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Demand-Driven Sparse Mobile Crowdsensing With
Neighborhood-Aware Reconstruction
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Abstract—Sparse mobile crowdsensing (SMCS) is a cost-
effective paradigm aimed at recruiting workers to complete
sensing tasks and inferring the remaining unobserved data,
with broad applications in large-scale, fine-grained monitoring
services. In SMCS, spatial coverage of the sensing area or global
completion accuracy is typically used as the performance metric.
However, in many real-world service scenarios (e.g., temperature,
humidity, air quality monitoring), users are generally only
interested in data from their specific regions and expect the
highest possible data accuracy. In such cases, relying solely on
coverage or global completion error fails to adequately assess
the quality of the platform’s service. To address this and satisfy
users’ sensing demands as much as possible while maintaining
low sensing costs, we propose the demand-driven framework
with neighborhood-aware data reconstruction (D2-SMCS), which
integrates regional population demand calculation, dynamic
clustering, and data reconstruction. Unlike existing approaches,
we introduce Quality of Service (QoS) as a performance metric
based on regional population demand. First, we quantify the
interest level of sensing tasks in different regions by considering
factors, such as population demand and data fluctuation. Based
on this quantification, the dynamic clustering module selects the
regions most beneficial for accurate data completion. Finally,
to overcome the limitation of traditional matrix completion
methods in capturing short-term variations, we propose an inno-
vative neighborhood-aware latent matrix completion (NALMC)
approach to infer and complete the unobserved regions. Extensive
experiments on real-world datasets demonstrate the effectiveness
of our framework.

Index Terms—Matrix completion, Quality of Service (QoS),
region selection, sparse mobile crowdsensing (SMCS).

I. INTRODUCTION

MOBILE crowdsensing (MCS) is a sensing paradigm
that recruits numerous participants to perform sensing
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tasks at designated times and locations, offering an effec-
tive solution to challenging sensing problems [1], [2], [3].
With the widespread adoption of smart devices equipped
with advanced sensing and computational capabilities, MCS
has been applied in large-scale environmental information
monitoring, such as air quality [4], [5], noise [6], and traffic
data monitoring [7]. Among the various service approaches
enabled by the widespread use of MCS [2], this article focuses
on the sensing as a service (S2aaS) model, where the MCS
platforms collect available sensor data and deliver data services
to users [8]. While MCS enables the acquisition of fine-
grained, high-quality data, MCS platforms inevitably incur
substantial expenses to incentivize participants. Given that
platforms and organizers are highly cost-sensitive, achieving
high-quality sensing data at a minimal cost has long been a
critical issue in the MCS domain.

To tackle this issue, sparse mobile crowdsensing (SMCS)
has emerged as a cost-effective approach that leverages inher-
ent data correlations to infer unsensed data based on limited
sensing areas [9], [10], [11]. SMCS effectively reduces costs
by directly minimizing the number of sensing tasks, drawing
increasing attention in the field. The core problem in SMCS
is how to reduce costs while maintaining adequate sensing
quality. Naturally, this raises the question: How should sensing
quality be defined? Existing research generally focuses on
two aspects: 1) spatial coverage of the sensing area [12]
and 2) global completion accuracy [13]. Some studies have
proposed additional quality metrics, such as maximum infer-
ence error [14], adding a new dimension to data completion
evaluation. However, given that SMCS shares a similar S2aaS
model with MCS, it is essential to maximize the service quality
perceived by users in practical environments. Consequently,
it becomes evident that existing evaluation metrics are inade-
quate for many task scenarios.

For instance, consider a sensing task aimed at providing
accurate temperature data for a region that includes both urban
areas and lakes. Since urban areas are densely populated,
prioritizing sensing efforts in those regions would likely
enhance the overall service quality. However, if metrics, such
as spatial coverage of the sensing area or global completion
accuracy are used to guide the SMCS platform in assigning
sensing tasks and collecting data, the urban areas and lake
areas would be treated with equal weight by the platform. As
a result, an unnecessary number of workers may be dispatched
to the vicinity of lakes to perform sensing tasks, while urban
areas lose opportunities to further improve sensing accuracy
and enhance the service quality provided to users by the
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platform. This example highlights a critical limitation: relying
solely on existing metrics cannot effectively guide platforms
in maximizing the quality of the sensing service experienced
by users. Therefore, the first major challenge we face is to
develop a new sensing quality evaluation metric that explicitly
incorporates user-perceived service quality while balancing
cost efficiency and data reliability.

As a critical factor in determining the distribution of sensing
information, task allocation plays a fundamental role in SMCS
[10], [15], [16], [17]. To minimize sensing costs, platforms
must select the fewest possible sensing units, prioritizing
those that are most representative within the sensing map.
Data inference based on representative cells typically yields a
higher completion accuracy than random selection. However,
the importance of each sensing area varies and often changes
over time, making task allocation increasingly complex. The
second challenge, therefore, is determining how to identify
the most information-rich representative cells in such dynamic
conditions to enhance data inference in completion algorithms.

The raw sparse sensing information serves as the foundation
for subsequent inference, with data reconstruction being the
core process in SMCS to generate a fully completed sensing
map. Most existing methods employ matrix completion or
its variants for data reconstruction [18], [19]. As a latent
factor model, matrix completion excels in extracting global
information and achieving good global completion accuracy.
However, empirical observations reveal that matrix completion
performs poorly in responding to short-term data changes.
For instance, if multiple regions exhibit sharp increases in
recent sensing data, possibly due to extreme weather, matrix
completion, focusing on global patterns, may infer abnor-
mally low values for unsensed regions due to the influence
of historical data. This limitation arises from the inherent
characteristics of matrix completion. Given that many tasks
require continuous adaption to environmental changes, the
third challenge in SMCS is how to retain global information
capture while enhancing responsiveness to local information
changes.

To address these challenges, we propose the Demand-Driven
Framework with Neighborhood-Aware Data Reconstruction
(D2-SMCS) in this article. The framework consists of three
main components: regional population demand calculation,
dynamic clustering, and data reconstruction. Fig. 1 shows an
example of the D2-SMCS process. In this example, upon
the release of a task on the platform, we first calculate each
region’s contribution to Quality of Service (QoS) based on
population demand (i.e., which regions the task prioritizes) and
historical data for the task. The dynamic clustering module
then determines the final sensing area selection, followed by
data reconstruction using the collected data, which updates
the region’s QoS contribution in the next timeslot. These
three components form an interconnected and cohesive whole.
To accurately reflect perceived service quality, we propose
a regional population-based QoS evaluation metric, which
incorporates both population demand and regional data fluctu-
ation. This metric guides the framework in allocating sensing
resources more to densely populated or high-demand areas
and less to sparsely populated or low-demand areas. For

Fig. 1. Example flow of D2-SMCS.

selecting representative sensing areas, the dynamic cluster-
ing module groups areas with redundant information based
on geographic and data similarity, then selects one target
per cluster. Finally, observing that traditional latent factor
models struggle with short-term changes, we incorporate
neighborhood and spatiotemporal factors to improve matrix
completion, applying alternating least squares (ALS) for
offline and online settings. We also integrate K-nearest
neighbors (KNN) model completion results to retain global
information extraction while enhancing short-term information
capture.

In summary, this article makes the following contributions.
1) We propose D2-SMCS, an innovative SMCS framework,

which is the first to incorporate population demand and
service quality factors, using them to guide task alloca-
tion and data reconstruction. This effectively improves
the service quality and stability accepted by the crowd
at the same cost.

2) We introduce a sensing area QoS evaluation metric based
on task and population demand, guiding task allocation
with a more realistic approach to evaluating task quality.

3) We present a dynamic clustering module that considers
geographical location, historical data, and cost con-
straints, selecting representative sensing areas for task
allocation.

4) We propose neighborhood-aware latent matrix com-
pletion (NALMC) as data reconstruction method,
incorporating spatiotemporal and neighborhood factors
and combining with the KNN model and ALS, enabling
usage in both offline and online scenarios.

5) We extensively evaluate our framework on two classical
environmental sensing datasets, comparing traditional
sensing errors and service quality metrics. The results
demonstrate the effectiveness, applicability, and sta-
bility of NALMC, showing significant service quality
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improvements under the same costs with stable
performance across multiple datasets.

The remainder of this article is organized as follows.
Section II discusses related work, Section III provides def-
initions, assumptions, and an overview of the framework,
Section IV elaborates on D2-SMCS’s details, Section V
presents performance evaluation, and Section VI concludes
this article.

II. RELATED WORKS

MCS is a paradigm that harnesses collective power to
accomplish tasks that are nearly impossible for individuals to
complete alone [2], [3]. It is now applied in various large-scale
sensing scenarios, such as monitoring traffic conditions [20],
air pollution levels [21], and watershed status [22]. Organizers
or MCS platforms recruit many participants to perform sensing
tasks, creating high-quality sensing maps. However, allocating
tasks to every sensing area within the map may lead to pro-
hibitively high costs and inefficient use of resources, including
participants’ time and effort, as well as the compensation
provided to them. To address this issue, a new MCS-based
approach, called SMCS, has emerged [10]. This approach only
collects data from a limited portion of the sensing area and
then infers data for unsensed regions. The core challenges in
SMCS revolve around task area selection, data reconstruction
and quality evaluation.

Task area selection focuses on identifying areas most ben-
eficial to the sensing objective. For instance, Wang et al. [13]
employed a query by committee (QBC) method to select
significant units for the next task. Liu et al. [23] proposed
a cell selection algorithm based on reinforcement learning,
using a deep Q-network to learn the Q function, assist-
ing in selecting the optimal cell under specific conditions.
Meanwhile, Zhu et al. [24] modeled the area selection problem
as a solvable bi-objective optimization and introduces a novel
three-step cell selection approach, achieving significant cost
reduction by modeling information, estimating costs, and
selecting cost-quality optimal cells for SMCS.

Data reconstruction is a central focus of SMCS, with
current research exploring various methods to reconstruct
complete sensing maps accurately from sparse data. Among
the popular inference methods, we can categorize them into
latent factor models and neighborhood models. Latent factor
models primarily involve matrix completion [25] and its
derivatives. For example, Liu et al. [18] apply an enhanced
ALS method with spatiotemporal constraints for online matrix
completion. Xie et al. [26] integrated bidirectional graph-
based sensing scheduling with matrix completion to actively
determine sampling locations per time segment, accurately
recovering unsampled data despite sensing and communication
errors. Additionally, Fan and Cheng [27] combined tradi-
tional linear matrix factorization with deep neural networks
to propose a deep matrix factorization (DMF) approach,
effectively capturing nonlinear spatiotemporal features from
sparse matrices. The neighborhood model, represented by
KNN, has limited applications in SMCS but is widely used
in recommendation systems [28]. Intuitively, recommendation

systems share similarities with SMCS data inference scenarios,
and neighborhood models offer distinct advantages over latent
factor models. Inspired by Koren [29], which combines latent
factor and neighborhood models to achieve promising results
in recommendation systems, our model further integrates
these two approaches, incorporating incremental updates to
suit online settings and optimizing the objective function
for enhanced completion accuracy and stability. Additionally,
some studies approach completion from different perspectives.
For instance, Wei et al. [14] employed Bayesian compressive
sensing (BCS) with projection matrices capturing temporal,
spatial, and historical correlations, reconstructing a complete
sensing map from partial data under noisy conditions.

Several studies leverage the correlation within sensing
data to improve completion accuracy [30]. Wang et al. [31]
exploited spatiotemporal correlations to dynamically select a
small number of subareas for sensing at each time point,
significantly reducing task allocation. Similarly, Liu et al. [18]
incorporated spatiotemporal terms into the matrix completion
objective function, achieving improved reconstruction. In addi-
tion to correlations within the same data type, some studies
explore cross-data correlations. Wang et al. [32] observed
interdata correlations, leveraging them to capture outliers and
enhance completion accuracy.

Lastly, evaluating task quality is also crucial in SMCS.
Most existing studies use spatial coverage of the sensing
area or global completion accuracy as evaluation metrics.
Wang et al. [13] used global completion error as a quality
measure, while Wei et al. [14] considered both global error
and maximum inference error. Zhao et al. [12] focused on
minimizing costs by selecting the fewest participants to meet
predefined coverage requirements for each timeslot, using
spatial coverage as a quality metric. Notably, current task
quality definitions are technically oriented; however, with
a human-centered approach, we define a new task quality
evaluation metric in this article by integrating insights from
the service quality domain [33].

III. SYSTEM FRAMEWORK

In this section, we first introduce the necessary definitions
and assumptions. Then we formulate the SMCS problem we
aim to solve and provide the overview of our solution. For
easy reference, the main notations are listed in Table I.

A. Definitions and Assumptions

Definition 1 (Ground Truth Sensing Matrix): For an SMCS
task involving N cells and K sensing timeslots, the ground
truth sensing matrix is represented as MN×K . Each entry
M[i, j] indicates the true sensing data of cell i in cycle j.

Definition 2 (Selection Matrix): In the selection matrix
SN×K , each entry S[i, j] specifies whether the corresponding
entry in the ground truth sensing matrix M[i, j] is selected for
sensing. If cell i is selected for sensing in timeslot j, then
S[i, j] = 1; otherwise, S[i, j] = 0.

Definition 3 (Sensing Data Matrix): The sensing data
matrix DN×K records the actual collected sensing data:

D =M ◦ S (1)
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TABLE I
LIST OF SYMBOLS AND DEFINITIONS

where ◦ denotes the element-wise product of matrices M
and S.

Definition 4 (Reconstructed Matrix): The reconstructed
matrix M̂N×K is generated by filling in missing data in the
sensing data matrix using data reconstruction methods.

Definition 5 (Sensing Error): The sensing error quantifies
the difference between elements in the reconstructed full
sensing matrix M̂ and the true ground truth sensing matrix M.
For cell i in timeslot j, the sensing error is defined as:

Eij = error
(

M̂[i, j], M[i, j]
)

(2)

where the specific error function, error(), depends on the
specific setup.

Definition 6 (Sparse Ratio): To limit the cost, which corre-
sponds to the number of sensing areas, we introduce a sparse
ratio denoted by α. In each timeslot, at most (1 − α) × N
regions can be selected for sensing. The value range of α is
[0, 1].

Definition 7 (QoS Score): For an SMCS task, the QoS
score Q measures the service quality represented by the task’s
completion. It is defined as

Q =
N∑

i=1

Demandi ×
⎛
⎝1− 1

K

K∑
j=1

Ei,j

⎞
⎠ (3)

where E denotes the sensing error. The demand varies depend-
ing on the task type; for instance, in most environmental
sensing tasks, population density can be used to quantify the
demand.

In this article, we make the following assumptions.
Assumption 1: Each timeslot is sufficiently long to ensure

that workers or sensing devices selected for the sensing area
can complete the sensing task within the slot. This assumption
guarantees that all sensing tasks distributed by the system can
be completed as expected.

Assumption 1 ensures that, once tasks are assigned to
workers, they are able to complete the tasks and submit
the results to the platform in a timely manner. For most
environmental sensing tasks, such as detecting temperature,
humidity, and PM2.5 levels, workers can typically complete
the task within a few tens of seconds using the sensors built
into their devices [15]. Furthermore, since we are not currently
focusing on the mobility of workers, we select workers who
are located near the task site for task assignment. As a result,
this assumption can be satisfied for typical time slots (e.g.,
10 min).

Assumption 2: All recruited workers and sensing devices
are reliable and will return the true values of the task location
without maliciously providing incorrect values.

Assumption 2 ensures that we do not need to consider the
issue of user trustworthiness. This assumption is consistent
with the existing works [34]. The main purpose of this assump-
tion is to simplify the complexity of evaluating workers’
abilities and reputations, and to focus on how to better allocate
tasks. In practical applications, if the issue of malicious
users needs to be addressed, reputation mechanisms can be
employed to assess workers and ensure the credibility of the
collected data [35], [36]. By modeling workers’ reputations,
tasks can be assigned to more trustworthy workers, effectively
resolving reliability issues.

B. Problem Formulation

Given N sensing regions and K timeslots, our objective is
to determine the optimal selection matrix S, with the goal of
maximizing the QoS score Q within the sparse ratio α:

maximize
S

N∑
i=1

K∑
j=1

Qj
i

s.t. M̂ ◦ S = M ◦ S
N∑

i=1

K∑
j=1

S[i, j] ≤ (1− α) · (N × K) (4)

where the first constraint requires that M̂ must match M at
selected points, ensuring data consistency, and the second
constraint limits the number of observations to (1− α) of M,
balancing quality with efficient resource use.

C. Overview of D2-SMCS

D2-SMCS is an SMCS framework comprising the SMCS
platform, requesters, and participants. Requesters seek services
provided by the platform (e.g., querying real-time temperature
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Fig. 2. Framework of D2-SMCS.

or air pollution levels in a specific region). The platform fulfills
these requests by distributing sensing tasks to participants to
collect the necessary data. Our framework primarily focuses on
how the platform optimally assigns tasks and utilizes collected
data to deliver the highest possible QoS while adhering to
cost constraints (defined by sensing sparsity ratio settings).
The architecture of D2-SMCS is illustrated in Fig. 2, and its
workflow is described in detail below:

Regional Population Demand Calculation: First, we calcu-
late a demand score for each region in the current timeslot,
considering historical data fluctuations and population density
(In Section IV-A, we provide a detailed explanation of why
population density is used as an indicator of population
demand). The more accurate information we can gather from
high-demand regions, the greater the overall service qual-
ity. This calculation provides a basis for assigning tasks to
participants.

Dynamic Clustering Module: Next, to determine the tasks
to be distributed, we perform an initial clustering of available
regions based on geographical proximity. Clustering continues
until each cluster’s population demand score reaches a defined
upper limit, after which new clusters are formed. We then
dynamically refine these clusters by aggregating regions with
similar recent sensing data distributions. Based on the sparsity
requirement, we adjust clusters with excessive or insufficient
results. In the end, a random selection of one region per cluster
forms the sensing tasks for the current timeslot. Given the
geographical or data distribution proximity within clusters, any
region in a cluster can represent a substantial amount of the
cluster’s information.

Sensing Data Reconstruction: The platform reconstructs
global sensing data using partial data collected by participants.
We enhance the conventional latent factor model for data
completion by integrating temporal, spatial, and neighborhood
information. The results from this improved completion pro-
cess are then fused with results from a KNN model, leveraging
the strengths of both models to achieve high-precision data
completion.

IV. DETAILED DESIGN OF D2-SMCS

In this section, we provide a comprehensive introduction
to the components of our D2-SMCS framework, including

regional population demand calculation, dynamic clustering,
and data reconstruction. It should be noted that since D2-
SMCS is designed to adapt to a wide range of application
scenarios, it can be deployed in both offline and online
modes. For offline tasks, we have more complete sensing
information, while for online tasks, we need to analyze the
task completion status of the previous timeslot and make
timely adjustments to the task allocation strategy for the next
timeslot. The differences between these two modes require the
corresponding adjustments in our approach. In the following
discussion, we will categorize the explanation where necessary
and present the results for both offline and online modes in
Section V.

A. Regional Population Demand Calculation

A core factor in the D2-SMCS framework is the QoS pro-
vided to the population. Therefore, it is essential to reasonably
quantify the importance of service quality in a region. We
consider two aspects: historical data and population density.

Historical Data Perspective: We first consider selecting the
significant cells from the historical data, which are defined as
cells that show significant differences either when compared
to other cells within the same timeslot, or in relation to
their own historical data. Here, a cell refers to the small-
est geographic unit in the dataset, typically consistent-sized
rectangles. These significant cells often indicate that a major
change has occurred in the corresponding area, and thus
warrant greater attention. To identify regions with significant
differences from other cells in the same timeslot, we introduce
the Z-score. The Z-score is a statistical measure that tells us
how many standard deviations a data point is from the mean.
By examining the Z-score values, we can identify the areas
that are worth paying attention to.

We define vi,j as the actual sensing data at the jth timeslot,
and n as the number of sensed regions at the ith timeslot. The
average sensing data at the jth timeslot is then calculated as

μj = 1

n

n∑
i=1

vi,j. (5)

The standard deviation is

σj =
√√√√1

n

n∑
i=1

(
vi,j − μj

)2
. (6)

Thus, the Z-score for each element is obtained by

zi,j =
∣∣∣∣
vi,j − μj

σj

∣∣∣∣. (7)

To find regions with significant changes compared to the
previous timeslot, even if data points do not deviate from the
mean of other cells in the current timeslot, we define

�vi,j =
∣∣vi,j − vi,j−1

∣∣. (8)

Considering both absolute extreme values and significant
changes, we define the t-score based on historical data:

ti,j = at · |zi,j| + bt · |�vi,j| (9)
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where at and bt are used to tradeoff Z-score and �vi,j

To maintain numerical stability in subsequent calculations,
we normalize ti,j. Let tmin and tmax be the minimum and
maximum t-scores within the timeslot, respectively

t∗i,j =
ti,j − tmin

tmax − tmin
. (10)

Population Demand Perspective: In SMCS, the significance
of different sensing areas varies across tasks. For instance,
in tasks, such as traffic flow monitoring, greater attention is
typically given to busy urban centers, while tasks like wildfire
detection prioritize forested regions. Deploying workers to
these critical areas allows for more accurate data collection,
thereby improving service provision. The variation in the
importance of different regions is referred to as “population
demand” in our work.

In many tasks (e.g., monitoring PM2.5, temperature, and
humidity), population density can serve as an indicator of
population demand. Regions with higher population density
should be given higher weights. This is because providing
better services in high-density areas benefits more people
compared to low-density areas, thereby improving the overall
impact and efficiency of the service. In this article, to make
the discussion more general, we use population density as
population demand. For each cell, hi,j represents the proportion
of the population in that cell relative to the total population
size, known as the H-score. Similarly, considering numerical
stability, we normalize hi,j to obtain h∗i,j:

h∗i,j =
hi,j − hmin

hmax − hmin
(11)

where hmin and hmax represent the minimum and maximum
H-scores within the timeslot.

It is noteworthy that this article primarily employs popula-
tion density as the principal indicator of population demand.
This choice is motivated by the intent to encompass a
wider range of common sensing tasks and to enhance the
generalizability of the discussion. Our framework can be
readily extended to other sensing scenarios, such as forest fire
monitoring or wildlife tracking. In these cases, the indicator
reflecting the degree of concern can be constructed to represent
population demand. For instance, in forest fire monitoring,
historical data could be utilized to assign higher population
demand values to areas with a documented history of frequent
fire outbreaks. This adaptation enables the algorithm to achieve
its objectives effectively, ensuring high-quality sensing (e.g.,
timely detection of fire incidents) at a reduced cost.

Combined Consideration: By integrating the above two
factors, we define regional population demand Si,j to com-
prehensively consider the influence of historical data and
population density. The specific definition is as follows, where
w1 and w2 are the weights corresponding to each factor

Si,j = w1 · h∗i,j + w2 · t∗i,j. (12)

Similarly, we need to perform normalization to ensure the
stability of the values

S∗i,j =
Si,j − Smin

Smax − Smin
. (13)

Although S∗i,j effectively measures the importance among
different regions, the absolute score differences are not sub-
stantial enough to reflect significant disparities in calculations.
Therefore, we employ the Gompertz function to amplify the
score differences among regions

R∗i,j = a · exp
(
−b · exp

(
−c · S∗i,j

))
. (14)

Due to the sparsity of sensing data, the computed R∗i,j
inevitably contains missing values, denoted as R̃∗i,j. To reason-
ably fill these missing values, our imputation strategy relies on
two factors: temporal-spatial continuity and window length.

1) Temporal-Spatial Continuity: For a given task, Regional
Population Demand exhibits continuity across time and
space. Temporally, demand variations transition grad-
ually rather than abruptly within individual regions,
ensuring local smoothness along the temporal dimen-
sion. Spatially, geographically adjacent regions show
demand interdependence owing to shared urban func-
tions and population mobility patterns. From this, it
can be concluded that temporally and spatially adjacent
values each contain partial information about the missing
value. Therefore, we integrate temporal (T) and spatial
(S) data from adjacent timeslots and regions to facilitate
imputation.

2) Window Length: The window length specifies the extent
of surrounding nonmissing values used for imputation.
Here, parameter k represents the number of timeslots
considered in the temporal dimension, while parameter
h represents the number of neighboring regions in
the spatial dimension. A large window length may
overly broaden the averaging process, driving imputed
values toward the global mean and reducing precision.
Conversely, a small window length can make imputed
values too sensitive to local fluctuations.

To account for the distinctions between offline and online
scenarios, the methods and parameters for computing missing
values are adapted accordingly. In the following, we elabo-
rate on the specific imputation approaches for each scenario
separately.

Offline Update Phase: We compute the fill-in value R̃∗i,j for
region i at timeslot j using the following formula:

R̃∗i,j =
1

k + h

⎛
⎜⎜⎜⎝

k
2∑

m=− k
2

m�=0

Ti,j+m +
h∑

p=1

Sip,j

⎞
⎟⎟⎟⎠. (15)

Here, Ti,j+m denotes the mth nearest nonmissing value in
the temporal dimension for region i offline, where m > 0
indicates future and m < 0 indicates past. For simplicity, we
select k/2 nonmissing values before and after j as temporal
approximations once k is fixed. Meanwhile, Sip,j represents the
pth nearest spatial neighbor of region i, with larger p indicating
greater distance.

As mentioned earlier, we comprehensively utilize both tem-
poral and spatial information by averaging the approximations
to impute missing values. The precision of the imputed data
remains consistent with the original data. Through analysis
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and testing on the dataset, we found that k = 4 and
h = 4 generally yield good imputation results. Therefore,
this parameter combination is adopted for offline scenario
imputation in this article.

Online Update Phase: Compared to the offline scenario,
since future data is unavailable, we adjust the fill-in method
to rely solely on past data

R̃∗i,j =
1

k + h

⎛
⎝
−1∑

m=−k

Ti,j+m +
h∑

p=1

Sip,j

⎞
⎠. (16)

In the online scenario, the definitions of Ti,j+m and Sip,j remain
the same as in the offline setting. However, since future data
relative to timeslot j is unavailable, m can only take values up
to −1, where m = −1 represents the most recent nonmissing
value in the past for region i.

Unlike the offline scenario, the online scenario requires a
more sensitive response to data changes to promptly adapt
to sudden events. This is reflected in the parameter selection,
where a smaller k is chosen. Through analysis and testing on
the dataset, we found that k = 1 and h = 4 generally yield
good performance. Hence, we adopt this parameter set for
online scenario imputation in this article.

By following the above procedure, we obtain the importance
matrix for each region regarding service quality, also known
as the demand matrix R

Ri,j =
{

R∗i,j, if S[i, j] = 1
R̃∗i,j, if S[i, j] = 0

. (17)

B. Dynamic Clustering Module

The dynamic clustering module is an essential component of
the D2-SMCS framework. It addresses the problem of how to
most effectively select sensing regions to maximize completion
accuracy after obtaining the demand matrix R. As stipulated
by Assumption 1, which posits that workers or sensing devices
can reliably complete their assigned tasks within each timeslot,
the identification of sensing regions directly dictates how the
platform allocates and publishes sensing tasks. Traditional
random methods may result in selecting regions that are overly
concentrated, leading to insufficient information in other areas
and causing data redundancy. The dynamic clustering module
divides different clusters by combining geographical proximity
and numerical features. The basic idea is to group together
regions that are geographically close in real space and exhibit
similar characteristics in historical data. Clustering stops when
the sum of demand R∗i,j within the clustered region reaches
the threshold T which is set to limit the number of cells in
a cluster and prevent excessive cells from affecting sensing.
Only one cell is selected for sensing in each cluster region
within each timeslot.

To measure the geographical distance between different
regions, we define the distance between region x and region y
as distx,y

distx,y = Haversine
(
latx, lonx, laty, lony

)
. (18)

The Haversine formula is a commonly used method for
calculating geographical distances [37], which computes the

shortest path distance between two points on the Earth’s
surface based on their latitudes and longitudes. Next, to
capture the distance between different regions in the feature
space, we introduce an feature matrix F

F = D[:, t−d+1: t]. (19)

Here, D ∈ R
n×m represents the sensing data matrix, containing

observations of n regions over m time slots. F ∈ R
n×d is the

feature matrix, containing the most recent d columns (time
slots) of observation data for each region, used to capture the
similarity between regions in the feature space. t is the column
index of the current timeslot, i.e., the position of the latest
timeslot. The introduction of the feature matrix F provides
dynamic change information of each region in recent time
slots for the clustering process, so that the distance between
different regions in the feature space can reflect the recent
characteristics of their sensing data.

The dynamic clustering module is based on intuitive geo-
graphical distance clustering and modifies the results through
feature space distances to ultimately obtain the clustering
results and the total number of clusters. Next, we explain the
details of the clustering algorithm.

As shown in Algotrithm 1, we initialize the clustering by
setting up a processing flag array P to track cell assignments
and creating an empty cluster set C. A nearest neighbor
model is trained on the geographical coordinate matrix C for
efficient neighbor identification. During cluster construction,
each unprocessed cell i in the demand matrix R initializes
a new cluster Ci and is marked as processed. Neighboring
unprocessed cells j are iteratively added to Ci, accumulating
their demand values into the total demand sum S until S
reaches the threshold T or no further cells can be added. The
resulting cluster is then added to C.

Subsequently, outlier detection and reallocation utilize the
feature matrix F by computing each cluster’s centroid µi and
determining the feature space distance dk of cell k to its
centroid (lines 10–11). An outlier threshold τi is set based
on the mean and standard deviation of the cell-to-centroid
distances, and cells with distances exceeding τi are reassigned
to their closest centroid’s cluster to enhance compactness (lines
12–14). If the sparsity ratio α is provided, sparsity control
part adjusts the number of clusters to the target t = (1− α) ·
num by splitting the largest clusters or merging the smallest
ones as necessary (lines 16–26). The algorithm concludes by
outputting the final cluster set C and the total number of
clusters V = |C|, effectively combining geographical distance
and feature space similarity to define distinct cluster regions.

C. NALMC Data Reconstruction

In this section, we will first introduce the basic concepts of
latent factor model completion and neighborhood completion,
and then elaborate on the improvements we have made on the
basic matrix completion to enhance the QoS.

1) Latent Factor Model Data Completion: In real-world
scenarios, there is often inherent correlation among sensing
data, which allows the entire data matrix to be effectively
approximated by a low-rank matrix. Given an incomplete
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Algorithm 1: Dynamic Clustering Algorithm

Input : Demand Matrix R ∈ R
n×1, Latitude-longitude

coordinates C ∈ R
n×2, Max total demand

threshold per cluster T , Feature matrix F ∈ R
n×d,

Sparsity ratio α, Nonzero cell count num
Output: Clusters C = {C1, C2, . . . , CK}, Number of

clusters V

1 Initialize processed flags P← 0n, empty clusters list C
2 Train nearest neighbor model NN on C using Haversine

distance
3 foreach unprocessed cell i in R do
4 Initialize new cluster Ci = {i} and sum S← R[i]
5 while S < T and unprocessed neighbors exist do
6 Add nearest unprocessed neighbor j to Ci, update

S← S+ R[j]
7 P[j]← 1 # Mark j as processed
8 add Ci to C
9 foreach cluster Ci ∈ C do

10 Compute cluster centroid in feature space

µi = 1

|Ci|
∑

k∈Ci
F[k, :]

11 Compute mean and std of cell-centroid distances
di ← 1

|Ci|
∑

k∈Ci
‖F[k, :]− µi‖2,

σi ←
√

1
|Ci|

∑
k∈Ci

(dk − di)2

12 Set outlier threshold τi ← di + 1.5 · σi

13 foreach outlier k ∈ Ci with dk > τi do
14 Find closest cluster j with centroid µj using

j = arg minj �=i ‖F[k, :]− µj‖2
15 Transfer k to Cj

16 Set target cluster count t← (1− α) · num;
17 while |C| �= t do
18 if |C| < t then
19 Sort clusters C in descending order by size;
20 Select largest cluster Cmax in C;
21 Split Cmax into smaller clusters;
22 Update C and continue until |C| ≥ t;
23 else if |C| > t then
24 Sort clusters C in ascending order by size;
25 Select smallest clusters Cmin1 and Cmin2;
26 Merge Cmin1 and Cmin2;
27 Update C and continue until |C| ≤ t;
28 return C, V = |C|

sensing data matrix D, we can utilize its low-rank property to
reconstruct the complete sensing matrix M̂. This reconstruction
problem can be formulated as the following optimization
objective:

min rank
(

M̂
)
, s.t., M̂ ◦ S = D (20)

where ◦ denotes element-wise multiplication of matrices, M̂
is the complete matrix to be reconstructed, and S is the
selection matrix indicating the observed entries in the sensing
data matrix. However, this optimization problem is nonconvex,
making direct solving difficult. Therefore, we decompose the

reconstruction matrix M̂N×K into the product of two smaller
matrices, i.e., M̂ = UN×rVT

K×r, where U and V are the latent
feature matrices in space and time, respectively, and r is the
latent rank.

In the case where the matrix has low-rank characteris-
tics [38], minimizing the rank of M̂ is equivalent to minimizing
‖U‖2F + ‖V‖2F . Due to the temporal and spatial continuity
of SMCS tasks, their sensing matrices are often low-rank.
Therefore, the above optimization objective can be reformu-
lated as

min ‖(D− UVT) ◦ S‖2F + λ
(
‖U‖2F + ‖V‖2F

)
(21)

where ‖(D − UVT) ◦ S‖2F represents the reconstruction error
based on the Frobenius norm, and λ is a balancing parameter
used to tradeoff between rank minimization and reconstruction
accuracy.

2) Neighborhood Model Data Completion: Unlike the
latent factor model, the neighborhood model for data
completion focuses on filling missing data based on the
similarity between regions. Specifically, the neighborhood
model assumes that regions that are spatially adjacent or have
similar features are more likely to exhibit similar data patterns.
Therefore, when completing missing data, we first define the
“neighborhood” of each region through distance or feature
similarity measures, and then use the observed data in the
neighborhood to infer the missing values of the target region.

Let Ni be the neighborhood set of region i. For a missing
value D[i, j] in matrix D, the neighborhood model completes
it based on the observed data in Ni, which can be expressed
as a weighted average

D̂[i, j] =
∑

k∈Ni
wikD[k, j]∑

k∈Ni
wik

(22)

where wik denotes the similarity weight between region i and
its neighbor k. The weights wik can be computed based on
geographical distance, feature similarity, or other correlation
measures. In this way, the neighborhood model leverages
spatial proximity information, enabling the completion results
to better reflect the characteristics and trends of local data.

3) Latent Factor Model With Spatiotemporal and
Neighborhood Constraints: The formula (21) is merely
the basic model for latent factor model, utilizing only the
most basic global low-rank information for completion.
However, the environmental data we use often have strong
spatiotemporal correlations. By leveraging this property,
we can better mine the implicit information in the data.
After adding spatiotemporal constraints and neighborhood
constraints, the objective function becomes

min
U,V
‖D− UV�‖2F + λ

(
‖U‖2F + ‖V‖2F

)
+ λt · T (V)

+λs · S(U) (23)

where T (V) and S(U) are the temporal constraint function
and spatial constraint function, respectively, with λt and λs

as the corresponding regularization parameters controlling the
magnitude of the regularization terms.
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a) Temporal smoothness constraint term T (V): The tem-
poral smoothness constraint term T (V) is used to capture the
continuity between adjacent time points. We achieve this by
multiplying the transpose of the item feature matrix V with a
Toeplitz matrix T . The Toeplitz matrix T ∈ R

K×K is a special
matrix designed to impose constraints on adjacent points in the
time dimension, making the feature changes between adjacent
time points tend to be smooth. This term is specifically defined
as

T (V) = ‖VTT‖2F. (24)

Minimizing ‖VTT‖2F encourages smaller differences between
feature vectors at adjacent time points, ensuring smoothness
in the time dimension.

b) Spatial smoothness constraint term S(U): The spatial
smoothness constraint term S(U) is achieved by utilizing the
spatial distances between regions. There exists a spatial matrix
P between users, which reflects the geographical adjacency
relations between regions. It is constructed based on the
geographical locations (latitude and longitude) of the center
points of each region, using the distances between these
locations to measure interregional similarity. Specifically, for
N regions, we define a spatial similarity matrix P ∈ R

N×N ,
where each element P[i, j] represents the similarity weight
between region i and region j.

Each element of matrix P is calculated through the follow-
ing steps. First, the geographical distance dij between region
i and region j is computed using the Haversine formula [37].
Then, for each pair of regions i and j, the distance dij is
mapped to a similarity weight P[i, j] through an exponential
transformation, with the calculation formula:

P[i, j] =
{

e
− dij

σ2
c , if i �= j

0, if i = j
(25)

where σc is a tuning parameter that controls the rate at
which similarity weights decay with increasing geographical
distance. A larger σc reduces the decay rate, enhancing
connections between distant regions, whereas a smaller one
emphasizes local similarities, impacting the performance of
data reconstruction. Therefore, in practical sensing scenarios,
the value of σc must align with the characteristics of the dataset
used. For applications where distant regions still exhibit strong
correlations, a larger σc is preferred; conversely, a smaller
one is suitable. In this study, we employ multiple datasets
with significant variations in interregion distances. To control
variables and ensure the order of magnitude of dij matches
σ 2

c , we uniformly adopt σc = 5 across all experiments in this
article. The exponential transformation causes the similarity
weight to gradually decrease as the geographical distance
between regions increases. The diagonal elements (i.e., when
i = j) are set to zero to avoid the impact of self-similarity
on matrix calculations. The spatial similarity matrix P maps
geographical distances to similarity weights, making adjacent
regions have higher weights.

The spatial smoothness constraint term is introduced to
make cells that are closer in distance tend to have more similar

values, while the constraint on cells that are farther apart
becomes weaker. Therefore, it is defined as follows:

S(U) = ‖PU‖2F. (26)

c) Neighborhood constraint terms: We introduce neigh-
borhood constraint terms to encourage similar feature vectors
in the latent matrices U and V to be closer. The neighborhood
constraint terms exploit the local correlations of latent features,
enabling the model to better capture local patterns in the data.
Specifically, the neighborhood constraint term comprises two
parts, acting on similar feature pairs in latent matrices U and
V , respectively.

The neighborhood constraint on latent matrix U is
defined as

γu

N∑
u=1

∑
j∈Nu

wuj‖Uu − Uj‖2F (27)

where Nu denotes the set of the k most similar neighbors to
u in latent matrix U, and wuj represents the similarity weight
between the uth and jth rows of latent matrix U. By mini-
mizing the differences between adjacent feature vectors, the
model constrains the feature differences among neighboring
units in latent matrix U, thereby improving smoothness in the
spatial dimension.

Similarly, the neighborhood constraint on latent matrix V is
defined as

γv

K∑
i=1

∑
k∈Ni

wik‖Vi − Vk‖2F (28)

where Ni is the set of the k most similar neighbors to i in
latent matrix V . This term ensures continuity and consistency
in the time dimension by minimizing the differences between
adjacent feature vectors in latent matrix V .

To compute the aforementioned similarity weights w, we
construct a similarity matrix W using the column vectors of
the latent matrix X, where X can be the spatial latent matrix
U ∈ R

N×r or the temporal latent matrix V ∈ R
K×r. Here,

the column vectors represent the feature values of each spatial
region or time point in different latent dimensions. Therefore,
the elements W[u, j] of the similarity matrix W ∈ R

r×r

represent the similarity between the uth and jth columns of
the latent matrix X.

To compute the similarity matrix W, we use cosine sim-
ilarity as the similarity measure. Cosine similarity measures
the directional similarity between two vectors. The specific
calculation process is as follows. First, we perform mean
centering on the columns of the latent matrix X to eliminate
biases between different features. The centered column vectors
are expressed as

X̃[:, u] = X[:, u] − 1

L

L∑
j=1

X[j, u] (29)

where X̃[:, u] represents the uth column of matrix X after
centering, and L is the number of rows of the latent matrix,
i.e., L = N when X = U, or L = K when X = V . Next, the
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elements W[u, j] in the similarity matrix W are calculated by
the following formula:

W[u, j] = X̃[:, u]�X̃[:, j]

‖X̃[:, u] ‖F · ‖X̃[:, j] ‖F
. (30)

The values W[u, j] obtained through cosine similarity compu-
tation range between [−1, 1], where values closer to 1 indicate
that the two vectors have more similar directions and higher
similarity.

After adding the neighborhood constraint terms, the final
objective function becomes

min
U,V
‖R− UV�‖2F + λ

(
‖U‖2F + ‖V‖2F

)
+ λt · T (V)+ λs · S(U)

+γu

N∑
u=1

∑
j∈Nu

wuj‖Uu − Uj‖2F + γv

K∑
i=1

∑
k∈Ni

wik‖Vi − Vk‖2F . (31)

This objective function adds four regularization con-
straints to the basic low-rank decomposition term, namely,
the temporal smoothness term, the spatial smoothness
term, and the neighborhood constraint terms for the latent
matrices. The temporal smoothness constraint term λt ·
T (V) ensures that feature changes at adjacent time points
remain smooth, thereby capturing similarity in the time
dimension. The spatial smoothness constraint term λs ·
S(U) ensures consistency in the spatial dimension through
geographical similarity between regions. In addition, the
neighborhood constraint terms γu

∑N
u=1

∑
j∈Nu

wuj‖Uu−Uj‖2F
and γv

∑K
i=1

∑
k∈Ni

wik‖Vi − Vk‖2F further ensure the close-
ness of similar features in the latent matrices U and V .
By leveraging the relationships between similar feature
vectors, the model becomes more robust at the local
level.

Neighborhood-Aware Latent Matrix Completion: To effec-
tively solve the above optimization problem that includes
spatiotemporal constraints and neighborhood constraints, and
to enable both offline updates and online incremental updates,
we adopt the ALS algorithm. The basic principle of ALS is
to decompose a complex bivariate optimization problem into
two univariate optimization subproblems. In each iteration, we
fix one latent matrix (e.g., V) and treat the objective function
as a function of the other latent matrix (e.g., U), solving the
minimization problem with respect to U. Then, we fix the
updated U and solve the minimization problem with respect
to V . Through this alternating update method, the algorithm
gradually approaches a global or local optimal solution.
Moreover, when new data arrives, only two vectors in the latent
matrices U and V need to be updated, without recomputing the
entire matrix factorization. This localized update significantly
improves computational efficiency, allowing the model to
quickly handle dynamically changing data and enabling online
updates.

Next, to update the latent matrices U and V , we provide
the corresponding update formulas by solving the closed-form
solutions.

Updating U While Fixing V: We take the derivative of the
objective function L with respect to U

∂L

∂U
= ∂

∂U

(
‖D− UV�‖2F + λ‖U‖2F

+λsS(U)+ γu

N∑
u=1

∑
j∈Nu

wuj‖Uu − Uj‖22
)
. (32)

Setting the derivative to zero, we obtain

Uu =
⎛
⎝∑

i∈Su

ViV
�
i +

⎛
⎝λ+ γu

∑
j∈Nu

wuj

⎞
⎠I + λs

(
S�S

)
uu

⎞
⎠
−1

×
⎛
⎝∑

i∈Su

ViDui + γu

∑
j∈Nu

wujUj − λs

(
S�SU

)
u

⎞
⎠. (33)

Here, Uu is the u-th column of the latent matrix U.
Updating V While Fixing U: Similarly, we take the deriva-

tive of the objective function L with respect to V

∂L

∂V
= ∂

∂V

(
‖D− UV�‖2F + λ‖V‖2F

+λtT (V)+ γv

K∑
i=1

∑
k∈Ni

wik‖Vi − Vk‖22
)
. (34)

Setting the derivative to zero, we obtain

Vi =
⎛
⎝∑

u∈Si

UuU�u +
⎛
⎝λ+ γv

∑
k∈Ni

wik

⎞
⎠I + λtTT�

⎞
⎠
−1

×
⎛
⎝∑

u∈Si

UuDui + γv

∑
k∈Ni

wikVk − λt

(
VTT�

)
i

⎞
⎠. (35)

Thus, we have derived how to update the latent matrices
U and V based on new incoming information. The above
update equations initially incorporate neighborhood factors
into the latent factor model completion. However, in practical
experiments, constrained by the global low-rank completion
principle of the latent factor matrix itself, there is still room
for improvement in incorporating neighborhood factors, even
after adding neighborhood terms. Therefore, compared to other
matrix completion works that rely solely on matrix completion
methods for data inference, we combine the improved ALS
matrix completion with the KNN method to form NALMC.
The principle is to extract a ratio φ of the sensing data
in the current timeslot as training data to update the latent
matrices U and V and use the model to complete the remaining
data. Simultaneously, we use the KNN method to perform
completion under the same information conditions. The final
completion result is a combination of the improved ALS model
completion result and the KNN model completion result,
weighted by (1−ρ) and ρ, respectively. The remaining (1−φ)

of the sensing information is used as test data to determine an
optimal value of ρ. Using the resulting timeslot-specific ρ∗,
we retrain the improved ALS model with the complete sparse
sensing data and generate the final completion. The detailed
process is summarized in pseudocode of Algorithm 2.
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Algorithm 2: NALMC

Input : Sparse data matrix D ∈ R
N×K ; Selection matrix

S ∈ {0, 1}N×K ; training-validation split ratio φ;
regularization parameters λ, λt, λs; neighborhood
constraint regularization parameter γu, γv;
neighborhood size k ∈ Z

+ (number of nearest
neighbors)

Output: Reconstructed complete matrix M̂ ∈ R
N×K

1 Define observed indices: � = {(u, i) | Sui = 1}
2 Split � into training set �train and validation set �val,

where |�train| = φ|�|
3 Initialize latent factors: U ∈ R

N×r and V ∈ R
K×r

4 repeat
5 # Alternating Least Squares (ALS) with

Neighborhood Constraints

6 Fix V, update U:
7 for u = 1 to N do
8 Find k nearest neighbors Nu of user u
9 Update Uu using Nu, λ, λs and γu

10 Fix U, update V:
11 for i = 1 to K do
12 Find k nearest neighbors Ni of item i
13 Update Vi using Ni, λ, λt and γv

14 until convergence;

15 Compute M̂ALS = UV�
16 Compute M̂KNN using �train

17 Find optimal blending parameter ρ∗:
18 begin
19 Initialize ρ with an initial value
20 repeat
21 Compute blended reconstruction:

M̂(ρ) = (1− ρ)M̂ALS + ρM̂KNN
22 Calculate error E(ρ) on validation set �val
23 Update ρ to reduce E(ρ)

24 until convergence;
25 Set ρ∗ to the value of ρ that minimizes E(ρ)

26 Retrain U and V using all data �, repeat ALS updates
until convergence

27 Recompute M̂ALS and M̂KNN using all data
28 Set final reconstruction:
29 M̂ = (1− ρ∗)M̂ALS + ρ∗M̂KNN

30 return M̂

V. PERFORMANCE EVALUATION

In this section, we provide an overview of two typical
datasets and the latest prominent or popular baseline methods
in sparse data inference. Subsequently, we present a detailed
performance evaluation of our approach on each dataset.

A. Datasets

To evaluate the data completion problem of crowd service
quality that we proposed, we applied famous and popular

urban crowdsensing datasets, including Sensor-Scope [39]
and U-Air [40]. The Sensor-Scope dataset comprises various
typical sensing data pertinent to urban environments, including
measurements of humidity and temperature. In contrast, U-Air
gathers sensing readings from urban air quality monitoring
systems. These datasets, although gathered through static sen-
sors, could just as effectively be collected and processed using
mobile devices. The chosen tasks, such as temperature, PM2.5
and CO monitoring, exemplify typical urban crowdsensing
applications, making these datasets ideal for evaluating the
effectiveness of our proposed questions and solution. It is
important to clarify that, per Assumption 2, we assume all data
within these datasets to be reliable and free from distortions,
such as sensor noise or interference from malicious users.

Additionally, to assess crowd service quality, we constructed
a population density dataset for Beijing, segmented by time
intervals, based on real-world, grid-based population flow data
provided by Datafountain [41] and aligned with the U-Air
monitored regions. Using the distribution characteristics of this
dataset, we further generated a synthetic population density
dataset for Sensor-Scope, also segmented by time intervals.
The detailed description of the data portions used from datasets
is presented in Table II.

B. Baselines and Measures

1) Baselines: To fully leverage sparse sensing data for data
inference and enhance QoS in crowd applications, we
introduce the NALMC data inference algorithm. This
approach is evaluated against various data inference
algorithms.

a) KNN [42] is a nonparametric algorithm that fits
data by predicting outcomes based on the average
value of its nearest neighbors, effectively capturing
local patterns in the feature space.

b) GP [43] leverages covariance functions to model
complex data relationships, capturing spatial and
temporal dependencies for interpolation.

c) KDE [44] is a technique for estimating the prob-
ability density function of a variable by applying
a smoothing function to data points, resulting
in a continuous density curve that captures the
underlying distribution.

d) ALS-ST [18] is an enhanced version of ALS that
incorporates spatiotemporal factors, allowing for
more effective modeling of data that varies across
space and time, making it suitable for applications
like collaborative filtering and data completion.

e) SAITS [45] applies pure self-attention for time
series imputation, effectively capturing temporal
dependencies to achieve accurate data completion
without recursive structures.

f) EADNMF [46] leverages adversarial training with
an adaptive elastic loss that interpolates between
Frobenius and other norms to handle complex data
structures in matrix completion.

Key parameters for baseline methods were selected as
follows. KNN (neighbors = 3), GP (RBF kernel, length
scale = 1.0, noise = 0.01), and KDE (bandwidth = 0.5)
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TABLE II
STATISTICS OF EVALUATION DATASETS

(a) (b) (c) (d) (e)

Fig. 3. RMSE of completion results with different sparse ratios (offline). (a) Humidity. (b) PM2.5. (c) PM10. (d) CO. (e) O3.

Fig. 4. PM2.5 at sparse ratio 0.2 versus ground truth.

were tuned via grid search; ALS-ST’s latent rank aligns
with NALMC’s r in this article; SAITS and EADNMF
use optimal values from related works.

2) Measures: In the following experiments, we mainly
evaluate our work from the following two perspectives.

a) Root mean square error (RMSE) measures
prediction accuracy by calculating the square
root of the average squared differences between
predicted and actual values

b) QoS (Q) is evaluated by calculating the Epsilon
for each completed region, defined as the ratio
of completion error to the original value. This is
then weighted by the population density index to
produce the final QoS measure.

C. Evaluation Results

1) Offline Data Completion: In offline data completion
experiments, we extracted 2000 timeslots from each

dataset for evaluation. The proportion of sensed data
within each timeslot varies depending on the sparse ratio
applied. We evaluated completion accuracy across five
dataset tasks using the RMSE metric. As illustrated in
Figs. 3 and 5, the performance of each method fluctuates
across datasets, with these variations strongly linked to
the distinct characteristics of each dataset. For exam-
ple, the ALS-ST method, a latent matrix completion
technique, captures global information effectively but
is less adept at capturing local features. This makes it
particularly suitable for datasets with lower variability,
such as the CO dataset in Fig. 3(d), where ALS-ST
demonstrates low RMSE at lower sparsity. However, as
sparsity increases, the method struggles to capture global
trends accurately, leading to a sharp rise in RMSE.
At lower sparsity, ALS-ST consistently exhibits rela-
tively high RMSE, especially in datasets with significant
fluctuations, as seen in Fig. 3(b). In contrast, KNN—
a neighborhood-based completion method—focuses on
capturing local information. This ensures a baseline level
of completion accuracy regardless of dataset variability.
Even in datasets with pronounced peaks, KNN can
swiftly adapt to trend changes by leveraging simi-
lar values within the feature space, achieving robust
performance across all datasets. However, its exclu-
sive reliance on local information imposes a ceiling
on performance, as it lacks the capability to cap-
ture global trends comprehensively. NALMC combines
the strengths of both latent matrix completion and
neighborhood-based completion, enhancing completion
accuracy while achieving exceptional stability. Across
the 25 test points in Q (five datasets with five sparsity
levels each), NALMC achieved optimal results in 24
cases, significantly boosting completion stability com-
pared to other methods. To illustrate this, we selected
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(a) (b) (c) (d) (e)

Fig. 5. Q of completion results with different sparse ratios (offline). (a) Humidity. (b) PM2.5. (c) PM10. (d) CO. (e) O3.

(a) (b) (c) (d) (e)

Fig. 6. RMSE of completion results with different sparse ratios (online). (a) Humidity. (b) PM2.5. (c) PM10. (d) CO. (e) O3.

(a) (b) (c) (d) (e)

Fig. 7. Q of completion results with different sparse ratios (online). (a) Humidity. (b) PM2.5. (c) PM10. (d) CO. (e) O3.

a highly variable segment from the PM2.5 dataset
at a sparse ratio of 0.2, performing completion and
comparing it against the ground truth in Fig. 4. NALMC
not only captures short-term fluctuations better than
ALS-ST but also improves accuracy over KNN, produc-
ing predictions closer to actual values. Other methods
exhibit unique advantages and limitations. Notably,
SAITS and EADNMF outperform traditional methods
like GP and KDE, with slower error growth as sparsity
increases.
When assessing QoS, we observe negative Q values in
the PM2.5, PM10, and O3 datasets, indicating that the
average completion error exceeds the actual data values,
rendering the service unusable. NALMC achieves the
highest Q values across all datasets in Fig. 5, due to both
its enhanced data completion accuracy and the dynamic
clustering module, which favors higher density regions
and further improves service quality.

2) Online Data Completion: For online data completion,
only data from the current and preceding timeslots can
be used, leading to lower completion accuracy than
offline approaches. The detailed results are shown in
Figs. 6 and 7. As can be seen, in the online case
of PM2.5, RMSE increases by an average of 148%
across all sparse ratios, which poses greater demands

on completion methods to capture information effec-
tively. As in offline completion, accuracy remains highly
dependent on dataset characteristics, but KNN performs
particularly well, showing consistent success across
datasets. This is due to KNN’s local information capture
ability, which allows it to adapt closely to previously
observed data as new data arrives, while the global
method provides limited assistance. Consequently, ALS-
ST exhibits poor performance. However, NALMC’s
integration of neighborhood and latent matrix features
enables it to leverage KNN’s strengths while avoiding
ALS-ST’s drawbacks, achieving optimal results in four
of the five tasks.

3) Dynamic Clustering: In our framework, we employed a
dynamic clustering module to identify regions requiring
sensing. To evaluate the effectiveness of this module
in improving service quality, we compared the dynamic
clustering strategy with a random selection approach.
For clearer presentation, the results at different sparsity
levels for each dataset were averaged, as shown in the
Table III. The dynamic clustering module demonstrated
positive improvements in four of the five tasks.
Next, we delve into the experimental results presented in
Table III to investigate the factors influencing the effec-
tiveness of the clustering module. As observed from the
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TABLE III
COMPARISON OF MEAN RMSE AND Q VALUES BETWEEN DYNAMIC AND RANDOM MODULES WITH IMPROVEMENT PERCENTAGE

Fig. 8. Adjusting λt and λs by percentage.

table, the performance improvements of the clustering
module vary across different datasets. Taking the Q value
as an example, the highest improvement is seen with
O3, which achieves a 23.65% enhancement compared
to the random method, while the least effective case
is Humidity, where performance decreases by 0.02%.
The reason for this disparity lies in the design of the
dynamic clustering module, which, to enhance service
quality, tends to prioritize high population demand
areas for sensing. Consequently, the selected sensing
regions are somewhat more concentrated than those
chosen by the random method. In cases where the
dataset pertains to large-scale urban sensing tasks (e.g.,
the U-air dataset used in this article), the sensing
range is broader and more aligned with real-world
application scenarios, with data correlations between
different sensing regions at a moderate level. Under
such conditions, the dynamic clustering module signifi-
cantly improves sensing service quality. In contrast, the
Humidity data corresponds to the Sensor Scope dataset,
sampled from the EPFL campus, where the sensing
range is small, and the correlations between different
sensing regions are extremely high. In this scenario, the
dynamic clustering module has limited impact, while the
random method, due to its broader coverage, enables
NALMC to reconstruct the sensing data with a slight
advantage.
The effectiveness of the dynamic clustering module is
indeed influenced by the inherent characteristics of the
dataset. However, we believe that in the vast majority
of sensing scenarios—where tasks require large-scale
monitoring of meteorological data, air quality, traffic
conditions, and similar applications—the dynamic clus-
tering module can effectively enhance service quality.
This is evident in tasks, such as PM2.5, PM10, CO,
and O3 sensing. Moreover, for the Humidity dataset,

Fig. 9. Running time of dynamic cluster module.

the dynamic clustering module only marginally under-
performs the random method, with negligible impact
on overall sensing quality. Therefore, we conclude that
dynamic clustering is a more suitable approach for real-
world sensing scenarios.

4) Spatial-Temporal Regularization Weights: In the process
of sensing data completion, we leverage the temporal
and spatial structures inherent in the data to reconstruct
the sensing data. Therefore, we adjusted the regular-
ization weights for temporal and spatial smoothness, λt

and λs, to evaluate their impact on the data completion
results. Note that the baseline parameters used in this
study are λs = 0.1 and λt = 50, a combination that
generally yields favorable results across most scenarios.
Improper values of λt and λs can prevent NALMC
from converging during the update process. Here, we
adjusted these two parameters proportionally, and the
experimental results are presented in Fig. 8. We found
that, although λt and λs exhibit a certain degree of
robustness to adjustments, appropriate values of λt and
λs can still significantly enhance the quality of data
completion.

5) Scalability Analysis: As a framework designed for
large-scale SMCS scenarios, this article analyzes the
scalability of D2-SMCS from two perspectives to vali-
date its usability on large-scale crowdsensing platforms.
All experiments were conducted on a PC equipped with
an AMD Ryzen 7 6800H CPU @ 3.20 GHz, 16 GB
RAM, and Windows 11, using Python 3.11. First, the
Dynamic Clustering module, which involves searching
and adjusting clustering regions, is expected to incur
increased computational overhead as the number of
perception regions to be processed grows. To ensure
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TABLE IV
RUNNING TIME OF DIFFERENT METHODS

that the clustering module of D2-SMCS can still com-
plete processing within a short time even when the
number of perception nodes increases significantly, we
constructed an artificial dataset with a larger number of
perception nodes and applied the Dynamic Clustering
module to it, measuring the runtime required under
different sparsity levels. The dataset included perception
nodes ranging from 50 to 5000, with increments of
500. The experimental results are presented in Fig. 9.
As shown in Fig. 9, the runtime exhibits a nonlinear
growth trend as the number of nodes increases, with
the increase in computation time primarily attributed
to the need to search for neighbors during clustering.
Regarding the impact of sparsity, runtime increases
more quickly at a lower sparsity level than at a higher
one. This shows that sparse ratio setting significantly
affects computational cost: lower sparse ratio requires
merging more nodes, which increases the number of
searches, while higher sparse ratio reduces this need.
To ensure stability, we ran each configuration ten times
and calculated the average, with results showing mini-
mal performance fluctuations, indicating the algorithm’s
stability. We believe that the number of perception
nodes in most sensing scenarios will not exceed the
scale of this experimental dataset. Under such condi-
tions, the runtime of the Dynamic Clustering module
remains relatively short. Furthermore, since D2-SMCS
operates in real-world scenarios on sensing platforms
with abundant computational resources, the computation
time would be further reduced, confirming the usability
of the Dynamic Clustering module in large-scale sensing
contexts.

On the other hand, we compared the runtime of NALMC
with other baseline methods. It should be noted that the
completion time in the offline phase is strongly positively
correlated with the length of the offline time period, making
it less meaningful for comparison. Therefore, we compared
all methods in the online scenario. The average runtime for
the online phase across five datasets is presented in Table IV.
Considering that online completion relies on historical
information, we provided 2000 timeslots of historical data for
each method. For the NALMC and ALS-ST methods, updates
involve only a small portion of the entire matrix, giving them
an advantage in runtime efficiency. However, NALMC, which
builds on ALS-ST with additional computations, requires
slightly longer runtime. Traditional methods like KNN, which
typically have shorter runtimes, face increased search and
computation demands as historical information grows, result-
ing in longer runtimes. Meanwhile, methods involving deep
learning, such as SAITS and EADNMF, require training on
the dataset prior to completion, making their runtimes the
longest.

VI. CONCLUSION

In this article, we consider the impact of selecting sensing
regions on service quality under uneven population demand
distribution, and seek to maintain high service quality while
reducing costs by prioritizing more representative regions
for sensing. To this end, we propose D2-SMCS, a novel
SMCS framework focused on improving the quality of
crowd services. D2-SMCS integrates three main modules:
regional population demand calculation, dynamic clustering,
and data reconstruction. It effectively balances sensing cost
and reconstruction accuracy, while maintaining strong stability
in reconstruction performance. The effectiveness and capabil-
ity of the D2-SMCS framework in enhancing crowd service
quality scores are demonstrated across two datasets containing
five kinds of classic environmental data.

In the future, we plan to optimize this work in the following
aspects. While this article focuses on the selection of sensing
regions, we have simplified the problem by neglecting worker
scheduling. To more closely align with real-world scenarios,
we will consider how to more reasonably allocate tasks
to workers. Additionally, we will address data reliability
concerns. In practical applications, sensor errors and mali-
cious data submissions from users can degrade completion
performance. Handling unreliable data and evaluating worker
trustworthiness are critical directions for our future efforts.
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