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Abstract: Cervical cancer is one of the most common malignant tumors, with high incidence
and mortality rates. Recent studies mainly adopt Artificial Intelligence (AI) models to
detect cervical cells. Yet, due to the imperceptible symptoms of cervical cells, there are
three problems that may hinder the performance of the existing approaches: (a) poor
quality of the whole-slide image (WSI) performed on cervical cells may lead to undesirable
performance; (b) several types of abnormal cervical cells are involved in the progression of
cervical cells from normal to cancer, which requires extensive clinical data for training; and
(c) the diagnosis of the WSI is medical-rule-driven and requires the AI model to provide
interpretability. To address these issues, we propose an integrated automatic cervical
cancer screening (IACCS) framework. First, the IACCS framework incorporates a quality
assessment module utilizing binarization-based cell counting and a Support Vector Machine
(SVM) approach to identify fuzzy regions, ensuring WSI suitability for analysis. Second,
to overcome the data limitations, the framework employs data enhancement techniques
alongside incremental learning (IL) and active learning (AL) mechanisms, allowing the
model to adapt progressively and learn efficiently from new data and expert feedback.
Third, recognizing the need for interpretability, the diagnostic decision process is modeled
as a multi-objective optimization problem. A multi-objective optimization algorithm
is used to generate a set of interpretable diagnostic rules that offer explicit trade-offs
between sensitivity and specificity. Extensive experiments demonstrate the effectiveness
of the proposed IACCS framework. Applying our comprehensive framework yielded
significant improvements in detection accuracy, achieving, for example, a 6.34% increase
in mAP50:95 compared to the baseline YOLOv8 model. Furthermore, the generated Pareto-
optimal diagnostic rules provide superior and more flexible diagnostic options compared
to traditional manually defined rules. This research presents a validated pathway towards
more robust, adaptable, and interpretable AI-assisted cervical cancer screening.

Keywords: cervical lesion cell detection; active learning; incremental learning; multi-objective
optimization; automatic assisted diagnosis

1. Introduction
Cervical cancer is a common and fatal cancer that affects women’s health and ranks

fourth in the world in terms of incidence and mortality. It was estimated that, in 2020, there
would be approximately 600,000 newly diagnosed cases and more than 340,000 deaths
worldwide [1,2]. Its incidence and mortality rates vary across countries and regions and
are related to factors such as the quality of local healthcare services, the extensiveness of
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screening and prevention programs, and the living habits and environmental conditions of
the population [3].

Initially, cervical cancer may not present obvious symptoms, but, when the disease
progresses, it may cause problems such as abnormal vaginal bleeding, increased vaginal
discharge, and pelvic pain. Early detection is critical for effective treatment and improved
prognosis [4]. Strong evidence shows that regular cervical cancer screening is effective in
preventing and treating this disease, making it one of the most manageable and treatable
types of cancer.

With the development of AI [5,6], more and more AI models are being applied to
cervical cytology screening [7]. AI can effectively reduce the burden on cytopathologists and
improve diagnostic efficiency, providing automated screening for early assisted diagnosis.
However, the transition to AI-driven diagnosis using digitized whole-slide images (WSIs)
faces several significant challenges:

(1) WSI Quality: Variability in slide preparation, staining, and scanning can result in
poor-quality WSIs (e.g., with uneven staining, artifacts, or insufficient cell density). This
variability can seriously affect the reliability of AI analysis, potentially leading to missed
detections or misclassifications.

(2) Data Scarcity and Imbalance: Currently, high-quality large-scale annotated datasets
for cervical cytology are limited. This scarcity, coupled with the challenge of collecting
sufficient examples of diverse abnormal cell types (especially rare but critical high-grade
lesions), makes building balanced datasets difficult and hinders the training of robust
and generalizable AI models. For example, the significant class imbalance observed in
the instance distribution detected by the baseline model (YOLOv8) in our study vividly
illustrates this challenge. This initial distribution, where common findings or lower-grade
lesions vastly outnumber rarer high-grade abnormalities, highlights the data imbalance
problem addressed by our subsequent strategies.

(3) Lack of Interpretability: Clinical diagnosis in cytopathology often relies on es-
tablished rule-based reasoning. The “black-box” nature of many deep learning models
makes it difficult for clinicians to understand and trust their predictions, posing a barrier
to adoption.

To address these challenges, we propose an integrated automatic cervical cancer
screening (IACCS) framework. This framework aims to provide a robust, adaptable, and
interpretable solution for AI-assisted screening. The main contributions of this study include
the following:

(1) Enhanced Quality Control: IACCS uses a binarization-based method for cell count-
ing and an SVM approach to identify fuzzy image areas, enabling automated assessment of
WSI quality and filtering out unreliable data inputs.

(2) Adaptive Learning Strategy: Leveraging data enhancement, an incremental learn-
ing mechanism and an active learning mechanism are proposed to progressively adjust the
model parameters. This allows the model to continuously improve by learning from new
data and expert feedback, addressing data scarcity and imbalance issues.

(3) Interpretable Rule Generation: A multi-objective evolutionary algorithm is utilized
to generate interpretable diagnostic rules that offer explicit trade-offs between specificity
and sensitivity, addressing the need for transparency in AI-based diagnostic support.

The remainder of the paper is organized as follows. Section 2 provides an overview of
the background, while Section 3 outlines the related work. Section 4 provides a detailed
account of the implementation of IACCS. Section 5 outlines the experimental design, which
validates the effectiveness of IACCS. The final section of this study, Section 6, provides
a conclusion.
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2. Background
Cervical cancer is a malignant tumor primarily caused by HPV (Human Papillo-

mavirus), mainly occurring in the cervix. It is divided into two main types: squamous cell
carcinoma and adenocarcinoma, with squamous cell carcinoma being the most common.
This cancer has a prolonged precancerous stage characterized by significant changes in cell
nuclei and irregular nuclear membrane contours.

Cervical cytology screening is a widely used procedure effective in detecting early
precancerous lesions, which is crucial for preventing cervical cancer [8]. It is recommended
for women to undergo this screening regularly, using methods such as Pap smears or
liquid-based cytology testing [9].

With the advancement in imaging and digital processing technologies, cervical cancer
screening samples can now be converted into digital slides through pathology scanners,
greatly transforming the method of cervical cancer screening. Digital pathology reduces the
workload of pathologists, improves diagnostic efficiency, and enables rapid and accurate
examination of cervical cells [10,11].

The Bethesda System (TBS), introduced in 1988, marked a significant advancement
in cervical cytology reporting [12]. Abnormal cells can be classified into several types
according to latest TBS [13], including the following:

Atypical Squamous Cells of Undetermined Significance (ASC-US) in cervical cytology
screening indicate possible low-grade squamous intraepithelial lesions (LSILs), character-
ized by unusual cytological features with an unspecified cause.

Atypical Squamous Cells-Cannot Exclude High-grade Squamous Intraepithelial Le-
sion (ASC-H) indicates a possible high-grade squamous intraepithelial lesion (HSIL) but
remains undiagnosed.

Low-grade squamous intraepithelial lesion (LSIL) involves mild cytological abnormal-
ities, mainly appearing in mature intermediate or superficial squamous cells. The features
include nuclear enlargement, hyperchromasia, inconspicuous nucleoli, binucleation or
multinucleation, and increased vacuolated cells, typically associated with HPV infection.

High-grade squamous intraepithelial lesion (HSIL) mainly occurs in immature basal
parabasal cells or basal cells, presenting as sheets, single cells, or clustered dark crowded
groups. The features include nuclear enlargement with decreased cytoplasmic volume,
increased nuclear-to-cytoplasmic ratio, common nucleolar absence, and irregular nu-
clear membranes.

Squamous cell carcinoma (SCC) is the primary type of cervical cancer, accounting for
approximately 90% of cases, often associated with HPV infection. Its cytological features
include pleomorphic deeply staining nuclei, irregular nuclear clearing, multiple irregular
nucleoli, cell keratinization, and keratin fragments.

In large-scale cervical cytology screening projects targeting the general population,
the number of abnormal squamous cell cases far exceeds that of abnormal glandular cell
cases, with ASC-US, LSIL, ASC-H, and HSIL being the four most common types. ASC-US
and LSIL lesions typically occur in superficial or intermediate cells, while ASC-H and HSIL
lesions typically occur in parabasal and basal cells. Our proposed IACCS is primarily based
on these five types of lesions for auxiliary diagnosis.

3. Related Work
In cytopathology, conducting an analysis of the entire WSI remains a significant and

complex task. For cervical cytology screening, rapid searching and accurate localization
of suspicious abnormal cervical cells are crucial to ensuring the accuracy of screening.
In the field of computer vision, object detection models have been widely studied and
applied [14]. These models not only accurately locate objects but also simultaneously
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predict their categories. In the detection of abnormal cervical cells, these object detection
models have made significant progress [15], providing reliable tools for the rapid and
effective detection of abnormal cervical cells [16–18].

The application of these methods is closely associated with a large amount of data,
which means that insufficient training data may severely affect the performance of deep
learning models. One challenge in applying deep learning to cervical cytology screening is
the lack of effectively annotated data. Due to limited labeled data, the available datasets
are consequently restricted, making it difficult for deep learning models to obtain sufficient
training and leading to overfitting issues. Although transfer learning [19] can compensate
for certain data problems, it is still crucial to construct high-quality cervical cytometry
datasets in complex clinical settings. Extensive cervical cancer screening involves a vast
female population, making it difficult to collect a sufficient number of rare and severe cases,
resulting in dataset imbalances [20]. To address this issue, we introduce an incremental
learning [21,22] mechanism in IACCS, which progressively learns based on new data
without retraining the entire model. This method allows the model to continuously learn
and quickly adapt to new contexts and data distributions.

An ensemble of multiple models is the most direct way to achieve integrated deep
learning [20,23]. The key feature of ensemble learning is the diversity of individual net-
works, and various integration strategies can assist basic models in achieving better perfor-
mance. Inspired by ensemble learning, we introduce an active learning [24] mechanism into
IACCS. In complex clinical scenarios, once the object detection model locates and predicts
an object, we introduce a classification model for that predicted object. This classification
model, through active learning based on expert-reviewed results, is used to distinguish
abnormal cervical cells from normal cells. The active learning mechanism allows the model
to selectively pick the most informative samples, focusing on those the model deems most
challenging or uncertain.

Despite many studies applying deep learning methods to cervical cell studies, research
on the interpretation and diagnostic application of model results is relatively limited.
With the emergence of the first deep-learning-based WSI analysis method in cervical cell
screening, automated cervical cell screening has entered a comprehensive WSI analysis
stage. Unlike the above methods, we propose for the first time the use of multi-objective
optimization [25] to find interpretable diagnostic rules.

4. Proposed Method
In this section, we first outline the integrated automated cervical cancer screening

framework we propose. Subsequently, we delve into the discussion of the evaluation
module used for automatically assessing the quality of WSI. Following that, we will
introduce the dataset established for abnormal squamous or glandular cells and provide
a detailed description of the data processing strategies we have employed. Finally, we
introduce a multi-objective optimization algorithm for generating diagnostic rules that
have different trade-offs among sensitivity and specificity.

4.1. Framework Overview

The IACCS framework is illustrated in Figure 1. When there are new WSIs awaiting
screening, the WSI is first subjected to preprocessing. This preprocessing involves removing
edge portions to enhance detection efficiency and partitioning the WSI for subsequent
detection. Subsequently, the quality of the WSI is assessed, including counting the number
of cells and determining fuzzy areas. Meanwhile, the partitions are sequentially fed into
a pre-trained object detection model to detect abnormal cervical cells. Next, the detected
results of abnormal cervical cells are input into a classification model to further determine
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if they are abnormal. An expert will review these results, and data from rare and severe
cases will be added to the object detection dataset for incremental learning, while cases of
model misjudgment will be added to the classification dataset for active learning. Finally, a
diagnostic rule for generating preliminary diagnosis results is formulated based on multi-
objective optimization, considering various types and quantities of abnormal cervical cells.

Figure 1. Integrated automated cervical cancer screening framework.

4.2. Quality Assessment

In the quality assessment module, by statistically analyzing the cell count and de-
termining the presence of fuzzy regions in the WSI, potential issues in the preparation
process can be identified. This process contributes to enhancing the quality of WSIs, thereby
bolstering the accuracy and reliability of subsequent analyses.

4.2.1. WSI Cell Count Statistics

Figure 2a shows the case of low cell density, while Figure 2b represents the normal
situation. Conducting cell counting on the WSIs not only helps to evaluate potential flaws
in the sample preparation process, such as uneven cell dispersion or low cell density,
but also serves as a reminder for operators to strengthen technical controls and quality
management during preparation. Leveraging the characteristic of cell staining, where
cell nuclei appear darker compared to other parts, we utilize traditional image analysis
methods to perform cell counting. The main steps include, first, converting the color image
to a grayscale image and applying erosion and dilation operations to remove noise; then
identifying connected regions in the image through thresholding and Gaussian filtering,
representing potential cell nucleus regions; next, filtering out potential cells based on the
area of connected regions, excluding small-area noise; and, finally, counting the remaining
connected regions to determine the number of cells in the image.
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Figure 2. Cell count: (a) the case of low cell density; (b) the normal situation.

4.2.2. Fuzzy Region Determination

The presence of fuzzy regions may indicate poor image quality, possibly due to
issues with imaging equipment (such as poor focus, vibration, or movement) or improper
sample preparation (such as uneven tissue slicing or uneven staining). By determining
fuzzy regions in WSIs, it is possible to effectively improve the accuracy and reliability of
subsequent analyses. The fuzzy regions, as shown in Figure 3, prompted the development
of a method for determining image blurriness based on gradient features and Support
Vector Machine (SVM). This method first converts the image into a grayscale image. To
evaluate image clarity, four gradient features are employed as follows:

The equation for calculating the Brenner gradient is as follows:

B = ∑
x,y

[ f (x + 2, y)− f (x, y)]2 (1)

where B represents the calculation result of the Brenner gradient, serving as an indicator of
the overall sharpness of the image. x represents the horizontal coordinate, and y represents
the vertical coordinate. f (x, y) denotes the intensity or grayscale value of the pixel at
coordinates (x, y). For each pixel in the image, we find the intensity of the pixel two
positions to its right and calculate the square of the intensity difference between them.
Then, summing up all these squared differences yields a total B. A larger total B indicates
higher image contrast, typically implying greater image sharpness.
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Figure 3. Fuzzy regions in WSIs. (a) Boundary effect causing significant one-sided blur/defocus;
(b) Generalized blur with artifacts obscuring cellular details; (c) Large, severely out-of-focus/artifactual
area obscuring cells; (d) Subtle, generalized soft focus reducing overall sharpness and detail.

The equation for calculating the Laplacian gradient is as follows:

L(x, y) =
1

∑
i=−1

1

∑
j=−1

k(i, j) · f (x + i, y + j) (2)

where L(x, y) represents the result after processing with the Laplacian operator, typically
used in image processing to indicate the edge intensity at position (x, y). k(i, j) is an
element in the kernel matrix, where the kernel is a 3 × 3 matrix used to multiply with the
corresponding region of the image to compute the edge intensity. By applying the kernel
matrix to each pixel and its neighborhood, new pixel values are calculated for detecting
edges and textures in the image.

The equation for calculating the SMD is as follows:

SMD = ∑
x,y

(|2 f (x, y)− f (x + 1, y)− f (x− 1, y)|+

|2 f (x, y)− f (x, y + 1)− f (x, y− 1)|)
(3)

where SMD stands for Sum of Modified Laplacian, which is a measure of image sharpness.
x, y represent pixel positions on the image. f (x, y) is the pixel value of the image at
coordinates x, y. This equation evaluates image sharpness by calculating the squared sum
of changes (gradients) in pixel values in both horizontal and vertical directions, indicating
that higher SMD values typically imply higher image sharpness or contrast as this indicates
larger variations between pixel values.

The equation for calculating the SMD2 is as follows:

SMD2 = ∑
x,y

(
1

∑
i=−1

1

∑
j=−1
| f (x + i, y + j)− f (x, y)|

)
(4)
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SMD2 is an enhanced version of the Sum of Modified Laplacian method used to
measure image sharpness. Image sharpness is evaluated by calculating the differences
between each pixel and its surrounding pixels and summing the absolute values of these
differences. Higher SMD2 values typically indicate more edge or texture information in
the image, thus higher image sharpness.

The extracted gradient features are normalized to meet the input requirements of the
SVM model. The SVM model, trained on fuzzy data, is used to classify whether images
are clear or fuzzy. By inputting standardized features, the model can effectively determine
whether images are clear or fuzzy.

4.3. Detection of Abnormal Cervical Cells

As mentioned above, given the significantly higher number of abnormal squamous
cell cases compared to abnormal glandular cell cases in large-scale cervical cell screening
projects, we focus on ASC-US, LSIL, ASC-H, HSIL, and SCC and have accordingly constructed
a dataset. We selected initial data, consisting of 500 positive WSIs and 500 negative WSIs. To
establish the dataset, we partitioned the WSIs with a 50% overlap (640 × 640 pixels) and
selected the partitions annotated with abnormal cervical cells. Regarding the processing of
new WSIs, it follows Algorithm 1, where, in lines 1–10, the WSIs are initially partitioned,
followed by detection on each partition. Subsequently, in lines 11–18, the detected results
with the same object are merged. Finally, in lines 19–25, each detection result undergoes
further classification to obtain the ultimate detection outcome.

Algorithm 1 Whole-slide images (WSIs) to be inspected
Input: WSI X, the height of WSI Xh, the width of WSI Xw, the size of the blocks: σ, Overlap: δ
Output: detection results: boxes

1: boxes← {}, stride← σ× δ, i← 0
2: While i < Xh
3: j← 0
4: While j < Xw
5: box ← detect(j, i, σ)
6: boxes← boxes ∪ box
7: j← j + stride
8: EndWhile
9: i← i + stride

10: EndWhile
11: For m in boxes
12: For n in boxes[i + 1 :]
13: If IOU(boxesm, boxesn) > ξ and Label(m, n)
14: boxesn ← [xmin, ymin, xmax, ymax](m, n)
15: delete(boxesm)
16: EndIf
17: EndFor
18: EndFor
19: For k in boxes
20: If classi f ication(boxesk) is abnormal
21: save(boxesk)
22: Else
23: delete(boxesk)
24: EndIf
25: EndFor
26: End
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4.3.1. Data Enhancement

In cervical cell detection, positive annotation refers to images containing annotations
of abnormal cervical cells, while negative blocks refer to images without abnormal cells.
CutMix technology allows the replacement of positive annotations into a random region
of negative blocks, as shown in Figure 4. By incorporating positive annotations into the
background of negative blocks, training sample diversity is increased, and the balance
between positive and negative samples is improved. This helps the model to better learn
the features of abnormal cells and reduces training biases caused by class imbalances.
Additionally, embedding positive annotations into negative blocks enables the model
to learn features of both normal and abnormal cells simultaneously, enhancing model
robustness to correctly identify abnormal cells even in the absence of anomalies. By
introducing CutMix, the generated mixed images retain the label information of the original
images but are not exact duplicates. This helps to reduce the risk of overfitting and improves
the model’s generalization ability to unseen data.

Figure 4. The process of generating new data using CutMix. The orange frames highlight: (top right)
the abnormal region for cropping; (middle left) the random region in a negative WSI for replacement;
and (bottom right) the pasted abnormal region in the new block.
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4.3.2. Incremental Learning

Due to the limited amount of annotated data and the relatively small number of severe
cases, the distribution of the dataset is uneven. To address this issue, we introduced an
incremental learning mechanism into IACCS. This mechanism enables progressive learning
based on new data, gradually integrating data detected as rare or severe cases and reviewed
by experts into the original dataset. This allows the model to continuously learn and quickly
adapt to new situations and data distributions. Let Dn represent the current dataset of the
model and Dp denote the set of samples reviewed by experts. Let N represent the number
of categories in the dataset, ni denote the number of samples in the i th category, and ri

represent the proportion of the i th category.
When relatively small proportions of categories are detected, we aim to incorporate

these new data into the original dataset for learning. For each category i, we can calculate
its proportion in the new dataset, ri,new. If ri,new is less than a certain threshold α, we add
the samples of that category to the set of samples reviewed by experts Dp, i.e.,

Dp =
N⋃

i=1

{xj|ri,new < α, xj ∈ Di
new} (5)

Here, the union symbol
⋃N

i=1 indicates that Dp is formed by collecting all samples xj

that satisfy the condition (ri,new < α) across all relevant categories i (from 1 to N) in the new
data Di

new. Di
new represents the set of samples belonging to category i in the new data.

4.3.3. Active Learning

After conducting cervical cell detection on the WSI, we introduced the ResNet50 model
to classify cells and determine if they are abnormal. If the ResNet50 model classifies a cell
as abnormal, the sample is retained; otherwise, it is removed. To improve the performance
of the classification model, we employed active learning mechanism. It selects the most
informative samples based on the current model’s prediction uncertainty or other metrics
and actively requests expert annotations to minimize the number of labeled samples. We
chose abnormal cervical cells detected in negative blocks and those confirmed by experts
as errors in positive blocks as normal cervical cells. Let Dn represent the current dataset of
the model, Dp denote the set of positive block samples after expert review, D+

n represent
the set of abnormal cervical cells detected in negative blocks, and D−p represent the set of
abnormal cervical cells confirmed as errors in positive blocks. Then, the new sample set
Dnew can be expressed as

Dnew = D+
n ∪ D−p (6)

where samples in D+
n are selected under the condition that the confidence O is greater than

or equal to the threshold β, i.e.,

D+
n = {xi|O(xi) ≥ β, xi ∈ Dn} (7)

The active learning process utilizes the selection strategy of Equations (6) and (7) to
actively learn problematic cases, further classifying and filtering the detection results to
improve accuracy.

4.4. Diagnostic Rules

After completing the detection of abnormal cervical cells in WSI, automatic diagnosis
based on the detection results is required. This diagnosis is based on the counts of five
types of abnormal cervical cells (i.e., five variables) and rules corresponding to different
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lesion grades. The evaluation of diagnosis results mainly relies on two objective functions:
sensitivity and specificity. The calculation of sensitivity and specificity is as follows:

Sensitivity =
TP

TP + FN
=

1
f1(x)

(8)

and
Speci f icity =

TN
TN + FP

=
1

f2(x)
(9)

We take another thousand WSIs and aim for the diagnostic rules to maximize the
sensitivity and specificity of the diagnostic results for this batch of WSIs; i.e., the optimiza-
tion objective is to minimize f 1 and f 2. Therefore, this problem can be transformed into a
multi-objective optimization problem, which satisfies the following:

min y = F(x) = ( f1(x), f2(x))

subject to: TN(x) + FP(x) ̸= 0

TN(x) ̸= 0

TP(x) + FN(x) ̸= 0

TP(x) ̸= 0

x ∈ [0, N]5

(10)

We utilize the Pareto dominance relationship to obtain a set of mutually non-
dominating solutions. Pareto optimality ensures that specificity (sensitivity) is improved
without decreasing sensitivity (specificity). Our problem can be addressed through the
following steps to obtain the Pareto-optimal solution set. Firstly, compute the objective
function values F(x) = ( f1(x), f2(x)) for each candidate solution x, where f1(x) and
f2(x) represent the reciprocals of sensitivity and specificity, respectively. Based on the
computed objective function values, categorize all candidate solutions into different non-
dominated solution sets. A solution x∗ is considered non-dominated over another solution
x if f1(x∗) ≤ f1(x) and f2(x∗) ≤ f2(x). For each non-dominated solution set, select
the Pareto-optimal solution set, comprising solutions that cannot be dominated by other
solutions. Specifically, from each non-dominated solution set, choose solutions that sat-
isfy the following conditions: there is no other solution x such that f1(x) < f1(x∗) and
f2(x) ≤ f2(x∗); there is no other solution x such that f1(x) ≤ f1(x∗) and f2(x) < f2(x∗).

The final set of solutions obtained through the multi-objective optimization algo-
rithm GDE3 [26] is the set of Pareto-optimal solutions, where the solutions show the best
sensitivity and specificity. GDE3 was selected due to its demonstrated effectiveness in
handling multi-objective problems through its differential evolution mechanism, which
can efficiently explore the complex parameter space of diagnostic rules [26]. It is important
to note that our proposed framework is designed to be general, and other multi-objective
optimization algorithms, such as NSGA-II or SPEA2, could also be readily integrated and
applied. In this study, we utilized GDE3 primarily as a means to validate the framework’s
capability to generate effective and interpretable diagnostic rules. Each solution x corre-
sponds to a diagnostic rule, where x = [xSCC, xHSIL, xLSIL, xASC−H , xASC−US] includes the
quantity of each type of abnormal squamous cell. When diagnosing a new WSI, diagnosis
proceeds according to Algorithm 2 and the selected rule x. In Algorithm 2, the first step is
to perform statistical analysis of the detection results of various abnormal cervical cells (as
seen in lines 2 to 4). Subsequently, diagnoses are conducted based on the quantity of each
type of abnormal squamous cell, ranked by severity from high to low (as seen in lines 6 to
26), ultimately resulting in the graded diagnostic outcome of the WSI.
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Algorithm 2 Automated diagnosis
Input: detection results boxes, diagnostic rule x
Output: Positive Grading ζ

1: θASC−US, θASC−H , θLSIL, θHSIL, θSCC ← 0
2: For box in boxes
3: θbox−class ← θbox−class + 1
4: EndFor
5: ζ ← NULL
6: If θSCC > xSCC
7: ζ ← SCC
8: Else
9: If θHSIL > xHSIL

10: ζ ← HSIL
11: Else
12: If θLSIL > xLSIL
13: ζ ← LSIL
14: Else
15: If θASC−H > xASC−H
16: ζ ← ASC− H
17: Else
18: If θASC−US > xASC−US
19: ζ ← ASC−US
20: Else
21: ζ ← NSIL
22: EndIf
23: EndIf
24: EndIf
25: EndIf
26: EndIf
27: End

5. Experiments and Analysis
To validate the effectiveness of our integrated automatic cervical cancer screening

framework, we introduce the achieved results from the following three aspects. Firstly, qual-
ity assessment is implemented to automatically judge the quality of WSIs. Secondly, we
present the situation of the established datasets for abnormal cervical cells, along with the
corresponding improvements we made and their effects. Finally, we demonstrate the speci-
ficity and sensitivity of the diagnostic rules found through multi-objective optimization.

5.1. WSI Cell Count Statistics

As shown in Figure 5a, four segmented images from two types of WSIs (those with
fewer instances and those with normal cell quantities) are displayed. These segmented
images are then converted into grayscale images, as depicted in Figure 5b. Subsequently,
we applied erosion and dilation operations to the images using a 2 × 2 matrix of all ones as
the kernel, iterating each operation five times to eliminate noise and unnecessary details
from the images. Next, the images were thresholded at 155/255 to convert them into binary
images, further highlighting the contours of the cells, as shown in Figure 5c. Following
this, a 3 × 3 Gaussian filter was applied to the binary images for smoothing, reducing
the influence of noise. Finally, by identifying connected components in the images and
excluding components with an area less than 25 pixels, we removed smaller noise or non-
cellular areas. We then plotted and quantified the connected components, the results of
which are illustrated in Figure 5d. Based on the darker color of the cell nuclei compared to
the background and cytoplasm, our method can achieve cell count statistics with minimal
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computational resources. This approach not only eliminates the cost of manual annotation
but also operates independently of algorithmic models.

5.2. Fuzzy Region Determination

The process of determining fuzzy regions is illustrated in Figure 6. Firstly, the WSI
is segmented, as shown in Figure 6a. Then, each segment is processed sequentially using
four different gradient functions (Brenner, Laplacian, SMD, and SMD2) to extract gradient
features from the images. Subsequently, the extracted gradient feature data are normalized,
and a pre-trained SVM model is utilized for fuzzy region determination. Figure 6b displays
the non-fuzzy segments, while Figure 6c illustrates the fuzzy segments. Following the
assessment of all the segments, the fuzzy regions are annotated, as depicted in Figure 6d.
When the proportion of fuzzy to WSI was small, we removed the abnormal cervical cells
whose detection was in the fuzzy region, and, when the proportion was too large, the
WSI was considered to be of poor quality. The determination of the fuzzy region was
thus realized.

Figure 5. Cell count statistics display: (a) Segmented Whole Slide Image (WSI) patches; (b) Grayscale
converted images; (c) Binary images after thresholding, highlighting cell contours; (d) Final cell count
results after connected component analysis and noise removal.

Figure 6. Fuzzy region determination display: (a) Segmented Whole Slide Image (WSI); (b) Identified
non-fuzzy segments; (c) Identified fuzzy segments; (d) Annotated fuzzy regions on the WSI.
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5.3. Object Detection

We chose YOLOv8 as the object detection model and created a dataset of 500 positive
WSIs with annotations and 500 negative WSIs. We divided the dataset into training,
validation, and test sets according to the ratio of 7:2:1. The dataset included abnormal
squamous cells (ASC-US, ASC-H, LSIL, HSIL, and SCC), glandular cells (AGC-NOS),
microbial infections (Candida and Trichomonas), and normal squamous cells (NILM).

To address the inherent class imbalance and illustrate the impact of our proposed data
handling strategies, Figure 7 presents the per-class sample distributions at various stages.
Specifically, it shows the distribution for (a) the baseline YOLOv8 dataset, (b) after applying
data enhancement (DE), (c) after subsequently incorporating incremental learning (IL), and
(d) the final distribution after including active learning (AL). These distributions highlight
how our framework progressively adjusts the dataset composition to potentially improve
model training on under-represented classes.

(a) (b)

(c) (d)

Figure 7. Per-class sample distributions (y-axis: number of instances) at different stages of the
proposed framework. (a) Baseline (YOLOv8); (b) after data enhancement (DE); (c) after DE +
incremental learning (IL); (d) after DE + IL + active learning (AL).

We evaluated the model performance using COCO-style average precision (AP) and
average recall (AR). Additionally, we employed mAP50 (mean average precision at an
IoU threshold of 0.5) and mAP50:95 (mean average precision within the IoU range of 0.5 to
0.95). In our proposed IACCS, we utilized CutMix data augmentation (DE) and introduced
incremental learning (IL) mechanisms and active learning (AL) mechanisms.

Table 1 presents the performance comparison of different components of our proposed
method. From Table 1, it is evident that adopting DE significantly improves all the met-
rics compared to the baseline model. Furthermore, further enhancements in mAP50 and
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mAP50:95 are achieved with the incorporation of IL and AL, demonstrating their effective-
ness. Clearly, leveraging DE for negative WSI data utilization and continuously updating
new data with IL and AL can effectively enhance the model performance.

We further validate the proposed strategy on the current state-of-the-art object detection
algorithms RT-DETR [27] and YOLOV9 [28]. The results are shown in Table 2, covering the
metrics before and after applying the strategy and focusing on the calculation of the performance
improvement, for which the improved parts of the performance metrics are labeled. The results
show that the proposed strategy can effectively improve the performance of the model.

Table 1. Performance of ablation study.

Comparison AP AR mAP50 mAP50:95

YOLOv8 94.52 87.16 94.3 88.4
YOLOv8+DE 96.54 90.88 96.1 92.48
YOLOv8+DE+IL 93.32 95.72 97.24 92.46
YOLOv8+DE+IL+AL 95.46 95.4 98.06 94.74

Note: Bold values indicate the best performance achieved for that metric across the different ablation settings.

Table 2. Performance of the proposed strategy on state-of-the-art methods. The five rightmost
columns are for each lesion category AP.

Method AP AR mAP50 mAP50:95 ASC-US LSIL ASC-H HSIL SCC

YOLOv8 94.52 87.16 94.3 88.4 96.2 96.2 90.2 94.5 95.5
YOLOv8 + Our Strategy 95.46 95.4 98.06 94.74 93.8 96.4 94.4 98.0 94.7
Improvement ↑ 0.94 ↑ 8.24 ↑ 3.76 ↑ 6.34 ↓ 2.4 ↑ 0.2 ↑ 4.2 ↑ 3.5 ↓ 0.8

RT-DETR 94.46 92.34 93.88 85.44 95.4 94.9 91.8 95.2 95.0
RT-DETR + Our Strategy 97.08 95.04 97.18 93.18 96.3 96.6 96.8 98.2 97.5
Improvement ↑ 2.62 ↑ 2.7 ↑ 3.3 ↑ 7.74 ↑ 0.9 ↑ 1.7 ↑ 5.0 ↑ 3.0 ↑ 2.5

YOLOv9 95.76 86.5 93.52 90.02 94.3 96.7 93.7 95.6 98.5
YOLOv9 + Our Strategy 96.38 90.26 96.68 93.58 96.2 97.4 98.3 92.1 97.9
Improvement ↑ 0.62 ↑ 3.76 ↑ 3.16 ↑ 3.56 ↑ 1.9 ↑ 0.7 ↑ 4.6 ↓ 3.5 ↓ 0.6

Note: Arrows ↑ and ↓ indicate performance improvement and degradation, respectively, after applying our
strategy. Bold values in the "Improvement" rows highlight these changes.

To further assess the model’s performance across different confidence thresholds and
evaluate its probabilistic outputs, which are crucial in medical diagnosis for risk stratifi-
cation, we present the precision–recall curves (PRCs) in Figure 8. These curves illustrate
the trade-off between precision and recall (sensitivity) at various decision thresholds for
each class and the overall model performance. The area under the PRC (PRC-AUC), of-
ten summarized by metrics like mean average precision (mAP) at a specific IoU (e.g.,
mAP@0.5, which we report), provides an indication of the model’s ability to distinguish
between classes across the full range of operating points. Figure 8 shows the PRCs for
(a) the baseline YOLOv8 model, (b) after applying data enhancement (DE), (c) after sub-
sequently incorporating incremental learning (IL), and (d) the final PRCs after including
active learning (AL). These visualizations demonstrate how our proposed strategies impact
the model’s diagnostic confidence and its ability to correctly classify instances at varying
levels of certainty.
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(a) (b)

(c) (d)

Figure 8. Precision–recall curves (PRCs) at different stages of the proposed framework. (a) PRC:
baseline (YOLOv8); (b) PRC after data enhancement (DE); (c) PRC after DE + incremental learning
(IL); (d) PRC after DE + IL + active learning (AL).

5.4. Diagnostics

We collected 990 WSIs diagnosed by experts under a microscope to establish the
diagnostic rules. Our algorithm first detected abnormal cervical cells in the WSI and
then identified the Pareto-optimal solution set based on Equation (10) after obtaining the
detection results. The Pareto-optimal solution sets under various conditions are shown
in Figure 9.

Figure 9. Multi-objective optimization results.
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For each condition, we diagnosed using different thresholds, namely confidence
thresholds of 60, 70, 80, and 90. In Figure 9, Base represents the baseline model, MR denotes
manual rules, and N represents the range of parameter x in multi-objective optimization
(MOOP) from [0, N], with sensitivity on the horizontal axis and specificity on the vertical
axis. For example, as shown in Figure 9, Base + MR represents the diagnosis of YOLOv8
test results using manually formulated rules for evaluating its sensitivity and specificity,
while Base + MOOP + DE + IL + AL + (N = 5) represents the diagnosis of YOLOv8
using DE, IL, and AL detection results by a multi-objective optimization method under
N = 5 to assess its sensitivity and specificity.

Comparing the scenarios of Base and Base + DE, it can be observed that Base + DE
can yield better results than Base. However, unlike the results of MOOP, the sensitivity
and specificity corresponding to MR have significant limitations. The sensitivity of MR
tends towards 1, while the specificity tends towards 0, indicating that almost all the WSIs
are diagnosed as positive in different confidence intervals, which clearly does not serve as
effective auxiliary diagnosis.

After applying MOOP and combining DE, IL, and AL, the effectiveness of our ap-
proach surpasses manually devised rules in various scenarios. Additionally, each point on
the graph represents a diagnostic rule, indicating that they are optimal or nearly optimal
on both objectives, and no solution can further improve one objective without sacrificing
the other.

Furthermore, we explored the impact of different values of N on the results, where
∀N represents no restriction on the scale of N, yielding the best results, albeit far beyond
what experts can accept. We aim for N to be as small as possible for diagnosis. Comparing
the scenarios of ∀N and N = 5/10/15, it is evident that our method can approach the
performance of ∀N and even outperform it in some cases. Therefore, by selecting a certain
Pareto solution, effective auxiliary diagnosis can be achieved to enhance the diagnostic
efficiency of experts under this rule.

6. Conclusions
In this work, we proposed an IACCS framework. Firstly, regarding the quality assess-

ment, cell count statistics and the identification of fuzzy regions are conducted on the WSI
to ensure high-quality WSI detection and diagnosis. Then, by fully utilizing annotated
information and negative WSIs, an incremental learning mechanism and active learning
mechanism are introduced to effectively utilize and continuously update the data. Finally,
by employing multi-objective optimization, interpretable diagnostic rules are identified,
providing more reliable auxiliary diagnosis.

Future Perspectives, Limitations, and Methodological Enhancements: Looking ahead,
the proposed IACCS framework holds considerable promise for clinical deployment. It
could serve as an efficient assistive tool for cytopathologists, pre-screening WSIs to prioritize
suspicious cases, thereby potentially reducing workload and diagnostic turnaround times. In
regions with limited access to pathology expertise, IACCS could offer valuable preliminary
screening support. Furthermore, the interpretability offered by its MOO-generated rules may
facilitate clinician trust and adoption and aid in standardizing diagnostic approaches.

However, several limitations and avenues for future work should be acknowledged.
While our current dataset encompassed common lesion types, its diversity concerning
rarer conditions like adenocarcinoma (which we plan to focus on in future research), var-
ied patient demographics, and different WSI acquisition protocols may be limited. This
highlights the need for future validation on larger multi-center datasets to assess broader
applicability. Consequently, the generalization of the current models to entirely new clinical
settings or scanner types without further fine-tuning or domain adaptation techniques
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remains a challenge. To more rigorously assess model robustness and generalization, par-
ticularly as we expand our research to include glandular abnormalities and more diverse
datasets, future work will incorporate stratified k-fold cross-validation. The use of a fixed
train/validation/test split in this study, while facilitating consistent comparisons, may
not fully capture generalization across all data partitions, and k-fold cross-validation will
provide a more comprehensive evaluation. Practical integration with the existing labora-
tory information systems and the need for continuous model monitoring also represent
important considerations for real-world deployment. Ultimately, rigorous prospective
clinical trials will be essential to fully validate the efficacy and safety of IACCS before its
widespread clinical adoption.
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