In Fig. 7(a), the IGD values of all algorithms decreased
rapidly before generation 200, and then all tended to converge. The IGD
convergence value of MOACO algorithm is obviously smaller than those
of other algorithms, and its IGD value declines fastest, indicating the
MOACO algorithm has the highest convergence rate. The IGD conver-
gence values of other algorithms are similar. Compared to SMOACO,
MOACO* converges faster, which proves that the effectiveness of mul-
tiple ant colonies strategy. The comparison between MOACO and
MOACO* indicates the improved pheromone update method enhances
the convergence rate. There is no clear relationship between the IGD
convergence rates of SMOACO and SMOPSO algorithms.

In Fig. 7(a) and (b), the IGD of the algorithms almost converge
together, owing to the small scale of problem and the limited solution
space. With the expansion of the scenarios scale, the gap of IGD
convergence value between MOACO and other algorithms is gradually
increasing. Generally, these tests show that the MOACO algorithm deals
with the cooperative task allocation for heterogeneous UAVs effectively.

4.3. Allocation plans analysis

Figs. 8, 9, 10 describe three representational task allocation plans of
test scenario 1 generated by MOACO algorithm. In these Gantt charts,
the A in A-B represents the target number, and the B is the task number.

Solution 1 has the lowest total range objective value. In this solution,
the good task execution sequence reduces the extra range cost caused by
the unfinished front-end tasks. But high-value integrated UAVs (7-10)
perform more tasks in this plan results in greater UAV cost.

Solution 2 is outstanding in benefit objective, indicating that the
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Fig. 7. IGD trends of multi-objective algorithms for six test scenarios.
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Fig. 9. Gantt chart for solution 2.

allocation plan has a high mission success rate. In this plan, all the attack
tasks are performed by attack UAV (4-6). And the reconnaissance tasks
are performed by the UAV (1-3) with high reconnaissance capacity.
Efforts are made to let the efficient UAV to perform corresponding task,
which will also lead to the increase of cost and distance.

Solution 3 performs well in cost objective. The targets with a high
threat level are allocated to attack UAV and reconnaissance UAV to
achieve the lower cost value. High-value UAVs have fewer dispatches.
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T T
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Fig. 10. Gantt chart for solution 3.
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5. Conclusions

This paper formulates the cooperative task allocation problem of
heterogeneous UAVs as a constrained multi-objective optimization
problem which contains three optimization objectives. An efficient ant
colonies optimization algorithm with multiple ant colonies (named
MOACO) is proposed to solve the formulated problem. In the proposed
MOACO, a new pheromone updating mechanism and four new heuristic
information are specifically designed to improve the search efficiency
and solution diversity. The proposed MOACO is tested on six scenarios
with different scales and the simulation results have shown that the
proposed algorithm performed better than several recently published
algorithms, in terms of solutions quality and diversity.
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