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ABSTRACT: Exploration of efficient and powerful polymer-
ization methodologies is of crucial importance for polymer
science. Among the established polymerization method-
ologies, the polymerization of internal alkynes is less
developed and still in its infancy stage. In this work, a new
polymerization of internal alkynes of bromoalkynes and
phenols is established, and polymers with high weight-average
molecular weights (up to 47 600) are obtained in excellent
yields (up to 95.2%) in as short as 1 h without using a
complex transition-metal catalytic system. The resultant
polymers possess good solubility, exhibit high thermal stability, and could display typical aggregation-induced emission
(AIE) characteristics upon introduction of tetraphenylethylene, a typical AIE-active luminogen. Moreover, the polymers could
be post-modified by a thiophenol derivative because they contain bromovinyl groups in each repeating unit, enabling it to
possess a higher refractive index than that of the pristine one. Therefore, it displays a convenient platform for polymer
functionalization. This work not only establishes a new polymerization of bromoalkynes and phenols but also provides a
powerful strategy for the preparation and modification of functional polymers under mild reaction conditions without using
transition-metal catalysts.

■ INTRODUCTION

Exploration of efficient and powerful polymerization method-
ologies has drawn increasing attention among researchers in
the field of polymer science.1,2 In recent years, triple-bond
monomers, such as alkynes,3−5 isocyanides,6−10 and ni-
triles,11−13 have been used for the construction of functional
polymers with advanced structures.14,15 Among these triple-
bond building blocks, alkynes are the most commonly
employed monomers for the development of diverse polymer-
izations, which include azide−alkyne click polymerization,16−20

thiol−yne click polymerization,21−24 amino−yne click poly-
merization,25,26 phenol−yne click polymerization,27 multi-
component polymerization,2 and so on.28−32 However, the
research on phenol−yne polymerizations, especially based on
internal alkynes, is rarely reported.33,34 In the few reported
polymerizations of activated internal diynes and diols, the
scope of diol monomers, the unpleasant smell of catalysts, and
harsh anaerobic conditions have limited their applications.
Very recently, our groups successfully reported a new
polymerization of internal diynes and diphenols in the
presence of Pd2(dba)3, bathophenanthroline, AgOAc, and
Cu(OAc)2·H2O at 130 °C.35 However, the complex transition-

metal catalytic system and long reaction time (48 h) also limit
its further applications.
Inspired by the previous research and based on our

experience, we try to make further progress in the polymer-
ization of internal alkynes and phenols. We were attracted by a
reported elegant organic reaction that the phenols and
bromoalkynes could be reacted in the presence of K2CO3

instead of transition-metal catalyst to facilely produce func-
tional (Z)-2-bromovinyl phenyl ethers.36−38 It is worth noting
that bromoalkynes, a kind of internal alkynes, could be easily
prepared from terminal alkynes. We also have used it as a
building block to establish new polymerizations.6,39 Therefore,
we tried to develop the reported reaction of bromoalkynes and
phenols into a powerful polymerization, although it is much
difficult to convert an organic reaction into a useful
polymerization for several important issues have to be
addressed.3 Thanks to the features of readily available reactants
and inorganic base, simple procedures, and high efficiency of
the above organic reaction, polymerization was successfully
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established in this work. Based on our systematically optimized
reaction conditions, bis(bromoalkyne)s and diphenols could
be polymerized in N,N-dimethylformamide (DMF) in the
presence of an inorganic base of Cs2CO3 under ambient
conditions and polymers with high molecular weights could be
produced in excellent yields in a short time. Moreover, when
tetraphenylethylene (TPE), a star luminogen exhibiting the
unique aggregation-induced emission (AIE) characteris-
tics,40−43 is readily introduced into the polymer chains, the
resultant polymer is imparted with an AIE feature, too. In
addition, these resultant polymers could be easily post-
modified by a thiophenol derivative through a conventional
substitution reaction because they contain bromovinyl groups.
A new polymer that possesses a higher refractive index than the
pristine one could be obtained. Therefore, this work not only
develops an efficient and powerful polymerization of bis-
(bromoalkyne)s and diphenols but also provides a convenient
platform for polymeric functionalization, which would greatly
enrich the structures and properties of the polymeric materials.

■ RESULTS AND DISCUSSION
Polymerization. To accumulate the experiences for this

polymerization, preliminary experiments were carried out. We
first studied the reaction time of the polymerization using 1a
and 2a as model monomers while keeping other conditions
similar to the organic reaction (Scheme 1). The results showed

that the polymerization proceeded for 3 h and could furnish a
product with the highest weight-average molecular weight (Mw,
Table S1). Next, we optimized the used inorganic base.
According to the model reaction, the polymerization is better
to be conducted under an alkaline environment. Thus, other
two alkaline salts of CsF and Cs2CO3 were tested. A trace
amount of the product was obtained when CsF was used to
mediate the polymerization, whereas Cs2CO3 could furnish the
best results, and a soluble polymer with highest Mw (10 300)
was produced in the highest yield (92.1%). Thus, Cs2CO3 was
used for following investigation.
Encouraged by the preliminary results, we systematical

optimized the polymerization conditions continually using 1a
and 2a as model monomers. We first investigated the reaction
time again. As shown in Table 1, as time shortened, the Mw of
products remained almost unchanged. However, their yields
dropped dramatically when the reaction time was shortened to

half an hour probably because of the uncompleted reaction. In
view of satisfactory Mw and the yield of the product, 1 h was
selected as the optimal polymerization time.
Next, other parameters including the monomer concen-

tration, the amount of Cs2CO3, reaction temperature, and
solvent were optimized, and the results are listed in Table 2.

Employing similar reaction conditions listed in entry 3, Table
1, we first investigated the influence of monomer concentration
on the polymerization results. Diluting the monomer
concentration from 0.1 to 0.05 M resulted in a lower Mw
and yields of products, whereas increasing the monomer
concentration to 0.2 M led to the product with an excellent Mw
(28 500) and higher yield (90.3%) because of more effective
intermolecular collisions. Interestingly, further exploration of
other reaction conditions suggested that the original ones are
the best (entry 3, Table 2, [2a] = 0.2 M, [Cs2CO3]/[2a] = 2,
T = 110 °C).
By using these optimized reaction conditions, we performed

the polymerization using other phenols 1b−1c and aromatic
bromoalkynes 2b to show its robustness and universality
(Scheme 1). All the polymerization reactions propagated
smoothly, and the polymers of PII−PIV with high Mw (up to
47 600) were produced in excellent yields (up to 95.2%),
manifesting the universality of this powerful and efficient
polymerization (Table 3).

Scheme 1. Polymerization of Diphenols 1 and
Bis(bromoalkyne)s 2

Table 1. Time Course of the Polymerization of 1a and 2aa

entry t (h) yield (%) Mw
b Đb

1 3 92.1 10 300 1.40
2 2 99.7 10 300 1.44
3 1 93.8 11 700 1.52
4 0.5 69.3 11 300 1.48

aCarried out in DMF at 110 °C in air ([1a]/[2a] = 1, [Cs2CO3]/[2a]
= 2, [2a] = 0.1 M). bWeight-average molecular weight (Mw) and
polydispersity index (Đ, Mw/Mn) of polymers were estimated by gel
permeation chromatography (GPC) using THF as the eluent on the
basis of a polymethyl methacrylate calibration.

Table 2. Effect of Reaction Conditions on the
Polymerizations of 1a and 2aa

aCarried out in 2 mL of solvent for 1 hour under air condition.
bWeight-average molecular weight (Mw) and polydispersity index (Đ,
Mw/Mn) of polymers were estimated by GPC using THF as the eluent
on the basis of a polymethyl methacrylate calibration. DMAc = N,N-
dimethylacetamide.
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All the resultant polymers PI−PIV are soluble in commonly
used organic solvents, such as dimethylsulfoxide (DMSO),
DMF, chloroform, and tetrahydrofuran (THF). They are also
thermally stable. As revealed by the thermogravimetric analysis
(TGA) under nitrogen, the temperatures for the 5% loss of
their weights are all above 357 °C (Figure 1).

Structural Characterization. Thanks to their excellent
solubility in most organic solvents, the structures of PI−PIV
were characterized by spectroscopic methods. As the spectral
profiles of PI−PIV are similar (Figures 2 and S1−S3), the
Fourier transform infrared (FT-IR) spectra of PI and its
monomers 1a and 2a are discussed here as an example (Figure
2). The absorption peaks at 3290 and 2261 cm−1 are readily

assigned to the stretching vibration of phenolic hydroxyl group
in 1a and ethynyl group in 2a, respectively. In the spectrum of
PI, these two characteristic signals weakened or disappeared.
Meanwhile, there are two sets of new peaks arising at 1205 and
1170 cm−1, which belong to the stretching vibration of C−O−
C, respectively. All these results indicate that monomers 1a
and 2a had been polymerized and ether linkage had been
formed accordingly.
More detailed structural information of polymers could be

obtained from the 1H and 13C NMR spectra (Figures 3, 4 and

S4−S9). To facilitate the structural characterization, model
compound 3 was prepared under the same reaction conditions
(Scheme S1). The 1H NMR spectra of PI, monomers 1a and
2a, and the model compound 3 in CDCl3 are shown in Figure
3 as an example. Characteristic proton “2” of compound 3
resonated at δ 6.50 is observed in Figure 3C. Correspondingly,
proton “2′” of PI was observed at δ 6.60 in Figure 3D. It is
worth noting that we could hardly find the resonant peak
associated with phenols from the spectrum of PI. The 13C
NMR spectra were also measured to verify the structure of PI

Table 3. Polymerization of 1 and 2a

polymer monomer yield (%) Mw
b Đb Z/E (%)

PI 1a + 2a 90.3 28 500 2.30 72.3
PII 1b + 2a 95.2 47 600 3.08 72.0
PIII 1c + 2a 76.5 41 500 2.45 71.8
PIV 1a + 2b 85.5 23 800 2.11 c

aCarried out in DMF under air condition for 1 h ([1]/[2] = 1,
[Cs2CO3]/[1] = 2, [1] = 0.2 M). bWeight-average molecular weight
(Mw) and polydispersity index (Đ, Mw/Mn) of polymers were
estimated by GPC using THF as the eluent on the basis of a
polymethyl methacrylate calibration. cAs PIV contains other double
bonds and the ratio is hard to be obtained.

Figure 1. TGA thermograms of PI−PIV. Td represents the
temperature of 5% weight loss of the polymers.

Figure 2. FT-IR spectra of PI (A), 1a (B), and 2a (C).

Figure 3. 1H NMR spectra of 1a (A), 2a (B), model compound (C),
and P1 (D) in CDCl3. The solvent peaks are marked with asterisks.
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(Figure 4). The peaks representing carbons “a” and “b” in 2a
disappeared in the spectrum of PI, whereas the resonance of
the carbonyl carbon “c” in model compound 3 was observed in
the spectrum of PI at δ 95.75. These results suggested that 1a
and 2a had been polymerized, and PI was indeed obtained,
further substantiating the conclusion drawn from the FT-IR
and 1H NMR spectral analysis.
Theoretically, there will be two E- and Z-isomers in the

polymers according to the reaction mechanism, although only
one Z-isomer derivative was reported.36−38 As the peaks in the
1H NMR of protons in the vinyl groups are severely
overlapped, we thus used the Raman spectra of PI−PIV to
identify the ratio of Z- and E-isomers. As shown in Figure
S10A−D, two peaks at 1602 and 1668 cm−1 were recorded for
PI−PIV. By comparing with the model compound with Z-
stereoregularity (Figure S10E), the peaks at 1602 cm−1 of PI−
PIV were assigned to Z-isomers. Accordingly, the peaks at
1668 cm−1 could be assigned to the E-isomers. Based on
Raman spectral analysis, the ratio of the Z-/E-isomers in PI−
PIII was deduced to be ∼72% via integration of the peaks
(Table 3).

Photoluminescence Properties. Thanks to its excellent
functional group tolerance, the AIE-active TPE moiety could
be facilely incorporated into the polymer chains of PIV by our
developed polymerization. After confirming its structure, we
investigated its photoluminescence (PL) behavior. As shown in
Figure 5, the THF solution of PIV is almost nonemissive, while
the emission of its THF/water mixtures is intensified gradually
with increasing the water fraction ( fw). The emission intensity
reaches the highest in the THF/water mixture with fw of 90%,
which was 11-fold higher than that in THF (Figure 5B),
demonstrating a typical AIE feature.

Photopatternability. As PIV is highly emissive in the solid
state and contains the vinyl groups, we thus tested its
photopatternability by UV irradiation of its spin-coated films
on silicon wafers through a negative copper photomask. As
depicted in Figure 6, a two-dimensional (2D) fluorescent
photopattern was successfully generated after UV irradiation
for 20 min in air. The unexposed parts (squares) remain bright
green emission, while the exposed regions (lines) become
nonemissive because of the strong photo-oxidative bleaching

Figure 4. 13C NMR spectra of 1a (A), 2a (B), model compound (C),
and PI in CDCl3. The solvent peaks are marked with asterisks.

Figure 5. (A) PL spectra of PIV in THF/water mixtures with different water fractions ( fw). (B) Plot of the changes in the PL intensity of PIV vs fw,
where I0 and I are the maximal PL intensities recorded before and after the addition of water into the THF solution, respectively. Concentration of
PIV: 10 μM, λex: 345 nm.
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effect. Therefore, PIV possesses good photosensitivity and
could be used to fabricate a 2D fluorescent photopattern.
Post-Modification of Polymers. Post-modification is a

powerful tool to enrich the family of poly(vinyl ether)s, and it
also provides a convenient platform for polymers to be further
functionalized. As PI−PIV contains bromovinyl groups in each
repeating unit, they could be easily post-modified. For
example, the substitution reaction of PIII (Mw: 32 800) and
thiophenol 4 occurred under ambient conditions, generating
PIII−PM with an Mw of 40 800 in 96% yield (Scheme 2 and
Table S2). After modification, the maximum absorption peaks
were shifted to 328 from 298 nm because of extension of the
conjugation.

To clearly characterize the post-modified structure of PIII−
PM, model compound 9 was designed and facilely prepared
according to the route shown in Scheme S2. The 1H NMR
spectra of 9 and PIII−PM confirm the occurrence of the post-
modification reaction (Figure 7B,C). From the 1H NMR
spectra shown in Figure 7, the grafting degree of PIII−PM was
calculated to be 40%. It is worth noting that the refractive
index of PIII−PM is slightly higher than that of PIII (Figure
S11) at short wavelength, further indicative of the usefulness of
the post-modification strategy.

■ CONCLUSIONS
In this work, we developed an efficient transition-metal-free
polymerization of bromoalkynes and phenols. Mediated by an
inexpensive inorganic base of Cs2CO3 at 110 °C, the
polymerization of bis(bromoalkyne)s and diphenols propa-
gated smoothly, generating polymers with Mw up to 47 600 in

the yields up to 95.2% in as short as 1 h. All the resultant
polymers are soluble in commonly used organic solvents and
thermally stable with high degradation temperatures. The
polymerization also exhibits functional group tolerance, and
function moieties such as TPE could be facilely introduced
into the polymer, endowing it with AIE activity, too. PIV could
be used to fabricate a 2D fluorescent photopattern with good
resolution. Moreover, the resultant polymers could be easily
post-modified because they contain bromovinyl groups in each
repeating unit, and the post-modified polymer possesses a
higher refractive index than the pristine one. Thus, this work
not only establishes a novel polymerization of bromoalkynes
and phenols but also provides a convenient platform for
polymeric functionalization.

■ EXPERIMENTAL SECTION
Polymer Synthesis. All the polymerization reactions were carried

out in air. A typical procedure for the polymerization of 1a and 2a is
given below as an example.

Into a round-bottom flask were dissolved 1a (45.6 mg, 0.2
mmol), 2a (56.8 mg, 0.2 mmol), and Cs2CO3 (60.8 mg, 0.4 mmol) in
DMF (1.0 mL). The mixture was stirred at 110 °C for 1 h. Afterward,
the resultant mixture was added dropwise into 300 mL of CH3OH
through a cotton filter under stirring. The precipitate was allowed to
stand overnight and then collected by filtration. The polymer was
washed with CH3OH three times and dried to a constant weight,
affording a yellowish-brown powder product.

Characterization Data of PI. Yellowish-brown solid; yield 90.3%
(entry 1, Table 3); Mw: 28 500. Mw/Mn: 2.30. FT-IR (KBr) ν (cm−1):
3290, 3028, 2963, 2923, 2856, 2261, 1665, 1596, 1504, 1460−1289,
1205, 1170, 1011, 963, 833, 755, 549. 1H NMR (500 MHz, CDCl3):
δ (TMS, ppm) 7.54, 7.48, 7.33, 7.05, 6.92, 6.79, 6.71, 6.60, 1.56. 13C
NMR (125 MHz, CDCl3): δ (ppm) 156.89, 153.65, 153.56, 151.74,
146.00, 132.40−127.27, 120.71, 118.15, 116.98, 116.58, 115.23,
114.78, 95.75, 41.99, 31.02.

Characterization Data of PII. Yellowish-brown solid; yield 95.2%
(entry 2, Table 3); Mw: 47 600. Mw/Mn: 3.08. FT-IR (KBr) ν (cm−1):
3287, 2952, 2926, 2847, 1665, 1584, 1482, 1196, 1154, 1010, 823,
752, 522. 1H NMR (500 MHz, CDCl3): δ (TMS, ppm) 7.50, 7.32,
7.06, 6.81, 6.68, 6.56. 13C NMR (125 MHz, CDCl3): δ (ppm) 156.75,
155.58, 135.57, 134.60, 134.12−130.95, 129.36−125.56, 122.46,
121.77, 119.15, 117.83, 116.38.

Characterization Data of PIII. Yellowish-brown solid; yield 76.5%
(entry 3, Table 3); Mw: 41 500. Mw/Mn: 2.45. FT-IR (KBr) ν (cm−1):
2955, 2924, 2853, 1669, 1599, 1499, 1211, 1168, 1015, 962, 828, 755,
702. 1H NMR (500 MHz, CDCl3): δ (TMS, ppm) 7.49, 7.33, 7.15,
6.93, 6.68, 6.48. 13C NMR (125 MHz, CDCl3): δ (ppm) 152.75,
146.54, 142.40, 132.05, 130.95, 129.77, 127.50, 125.97, 117.49,
116.66, 96.44, 63.94.

Characterization Data of PIV. Yellowish-brown solid; yield 85.5%
(entry 4, Table 3); Mw: 23 800. Mw/Mn: 2.11. FT-IR (KBr) ν (cm−1):
2958, 2922, 2854, 1667, 1599, 1501, 1225, 1206, 1167, 1145, 1015,
962, 830, 758, 699. 1H NMR (500 MHz, CDCl3): δ (TMS, ppm)
7.03, 6.76, 6.58. 13C NMR (125 MHz, CDCl3): δ (ppm) 152.77,
145.64, 143.40, 140.92, 131.35, 127.80, 126.84, 117.82, 116.85,
115.34, 97.08, 42.07, 30.89.

Preparation of Model Compound. To verify the occurrence of
the polymerization of bis(bromoalkyne)s with diphenols and to
confirm the structures of polymeric products, model compound 3 was
synthesized according previous report.38 Its synthetic route is shown
in Scheme S1. Following is its characterization data. 1H NMR (400
MHz, CDCl3): δ (TMS, ppm) 8.17 (d, J = 9.2 Hz, 2H), 7.45 (m,
2H), 7.36 (m, 3H), 7.07 (d, J = 9.2 Hz, 2H), 6.65 (s, 1H) 13C NMR
(100 MHz, CDCl3): δ (ppm) 160.73, 152.73, 132.49, 129.86, 129.12,
126.04, 125.49, 118.81, 116.06, 96.57.

Preparation of PIII−PM. Into a 10 mL tube were placed PIII (50
mg, 0.079 mmol) and K2CO3 (11 mg, 0.079 mmol). Then, DMF (4
mL) and thiophenol 4 (39 μL, 0.3 mmol) were injected into the tube.

Figure 6. 2D fluorescent photopattern generated by photo-oxidation
of PIV. The photograph was taken under UV illumination (330−385
nm). The scale bar is 50 μm.

Scheme 2. Post-Modification of PIII

Macromolecules Article

DOI: 10.1021/acs.macromol.9b00306
Macromolecules 2019, 52, 2949−2955

2953

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00306/suppl_file/ma9b00306_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00306/suppl_file/ma9b00306_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00306/suppl_file/ma9b00306_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00306/suppl_file/ma9b00306_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00306/suppl_file/ma9b00306_si_001.pdf
http://dx.doi.org/10.1021/acs.macromol.9b00306


The mixture was stirred at 50 °C for 2 h. The resultant solution was
added dropwise into 300 mL of CH3OH through a cotton filter under
stirring. The precipitate was allowed to stand overnight and then
collected by filtration. The product was washed with CH3OH three
times and dried to a constant weight. A yellowish-brown powder
product was obtained in 96% yield (57.3 mg, Table S2). 1H NMR
(500 MHz, CD2Cl2): δ (ppm) 7.56, 7.50, 7.40, 7.13, 7.04, 6.90, 6.79,
6.70, 6.43, 3.80.
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