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Abstract—Even though chip-on-board light-emitting
diodes (COB LEDs) with quantum dots (QDs) are attracting
much attention for their high optical performance, their
luminous efficiency (LE) is still low owing to total inter-
nal reflection. To overcome this problem, in this study,
a microfiber-silicone hybrid (MFSH) structure is proposed
to enhance the LE of QD-based COB LEDs. Polystyrene (PS)
fiber films were fabricated by electrospinning and subjected
to planar compression modeling to precisely control their
film thickness. Subsequently, these films were coated with
silicone to finish packaging the COB LEDs. Their diffuse
reflectance of the MFSH structures before and after silicone
resin encapsulation was analyzed, witnessing a diffuse
reflectance at 450 nm of 97.7% when the pure fiber-film
thickness increases to 220 um. While applying to COB
LEDs, the light output power of devices with MFSH structure
increases first and then decreases, causing by the balance
of light extraction by the scattering fiber and absorption by
the difference between chip height and fiber film thickness.
Finally, to increase the light-extraction capacity of COB
LEDs, the thickness of the microfiber films was optimized
to 25 um at which their LE increased by 29.7% and 31.7%
for the blue LED source and QD-based COB LED source,
respectively. Therefore, the MFSH structure is an effective
packaging method to produce highly efficient COB LEDs.

Index Terms— Chip-on-board light-emitting diodes (COB
LEDs), luminous efficiency (LE), polystyrene (PS) fiber
mats, quantum dots (QDs).
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I. INTRODUCTION

HITE light-emitting diodes (LEDs) are widely used

in daily life due to their low cost, high lighting
performance, and long life [1]. Of late, chip-on-board LEDs
(COB-LEDs) are attracting great attention for high-power
applications [2]. This is because COB packaging endows many
advantages, including a high light output power, signal-driven
power, and low manufacturing cost. Due to their narrow
emission, tunable spectra, and high photoluminescence (PL)
quantum yield, quantum dots (QDs) are being deployed in
LEDs and considered as next-generation fluorescent materi-
als for illumination and display applications [3]. QD-based
LEDs exhibit a high color-rendering index and a wide color
gamut [4]. However, they still face the problems of poor
luminous efficiency (LE) and thermal stability. Numbers of
studies were undertaken to solve their thermal instability
problem. Hexagonal boron nitride platelets were combined
with QDs to solve their heat problem [5]. And other studies
focused on techniques such as a metal-based inverted packag-
ing structure [6]. In addition, it was observed that QD-LEDs
face the disadvantage of poor LE, especially for high-power
COB LEDs [7].

The large difference in the refractive indices of silicone
and air leads to total internal reflection (TIR), resulting in the
poor light-output efficiency of COB LEDs [8]. Several, many
methods have been employed to counter this drawback, includ-
ing using dome-shaped lens [9] and textured surfaces [10].
However, these methods only focus on dealing with the TIR
phenomenon without taking their large backscattering energy
absorption into consideration. It is reported that about 60%
of the luminous flux would be backscattered to the chips in
conventional COB LEDs [11]. Some studies have been carried
out for dealing these issues. TiO, nanoparticles and silicon
composite were used to fabricate a thin auxiliary encapsulation
to enhance the LE [7]. Roughing lead frame substrates [12]
is always used to improve device light output. However,
developing an efficient way to improve the LE of COB LEDs
is still a big challenge.

In this study, we designed an effective and highly reflective
microfiber-silicone hybrid (MFSH) structure by a combined
electrospinning and planar compression process to enhance the
LE of QD-based COB LEDs. To the best of our knowledge,
this is the first time the effect of fiber film thickness on the
diffuse reflectance of COB LEDs is evaluated.
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Fig. 1. (a) Photograph of PS fiber films with various thickness. (b) Sam-
ples packaged with PDMS and their optical scattering effect. (c) SEM
of PS fibers. (d) Absorbance and PL intensity of CdSe/ZnS QDs. The
inset shows the fluorescence of QDs in chloroform at 365 nm excitation.
(e) Photograph of the QD-COB LED devices. The inset is the COB LED
with MFSH structure.

Il. EXPERIMENTAL SECTION

Polystyrene (PS, Mw ~ 192000, Aladdin Company Ltd.),
a common and performance-stable optical material with a
reflective index of ~1.58 [13], was chosen to fabricate elec-
trospun fiber mats. First, 1.2 g of PS pellets were dissolved
in 2 mL of dimethylformamide and 2 mL of tetrahydrofuran to
prepare a 0.3 g/mL electrospinning solution. Later, the solution
was electrospun into fibers using a homemade electrospinning
system at a voltage of 15 kV, flowing rate of 2 mL/h,
and working distance of 15 cm. Then, the fiber mats were
pressed at 0.42 MPa by planar compression to increase their
density. Further, they were tailored into the desired shape
to fit the surface of the COB substrate, as shown in the
inset of Fig. 1(e). Five blue lateral LED chips with a height
of 150 um were arranged in a row at equal intervals on
the COB frame. Finally, the components were packaged with
polydimethylsiloxane (PDMS, reflective index of ~1.41, Dow
Corning 184). Several LED modules with different fiber-film
thicknesses were encapsulated, respectively. CdSe/ZnS QDs
(PL quantum yield ~85%, Beida Jubang Company Ltd.) was
used to fabricate the dome-shaped remote phosphor structure
with a QD concentration of 0.1% to 0.7% (the ratio of QD
mass to the PDMS resin) by a mold casting method [8]. The
photograph of the QD-based COB modules can be seen in
Fig. 1(e). Fig. 1(d) illustrates their normal absorbance and PL
intensity when dissolved in chloroform. It is obvious that the
QDs have a first excitonic peak at 555 nm and an emission
peak at 569 nm, causing by the Stokes-shift. They perform a
full width at half maximum of 32 nm.

The fiber morphology was characterized by field emission
scanning electron microscopy (FE-SEM, Zeiss Merlin). The
QD absorbance, PL intensity, and the diffuse reflectance of
fiber films were measured by a dual-beam UV-Vis spec-
trophotometer (TU-1901, Beijing Persee General Instrument
Company, Ltd.). The thickness of the fiber films was measured
using a micrometer. The optical performance of the LED
devices was tested on an LED Opto-electronic Analyzer (ATA-
1000, Yuanfang Optoelectronic Information Company, Ltd.).
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Fig. 2. Diffuse reflectance of PS fiber films before and after
encapsulation.

I11. RESULTS AND DISCUSSION

Fig. 1(c) shows an SEM image of the PS fibers for the
diffuse layers. It can be easily seen that the fibers were
randomly oriented and their diameter was ~3 um. After
compression molding, PS fiber layers with different thick-
nesses of 10, 25, 50, 100, 150, and 220 um were obtained
and shown in Fig. 1(a). Due to the light-scattering properties
of the nonwoven structural fibers in the mat, the diffuse
layers exhibited a strong white color with the increasing
film thickness. As presented in Fig. 1(b), the fiber films after
PDMS encapsulation still maintain a white witness, causing by
the big index difference between the fibers and PDMS. When a
green laser light irradiates the polished aluminum sheet, mirror
reflectance takes place. However, the MFSH structure exhibits
high light-scattering ability with a uniform lighting.

As presented in Fig. 2, the diffuse reflectance was mea-
sured before and after PDMS encapsulation. Before encapsu-
lation, the greatest change was observed between the diffuse
reflectance of bare polished aluminum and aluminum after
depositing fibers on it. The diffuse reflectance increases with
an increase in film thickness. However, the increasing rate
of change reduced at thicknesses greater than 50 um. Dif-
fuse reflectance at 450 nm increased from 53.6% to 97.7%
when fiber-film thickness increased from 10 to 220 um.
The reflectance was higher than 90% in the visible light
band, contributing to improve light-extraction ability of the
fiber films. After encapsulation, the diffuse reflectance of
composite fiber layers is lower than that of pure fiber films.
The light maybe trapped in the encapsulation resin. Obviously,
fiber-film thickness is still the key parameter for controlling
diffuse reflectance. As the film thickness increased, the dif-
fuse reflectance maintains increasing because the TIR loss in
the interface between PDMS and air is reduced, showing a
potential application in light extraction for LEDs.

Fig. 3 shows the optical output power of blue COB LEDs
with an MFSH structure in the PS fiber-film thickness range
of 10 to 220 um. Optical output power increased initially
after which it reduced and gradually became constant. In fact,
the reflectance of fiber films increases with an increase in their
thickness, thus enhancing their light extraction. However, more
light emanating from the sides of blue LED chips may be
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Fig. 3. Optical power output of COB LEDs with MFSH structures with
different PS fiber-film thicknesses at 350 mA. The inset are the actual
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Fig. 4. (a) Schematic of light extraction. (b) Schematic of light trace with
the increasing fiber layer thickness.

trapped and absorbed by the substrate owing to the height
difference between the fiber film and LED chip, which brings
a slight decrease in the output power. To balance the light
extraction and absorbance of LED chips, fiber-film thickness
was optimized to 25 um, the maximum optical output power
was 2576.8 mW at a driving current of 350 mA, which is
29.7% higher than that of the reference Their actual lighting
spots can be seen in the inset of Fig. 3. The enhanced light
extraction belongs to the effect of the fiber film, which
increase the light extraction and changes the light-transfer
direction.

A schematic of the light-extraction process is shown in
Fig. 4(a). In conventional structure, a small escaping angle
occurs to light extraction because of the TIR between the
encapsulation and air. Light can easily escape while the
extraction angle is smaller than the escaping angle. Amount of
light in large angle (lager than the escaping angle) would be
tracked and absorbed by the substrate and chips. With MFSH
structure at large angles, light is scattered in all directions and
redirected for reextraction by the strong scattering ability of
nonwoven structure fiber mat. This increases the probability
of light at large angles escaping into air, thus improving their
optical output power. Besides, fiber thickness may influence
light extraction from the chip sidewall. There is a difference
between the chip height and the fiber layer thickness, and a
small gap between the fiber layer and LED chip also exists.
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Fig. 5. LE of QD-based COB LEDs at 150 mA. The inset is the radiant
power of the devices with 0.25% concentration QD film.

Due to the gap and height difference, incident light is trapped
and absorbed. When the fiber layer thickness is smaller than
the chip, the light from side wall can be extracted and the
absorption in the gap is small, otherwise, light from side wall
will be trapped and absorbed in the gap. Thus, light absorption
becomes more serious as fiber-film thickness increases and
structure needs optimized.

To investigate the effect of the MFSH structure on the
performance of QD-based COB LEDs, their LE was tested
in Fig. 5. As QD concentration increased from 0.1% to 0.7%
for various lighting effect with different correlated color
temperature, the LE of QD-based COB LEDs increases first
and then decreases when the QD concentration is greater than
0.3% and further increased, causing by the aggregation and
reabsorption of QDs [2]. This might also result in a high
loss in blue-light absorption and a low QD light-conversion
efficiency. Therefore, it is imperative to improve the blue-light
extraction efficiency of the blue source. It is obvious that LE
of all the devices with MFSH structure is larger than the
reference devices under all QD concentration. The maximum
LE of 53.4 Im/W occurs at an optimized thickness of 25 um
in 0.25% QD, which is 31.7% higher than that of the reference
devices. This is because of the high blue-light extraction and
QD-light excitation of the COB LEDs with MFSH structure as
well as the reextraction of backscattered light. To better under-
stand this issue, their radiant power of transmitted blue light
and QD light (calculated by integrating the emission radiant
spectra from 380 to 490 nm and 490 to 780 nm, respectively)
and total radiant power were analyzed in the inset of Fig. 5.
It can be inferred that devices with an MFSH structure exhibit
an increase in total radiant power of 85.2 mW higher than the
reference of 256 mW. The QD light radiant power of devices
with an MFSH structure performs 208.8 mW, achieving an
enhancement of 31.1% compared with the reference devices.
Actually, the MFSH structure enhances blue-light extraction in
blue COB LEDs under which condition more blue light excites
the QDs and more QD light is produced. Besides, more blue
and yellow light is backscattered to the fiber reflective surface
and it is scattered to different directions to extract. Thus, it is
evident that the MFSH structure greatly contributes to the LE
of QD-based COB LEDs.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on October 06,2020 at 07:20:05 UTC from IEEE Xplore. Restrictions apply.



LIANG et al.: ENHANCING LE OF QD-BASED COB LEDs USING PS FIBER MATS

4533

IV. CONCLUSION

In this study, we proposed an effective MFSH structure
for light extraction from QD-based COB LEDs. PS was
electrospun into fibers and then pressed to obtain dense non-
woven structure layers of different thicknesses. Subsequently,
their diffuse reflectance before and after PDMS encapsulation
was measured. Diffuse reflectance increased gradually with
an increase in fiber thickness and the maximum diffuse
reflectance was as high as 99.7% at a fiber-film thickness
of 220 um. In addition, fiber-film thickness significantly
influences the light-extraction capacity of COB LEDs. Our
study has demonstrated that there exists a balance between
reflectance and fiber thickness. Light emitting from the chip
sidewall can be trapped between the fiber film and chip
sidewall. The fiber-film thickness was optimized at 25 um to
obtain the highest light extraction and it resulted in a 29.7%
higher optical output power as compared to the reference.
When used in QD-based COB LEDs at different QD concen-
trations, the MFSH structure contributes to light reextraction,
resulting in more conversion from blue light into QD light.
Finally, at a fiber-film thickness of 25 um, LE increased to
31.7% at a QD concentration of 0.25% and the QD light
power can be enhanced by 31.1%. Therefore, the MFSH
structure significantly influences the light-extraction capacity
of QD-based COB LED:s.
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