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The Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has been developed into a powerful polymerization reaction for the
synthesis of new polytriazoles with versatile properties. However, research on recyclable and reusable copper catalyst for click
polymerization to meet the requirement of green chemistry was rarely reported. Copper nanoparticles were reported to be
capable catalysts for CuAAC. Replacing conventional copper catalyst with copper nanoparticles may realize the recycle and
reuse of the copper catalyst in click polymerization. In this paper, copper nanoparticles were prepared and used as an effective
catalyst for click polymerization, and soluble polytriazoles with high molecular weights were obtained in excellent yields under
optimized reaction conditions. Importantly, the copper nanoparticles can be recycled and reused for up to 11 times for the click
polymerization. Moreover, introducing aggregation-induced emission (AIE)-active moiety of tetraphenylethylene into the
monomers makes the resultant polymers retain the AIE feature. This work not only provides an efficient recyclable catalytic
system for the azide-alkyne click polymerization, but also might inspire polymer chemists to use recyclable copper species to
catalyze other polymerizations.
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1 Introduction

Eco-friendly and sustainable development in chemical in-
dustry has received much attention in recent years. Atomic
economic, highly efficient, and highly selective chemistry
becomes goal that scientists are pursuing. In 2001, Sharpless
and co-workers [1] proposed such chemical reactions en-
joying the advantages of high efficiency, fast reaction rate,
mild reaction conditions, easy product isolation, high se-
lectivity, high atomic economy and good functional group
tolerance as “click chemistry”. One year later, Sharpless and

co-workers [2], and Medal and co-workers [3] independently
reported that Huisgen 1,3-cycloaddition reaction of alkyne
and azide can be accelerated by Cu(I) catalysts, yielding sole
1,4-disubstituted 1,2,3-triazoles. This Cu(I)-catalyzed al-
kyne-azide cycloaddition (CuAAC) perfectly meets the de-
finition of “click chemistry” and is prospered soon after
being reported [4–7]. Thanks to its remarkable advantages,
CuAAC is widely applied in biology [8], pharmaceutical
chemistry [9], macromolecule synthesis [10–13], synthetic
functional polymers [14–16] and many other research fron-
tiers.
Our group has been working on development of new

polymerizations based on triple-bond building blocks
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[17,18]. The azide-alkyne click polymerization has also been
developed based on the CuAAC, and linear and hyper-
branched polytriazoles with versatile properties have been
prepared [19–22].
However, conventional Cu(I) catalysts for click poly-

merization, such as CuSO4/sodium ascorbate system can be
used only once, which is not environment friendly. Polymer
chemists have developed an efficient way to tackle this
problem, that is, to recycle and reuse the metal catalyst such
as immobilizing active catalytic species on solid supports to
facilitate the recovery of the catalyst [23–28]. However the
preparation of the catalyst is complicated and tedious. De-
veloping metal-free click polymerization without using any
metal catalyst may completely avoid the use of the metal
species, but the monomers must be elaborately designed to
achieve high reactivity, which limits the structure and ap-
plications of resultant polymers [29–35]. An alternative to
overcome these shortcomings is to develop a reusable or
recyclable metal nanoparticles catalyst.
Recyclable nanoparticles that feature large surface area,

high reaction efficiency, facile preparation and easy isolation
from the products showed distinct advantages over conven-
tional metal catalysts. Lots of work have been focused on
nanoparticles catalyzed CuAAC [36–41]. For highly facile
synthesis of 1,4-regioregular triazoles, the Cu nanoparticles
were found to be very efficient and were easy to be recycled
and reused by centrifugation or filtration. However, appli-
cation of Cu nanoparticles (Cu NPs) as catalyst in poly-
triazole syntheses was rarely reported. Because Cu NPs can
be easily separated and recycled from the reaction system, it
is attractive to use them as an efficient and recyclable catalyst
for the click polymerization.
In this paper, we report Cu NPs catalyzed click poly-

merization under mild reaction conditions (Scheme 1). The
polymers with high molecular weights were obtained in high
yields. This polymerization is also function group tolerant.
Polytrizoles with such property as aggregation-induced
emission (AIE) could be facilely prepared. More im-
portantly, the catalyst system can be easily isolated from the
polymerization system and recycled for the next click
polymerization cycle, and the number of recycling can be as
many as 11 times, which is much higher than that we pre-
viously reported [24].

2 Results and discussion

2.1 Cu NPs catalyzed click polymerization

Click polymerization has attracted much attention due to its
high efficiency, excellent selectivity and mild reaction con-
ditions, etc. To make the catalyst more environment friendly,
the supported Cu(I) catalyst for the azide-alkyne click
polymerization has been developed [24,25]. However, the

catalyst system can only be reused for 4 times. To make such
click polymerization more powerful, we prepared Cu NPs
with average diameter of 400 nm to catalyze the click
polymerization (Figure S1, Supporting Information online).
Delightfully, the preliminary results are positive. Thus we
systematically optimized the polymerization conditions
using 1a and 2a as monomers.
The time course of polymerization of 1a and 2a was first

studied (Table 1). The yields and molecular weights of the
products increased with extension of reaction time from 6 to
10 h. Further prolonging the polymerization time to 12 or
14 h resulted in partially soluble products, and the molecular
weights of soluble part appeared to be constant. Because
reaction time of 8 h could furnish the product with narrower
polydispersity index (Ɖ) in remarkable yield, it was chosen
as optimum reaction time.
Second, the effect of the reaction temperature on the Cu

NPs catalyzed click polymerization was investigated, and the
results are summarized in Table 2. It can be seen that both the
yields and molecular weights of the products increased with
elevating the reaction temperatures. However, for the pro-
duct obtained at 70 °C, it takes 24 h to dissolve in THF. Since
the polymerization at 60 °C could produce polymer with
considerable high molecular weight and lower Ɖ, it was

Scheme 1 Cu NPs catalyzed click polymerization of diynes and diazides
(color online).

Table 1 Time course of the click polymerization of 1a and 2a a)

Number Time (h) Yield (%) Mw
b) Ɖ b)

1 6 68.1 12700 2.31

2 8 84.6 82000 1.69

3 10 70.4 119000 1.88

4 c) 12 85.8 86000 2.16

5 c) 14 98.1 83000 1.56

a) Carried out at 60 °C in tetrahydrofuran (THF) under nitrogen. The
monomer concentration is 0.05 M. Concentration of Cu NPs is 0.05 M. b)
Mw and Ɖ values were estimated by APC (advanced polymer chromato-
graphy) with THF as an eluent on the basis of a polystyrene calibration. c)
Partially soluble in organic solvents including THF, chloroform, dimethyl
sulfoxide (DMSO) and N,N-dimethylformamide (DMF).
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chosen as the optimum temperature.
Third, the effect of Cu NPs concentration on polymeriza-

tion was studied while keeping other reaction conditions
unchanged (Table 3). The experiments showed that the Cu
NPs concentration affected the polymerization results sig-
nificantly. Low concentration of the catalyst as 0.013 M led
to no polymer during work-up, while the concentration of
0.025 M produced polymer with smaller molecular weight in
lower yield than that of 0.05 M. If Cu NPs concentration
increases to 0.075 M, the molecular weight was still lower
than 0.05 M although remarkable yield was achieved. Hence,
Cu NPs concentration of 0.05 M was chosen as the most
suitable catalyst concentration.
Fourth, the influence of monomer concentration on the

polymerization results was investigated. The results show
that both 0.025 and 0.05 M of monomer concentrations led to
products with high molecular weights (Table 4). Considering
Ɖ and yield of the product are better, monomer concentration
with 0.05 M was chosen as the best condition.
Fifth, we followed the effect of solvent on the poly-

merization (Table 5). Polymerizations in THF, chloroform,
DMF, DMSO and toluene were carried out under the
aforementioned optimal conditions. Both the polymeriza-
tions in THF and chloroform produced polymers with high
molecular weights in good yields. The product generated
from the polymerization in DMF was soluble in commonly
used solvents, but the molecular weight and yield were lower
than that carried out in THF and chloroform. Whereas,
polymer prepared in DMSO, was partially soluble in THF,
hence the molecular weight was determined in DMF as
eluent on APC. Insoluble pullets appeared when the poly-

merization was carried out in toluene after 2 h, which are
insoluble in DMF, DMSO, THF and chloroform. Thus, THF
continued to be used as polymerization solvent.
With these optimized conditions in hand, other diyne and

diazide monomers were examined to test the universality and
robustness of this Cu NPs catalyzed click polymerization. As
shown in Table 6, all the polymerization propagated
smoothly and polymers with considerable large molecular
weights were produced in high yields. These results suggest
that our prepared Cu NPs could efficiently and powerfully
catalyze the azide-alkyne click polymerization.

2.2 Structure characterization

Of the prepared polymers, most of them are soluble in
commonly used organic solvents, thus, the polymer struc-
tures were characterized spectroscopically using “wet”
methods. Since the spectral profiles of the polymers are si-

Table 2 Effect of temperature on the polymerization of 1a and 2a a)

Number T (°C) Yield (%) Mw
b) Ɖ b)

1 30 60.7 13000 1.85
2 40 73.2 15000 2.04
3 50 75.1 31000 1.98
4 60 84.6 82000 1.69
5 70 79.4 154000 1.76

a) Carried out in THF for 8 h with monomer concentration of 0.05 M.
Concentration of Cu NPs is 0.05 M. b) Mw and Ɖ values were estimated by
APC with THF as eluent on the basis of a polystyrene calibration.

Table 3 Effect of Cu NPs concentration on polymerization of 1a and 2a a)

Number MCu (M) Yield (%) Mw
b) Ɖ b)

1 0.013 − c) − −
2 0.025 34.7 25000 2.21
3 0.050 84.6 82000 1.69
4 0.075 85.1 26000 1.75

a) Carried out at 60 °C for 8 h in THF with monomer concentration of
0.05 M; b) Mw and Ɖ values were estimated by APC with THF as eluent on
the basis of a polystyrene calibration; c) no precipitation was obtained
when the reaction solution was added into petroleum ether and chloroform
mixture.

Table 4 Effect of monomer concentration on the polymerization of 1a
and 2a a)

Number [M0] (M) Yield (%) Mw
b) Ɖ b)

1 0.013 70.2 22600 2.17
2 0.025 77.1 87000 1.92
4 0.050 84.6 82000 1.69
5 0.075 90.4 51000 2.05

a) Carried out at 60 °C in THF under nitrogen atmosphere. Concentra-
tion of Cu Nanoparticles is 0.05 M, the reaction time was 8 h. b) Mw and Ɖ
values were estimated by APC with THF as eluent on the basis of a
polystyrene calibration.

Table 5 Effect of solvent on polymerization of 1a and 2a a)

Number Solvent Yield (%) Mw
b) Ɖ b)

1 THF 84.6 82000 1.69
2 Chloroform 85.1 92000 1.60
3 DMF 74.3 49000 1.77
4 DMSO c) 71.1 53000 1.18
5 Toluene d) − − −

a) Carried out at 60 °C for 8 h with Cu NPs concentration of 0.05 M and
monomer concentration of 0.05 M, the reaction time was 8 h. b) Mw and Ɖ
values were estimated by APC with THF as eluent on the basis of a
polystyrene calibration; c) the polymer was partially soluble in THF, and
Mw and Ɖ results were estimated by APC with DMF as eluent; d) an
insoluble sphere was formed at 2 h which is insoluble in THF and DMF.

Table 6 Cu NPs catalyzed click polymerization of different monomers a)

Number Polymer Monomer Yield (%) Mw
b) Ɖ b)

1 PI 1a+2a 84.6 82000 1.69

2 PII 1b+2a 79.6 18800 1.28

3 PIII 1a+2b 76.4 29700 2.21

4 PIV 1a+2c 91.4 20100 2.43

a) Polymerizations were carried out at 60 °C for 8 h with both con-
centration of Cu NPs monomer concentration of 0.05 M; b) Mw and Ɖ
values were estimated by APC with THF as eluent on the basis of a
polystyrene calibration.
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milar (Figures S2–S4), the Fourier transform infrared spec-
troscopy (FT-IR) spectra of PI and its monomers are dis-
cussed here as an example.
In Figure 1(a), the absorption peaks at 3265 and 2122 cm−1

are attributable to the ≡C‒H stretching vibration and C≡C
vibration of 1a, respectively. Whereas, the characteristic
2095 cm−1 of ‒N=N+=N− in 2a is very abrupt in Figure 1(b).
In FT-IR spectrum of PI, the entire characteristic absorption
peaks of ethynyl and azide groups disappeared, indicative of
the occurrence of this click polymerization.
To gain more detail information about the polymer struc-

tures, 1H and 13C NMR spectra of the resultant polymers
were measured. The resonance peak of ethynyl proton
(δ=2.51) and methylene proton (δ=4.66) adjacent to the
ethynyl group of 1a in Figure 2(a) and methylene proton
adjacent to azide group (δ=3.27) of 2a in Figure 2(b) could
be easily designated in the 1H NMR spectra. The above
characteristic signals could be merely observed in the spec-
trum of PI. At the same time, new peak of triazole rings
could be observed at δ=7.57. Notably, in DMSO-d6, such
new peak of triazole ring proton of PI catalyzed by Cu NPs
was identical as that of PI catalyzed by CuSO4/ascorbic acid.
And no resonance peak assignable to the 1,5-regioregular
triazole isomers in the polymer can be observed. Hence it can
be concluded that most of the ethynyl and azide groups
participated in Cu NPs catalyzed click polymerization, while
minority of them was left as terminal groups of polymers.
In the 13C NMR spectra (Figure 3(c)), very weak resonance

peak of acetylene proton (δ=78.8 and δ=75.4) of polymer PI
can be observed. New peaks appear at δ=127.8 and δ=122.4,
which could be designated as signals of the two carbon atoms
on triazole rings. These results verified that most of ethynyl
groups have been converted to triazole rings via the click
polymerization. In the 1H and 13C NMR spectra of other

polymers, similar results were also observed (Figures S6–S11).

2.3 Reusability of Cu NPs catalyst for click poly-
merization

Developing reusable and/or recyclable metal catalysts is in
accordance with sustainable development strategy. Herein,
we focused on the reusability of Cu nanoparticles during
carrying out the click polymerization, which could probably
provide viable information for the research on nanoparticle
catalysts for polymerizations. Reusability of Cu NPs as
catalyst for click polymerization was performed under op-
timal reaction conditions. After each cycle, reaction solvent
containing polymer was sucked out by a syringe after cen-
trifugation, while the Cu NPs were washed with THF and re-
dispersed in fresh monomer solution for next reaction cycle.
The catalyst was successfully reused for 11 cycles and
polymer with considerable high molecular weight was pro-
duced in high yield even in the eleventh cycle (Table 7). The
successful reuse of Cu NPs for click polymerization shows
great potential in industrialization owning to its easy se-
paration and reuse.
As long as more cycles were achieved, fewer and fewer

catalyst was recycled. At the end of the last cycle, very little
catalyst was separated out at the bottom of centrifugation tube.

Figure 1 FT-IR spectra of monomers 1a (a), 2a (b) and their polymer PI
(c) (color online).

Figure 2 1H NMR spectra of monomer 1a (a), monomer 2a (b) and their
polymer PI (c) in CDCl3. The solvent peaks are marked with asterisks
(color online).
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2.4 Polymerization mechanism

It was reported that the reaction process takes place on the
surface of the nanoparticles [40]. It was believed that the
oxidized layer of Cu(I) species on the surface of copper
nanoparticles were responsible for the actual catalytic effect

[41]. Such Cu(I) species might be produced by partial oxi-
dation on the surface of Cu nanoparticles during work-up
operation, or even during the reaction process because
minuscule oxygen might still remain in the monomer solu-
tion. Thus, after two polymerization cycles, variation of
molecular weight and yield of the product occurred. Bub-
bling nitrogen gas into monomer solution could not thor-
oughly eliminate oxygen. Hence evacuating and refilling
nitrogen gas for three times at the first cycle led to the results
similar with the optimal conditions. Meanwhile, triazole
rings were reported to be excellent ligand that sturdily im-
mobilized Cu(I) on solid surfaces [42]. The coordination of
triazole rings toward Cu(I) was account for the loss of Cu
species during the reuse cycle. Cu residual in PI as-prepared
was measured by atomic absorption spectroscopy after de-
composed in concentrated HNO3 which showed similar re-
sults to the polymers synthesized by usual copper catalysts
such as Cu(PPh3)3Br and CuSO4/ascorbic acid (Tables S2
and S3, Supporting Information online). This also helped
explain the catalyst loss during the reuse of Cu NPs for click
polymerization.

2.5 Aggregation-induced emission of polymers

The introduction of AIE-active TPE moiety into the polymer
backbones endows the resultant polymer PI with the AIE
feature, too. As shown in Figure 4, when excited at 323 nm,
the photoluminescence (PL) spectrum of the diluted THF
solution (10 µM) of PI gives very weak emission. When
dissolved in THF/water mixture with 20% water fraction
(ƒw), the polymer exhibits blue-green fluorescence at
481 nm. As ƒw increased, the emission became stronger. The
strongest emission was recorded THF/water mixture with ƒw
of 90%, which is 197 fold higher than that in pure THF,
indicating that PI is a typical AIE polymer. It is worthy to
note that the maximum emission peaks at 481 nm remained
unchanged as ƒw increased. In comparison with conventional
aggregation-caused quenching (ACQ) materials, AIE poly-
mers possess great potential applications in bioimaging,
sensors, electroluminescence materials and other frontiers.

3 Conclusions

In summary, the Cu NPs catalyzed click polymerization of
diynes and diazides under mild conditions was successfully
developed, and polytriazoles PI to PIV with high molecular
weights were facilely produced in high yields in THF after
reaction for 8 h. More importantly, Cu NPs could be recycled
and reused for up to 11 times, and the click polymerization
performed well at each cycle. The polymer prepared by the
monomer containing TPE moiety displayed a typical AIE
feature. Thus, the results in this paper provide useful

Figure 3 13C NMR spectra of monomer 1a (a), monomer 2a (b) and their
polymer PI (c) in CDCl3. The solvent peaks are marked with asterisks
(color online).

Table 7 Reuse of Cu NPs for polymerization of 1a and 2a in THF a)

Number Cycle Yield (%) Mw
b) Ɖ b)

1 1 72.0 76,000 1.66
2 2 76.6 136,000 1.68
3 3 87.8 18,000 3.73
4 4 51.6 5,300 1.54
5 5 87.6 34,300 1.84
6 6 42.9 5,500 1.75
7 c) 7 88.0 69,400 1.41
8 c) 8 93.1 48,000 1.43
9 c) 9 82.2 75,000 1.61
10 c) 10 80.1 47,300 1.73
11 c) 11 80.0 59,900 1.37

a) Polymerizations were carried out at 60 °C for 8 h with both Cu NPs
concentration and monomer concentration of 0.05 M. Catalyst was cen-
trifuged and dispersed in fresh monomer solution to start the next cycle. b)
Mw and Ɖ values were estimated by APC with THF as eluent on the basis of
a polystyrene calibration. c) Polymerizations were carried out at 60 °C for
12 h.
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guideline to other polymerizations using metal nanoparticles
as recyclable catalysts.
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