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 A B S T R A C T

Image matting is to predict alpha mattes that reflects the opacity of images, recently showing potential in 
identifying transition regions of lesions in computer aided diagnosis. Image matting can be modeled as a 
large-scale combinatorial optimization problem that has numerous subproblems. Evolutionary algorithms (EAs) 
have been applied to predict accurate alpha mattes. The advantage of EAs-based methods is the ability to 
predict alpha mattes with weak prior like trimaps that provide value of opacity for pixels effortless to annotate 
compared to recent deep learning-based methods. However, it is challenging for EAs to solve the problem 
efficiently due to numerous subproblems and the large size of the decision set. Based on the observation that 
the similarity of subproblems correlates with the similarity of their objective spaces, this paper proposes a 
method for estimating a microscale subset of the decision set from the solving process of similar subproblems. 
A framework is designed to reduce the exploration cost of EAs in the large-scale decision set by guiding EAs 
to search in this estimated microscale subsets. Three medical image matting datasets are used to validate our 
method’s improvement in the efficiency of evolutionary algorithms. Experimental results demonstrate that EAs 
embedded in the proposed framework obtain the best prediction of alpha mattes on medical images and also 
in weak scenarios involving natural images. Comparative experimental results on multi-objective performance 
metrics indicate that our method is capable of finding superior solutions using fewer fitness evaluations. The 
contribution of our work is to make EAs an efficient approach to solving the medical image matting problem 
with weak prior.
1. Introduction

Image matting is a fundamental task for computer vision, playing 
a critical role in film editing [1], preprocessing for remote sensing [2] 
and video postprocessing [3]. Recently, it has shown potential in com-
puter aided diagnosis by automatically generating masks that preserve 
ambiguous transition region from target lesions to healthy regions [4]. 
This advancement provides clinicians with enhanced visual delineation 
of pathological structures, thereby offering critical decision support 
in oncological diagnosis. Image matting involves generating an alpha 
matte 𝛼 by which an image 𝐼 can be separated into a foreground image 
𝐹  and a background image 𝐵. The color of the 𝑖th pixel in 𝐼 can be 
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calculated by: 
𝐼𝑖 = 𝛼𝑖𝐹𝑖 + (1 − 𝛼𝑖)𝐵𝑖 (1)

where 𝛼𝑖, ranging from 0 to 1, represents the foreground opacity of 
a pixel. Pixels with 𝛼 values of 0, 1, and those ranging from 0 to 
1 correspond to background, foreground, and opaque pixels, respec-
tively. 𝐹𝑖 and 𝐵𝑖 are the selected foreground and background pixels, 
respectively. For a three-channel image 𝐼 , the only known variable 
in Eq. (1) is 𝐼𝑖, while there are a total of seven unknown variables 
on the right side of Eq. (1). It means that image matting problem is 
ill-posed. Prior is needed to solve such ill-posed problem. Trimaps as 
prior are provided by users to roughly segment all pixels into three 
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Fig. 1. Comparison of annotations between a trimap (a–d) and an alpha matte (e–h). 
The locations of white and black pixels are annotated with values of 1 and 0 in both (d) 
and (h), respectively. The locations of purple pixels are annotated with a real number 
between 0 and 1 in (d). The locations of gray pixels are annotated with a value of 0.5 
in (h).

types: foreground pixels (shown in white), background pixels (shown 
in black), and unknown pixels (shown in gray) as shown in the second 
row of Fig.  1. Both single-objective EAs and multi-objective EAs have 
been applied to search for the optimal pixel pairs [5–7].

Prior is crucial for solving the image matting problem. Prior in 
image matting can be classified into weak prior and strong prior 
according to the number of pixels that need to be annotated and the 
range of annotation values. The production of these two types of prior 
are trimaps and detailed alpha mattes, respectively. The differences 
between them are illustrated in Fig.  1. For detailed annotated alpha 
mattes, all pixels must be assigned values between 0 and 1, a process 
that is both time-consuming and labor-intensive. Several image matting 
datasets have emerged recently, containing a large number of detailed 
annotated alpha mattes [8–10]. Many efficient deep learning-based 
matting methods have been developed by training on these datasets. 
However, the deep models in these methods exhibit high parameter 
complexity due to the large number of unknown pixels requiring alpha 
value prediction. This complexity can limit the generalization perfor-
mance of these methods, making them sensitive to the change of data 
distributions if the number and variety of detailed annotated alpha 
mattes are also limited. Especially in medical imaging, it is particularly 
challenging to produce datasets with detailed annotated alpha mattes 
on the scale of popular image matting datasets. The production of 
detailed annotated alpha mattes for medical images requires a high 
level of expert knowledge. In contrast, traditional image matting meth-
ods are not affected by data distribution, as they typically rely on 
weak priors like trimaps. For the trimaps, all or a portion of the fully 
transparent pixels and fully opaque pixels need to be labeled as 0 
and 1, respectively. The remaining pixels, considered as unknown and 
to be predicted, are uniformly assigned a value, typically 0.5. In the 
context of medical imaging, fully transparent pixels represent regions 
unrelated to the target lesion, while fully opaque pixels correspond to 
the definitive target lesion.

Among traditional image matting methods, EAs-based methods 
achieve high accuracy. The goal of EAs-based image matting problem 
is to solve the following problem [5]:

min 𝐺(𝑋) = (
𝑐
∑

𝑘=1
ℎ1𝑘(𝑥𝑘),

𝑐
∑

𝑘=1
ℎ2𝑘(𝑥𝑘),… ,

𝑐
∑

𝑘=1
ℎ𝑁𝑘(𝑥𝑘)) (2)

𝑠.𝑡. 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑐 ), 𝑐 = |𝛺𝑈 | (3)

𝑥𝑘 = (𝑥𝑘𝐹 , 𝑥𝑘𝐵), 𝑘 = 1, 2,… , |𝛺𝑈 | (4)

𝑥𝑘𝐹 ∈ {1, 2,… , |𝛺𝐹 |} (5)

𝑥𝑘𝐵 ∈ {1, 2,… , |𝛺𝐵|} (6)

where ℎ1𝑘, ℎ2𝑘,… , 𝑘𝑁𝑘, 𝑘 = 1, 2,… , 𝑐 are 𝑁 different measurement 
functions of the 𝑘th pixel . 𝛺 , 𝛺 , and 𝛺  denote the sets of unknown 
𝑈 𝐹 𝐵

2 
Fig. 2. Comparison of pixel distributions of natural images and medical images. (e)–(h) 
are the distributions of pixel intensities in (a)–(d), respectively.

pixels, foreground pixels, and background pixels, respectively, as de-
fined in the trimap. (ℎ1𝑘(𝑥𝑘), ℎ2𝑘(𝑥𝑘),… , ℎ𝑁𝑘(𝑥𝑘)) is a subproblem of 𝐺. 
The decision set of each subproblem is the combination of foreground 
pixels and background pixels. The number of subproblems is equal 
to the number of unknown pixels. The sizes of 𝛺𝑈 , 𝛺𝐹 , and 𝛺𝐵 are 
summarized in Table  1. As shown in Table  1, the size of the decision 
set and the number of subproblems are large, which constrains the 
efficiency of EAs. This constraint is a primary reason why the appli-
cation of EAs-based methods are restricted compared to other types 
of methods. Consequently, it is essential to design efficient methods 
that enhance the effectiveness of EAs-based methods to expand their 
application scenarios, such as in medical imaging.

Single-objective and multi-objective EAs have been employed to 
tackle the image matting problem [5,7,16]. In methods based on single-
objective EAs, the objective function aggregates various metrics that 
assess the quality of pixel pairs. This aggregation overlooks conflicts 
among multiple metrics, which can increase the discrepancy between 
the optimal pixel pair and the optimal solution of the objective func-
tion. Multi-objective optimization models have been proposed to miti-
gate the impact of these conflicts [6]. MOEA/D was applied to solve the 
optimization problem [5,17]. To enhance the efficiency of MOEA/D, 
the number of subproblems is reduced by selecting representatives 
from groups of subproblems that are clustered based on the spatial 
correlation of pixels. Spatial correlation is also used in single-objective 
EAs-based methods to reduce the number of subproblems [7]. However, 
the reduction of subproblems is limited by the number of groups, as it is 
essential to maintain similarity among subproblems within each group. 
The large size of the decision set still constraints the efficiency of EAs. 
Especially for medical images, as shown in Fig.  2, although the color 
distribution of pixels is less complex compared to natural images, the 
color changes in natural images are smoother and more diverse than in 
medical images. This smoothness and diversity facilitate the application 
of continuous EAs to solve the image matting problem after the problem 
has been continuousized, which can improve the efficiency of solving 
the image matting problem [18]. In contrast, for medical images, the 
decision set may contain a large number of similar solutions that 
have large difference from the optimal pixel pairs. This situation poses 
challenges for EAs in efficiently searching for the optimal solution.

The efficiency of EAs can be enhanced based on the observation 
that the spaces of objective functions of similar unknown pixels exhibit 
analogous properties. Two rows in each subfigure of Fig.  3 present 
contour plots of the objective functions for two similar unknown pixels, 
𝑥𝑖 and 𝑥𝑗 , 𝑖 ≠ 𝑗. The arrows in Fig.  3 visualize the gradients of the 
objective functions with respect to the two decision variables. Four 
objective functions are depicted in the figure. One is the aggregation 
of three objective functions, and the other three correspond to each 
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Table 1
The summary of the mean, maximum, and minimum numbers of foreground pixels, background pixels, and unknown pixels in testing data across different datasets. |𝛺𝐹 |, |𝛺𝐵 |, 
|𝛺𝑈 | denote the sets of foreground, background, and unknown pixels, respectively. 
 Dataset names Total number of images 𝛺𝐹 𝛺𝐵 𝛺𝑈

 avg avg avg max min  
 
Natrual images

AlphaMatting [11] 27 4.74e+05 4.74e+05 4.74e+05 5.75e+05 3.92e+05 
 DIM-481 [8] 1000 2.28e+06 2.28e+06 2.28e+06 3.69e+06 5.62e+05 
 Distinctions-646 [12] 1000 2.23e+06 2.23e+06 2.23e+06 7.96e+06 2.40e+05 
 SIMD [9] 116 2.36e+06 2.36e+06 2.36e+06 3.69e+06 9.21e+05 
 
Medical images

Brain-growth [13] 39 6.97e+02 1.22e+04 2.66e+03 3.70e+03 2.24e+03 
 LIDC-IDRI [14] 1609 1.36e+02 1.57e+04 5.06e+02 2.24e+03 1.95e+02 
 ISIC [15] 120 5.41e+04 1.18e+05 2.29e+04 1.28e+05 1.85e+02 
Fig. 3. Contour plots of the objective spaces for two similar unknown pixels.
individual objective function. The red stars represent non-dominated 
solutions in the aggregated objective function diagram and denote the 
best solutions in the single objective function diagrams. Since the large 
size of the decision set reduces the clarity of visualization, we randomly 
sampled 50 pixels each from the foreground and background pixel sets 
to form a subset of the pixel pair set. As shown in the figure, for 
aggregated objective function and all individual objective functions, the 
gradient directions and the distribution of objective values are largely 
consistent across the objective functions of 𝑥1 and 𝑥2. The optimal 
solutions for these two unknown pixels are also close to each other. 
This implies that the solutions and heuristic information obtained by 
EAs while optimizing one unknown pixel are beneficial for optimizing 
the other.

In this paper, we propose a framework to improve the efficiency of 
EAs from the perspective of subsets of the decision set. The key in this 
framework is to estimate a microscale subset of the decision set for a 
group of similar subproblems. Two key points need to be considered 
when estimating this subset: (1) The solutions included in this subset 
should be beneficial for EAs to find the optimal solution. (2) The size of 
the subset should be microscale. This paper proposes a dynamic fitness 
evaluation allocation strategy based on convergence and divergence 
of solutions to estimate a microscale subset online from the solution 
sets when EAs solve similar subproblems. The information about the 
explored regions of the decision set is compressed in the microscale 
subset. This compression process is guided by EAs themselves. The 
contributions of this paper are summarized as follows:

(1) We propose a framework for enhancing the efficiency of EAs in 
solving the image matting optimization problem based on a microscale 
subset of the decision set. Unlike subproblem reduction methods, this 
approach uses the microscale subset to guide the search process of EAs, 
thereby reducing the exploration cost to solve numerous subproblems 
with large-scale decision sets.
3 
(2) We propose a dynamic fitness evaluation allocation method 
based on the analysis of convergence and diversity, enabling EAs to au-
tomatically estimate the microscale subset during the problem-solving 
process.

(3) Experimental results on medical imaging datasets demonstrate 
that our method effectively improves the efficiency of EAs. Addition-
ally, results under weak prior scenarios confirm that our approach 
makes EAs efficient methods for image matting.

The remainder of this paper is organized as follows. Section 2 
discusses related work and gaps in existing methods. Sections 3 and
4 introduce our framework. Section 5 demonstrates the experimental 
validation results. Section 6 concludes the paper.

2. Related work

This section provides a concise review, categorizing existing image 
matting works into weak prior-based and strong prior-based methods 
based on the prior required for predicting alpha mattes.

2.1. Strong prior-based methods

Strong prior-based methods primarily rely on deep learning tech-
niques. A large amount of training data with detailed annotated alpha 
mattes is required to train deep neural network models. The gener-
alization performance of deep learning-based image matting methods 
is closely tied to the quality and diversity of data in image matting 
datasets. These methods emerged following the introduction of the 
Composition-1K dataset [8,19–21]. The diversity of foregrounds in the 
Composition-1K dataset is insufficient because the dataset includes 
many consecutive video frames and different cropped patches of the 
same images. Subsequently, datasets with more foreground diversity, 
such as Distinctions-646 [12] and SIMD [9], have been proposed. 
However, synthetic data is broadly produced to increase the number 
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of training data in most exiting methods due to the high complexity of 
model parameters. Consequently, the disparity between synthetic and 
real-world data significantly impacts the generalization performance 
of these methods [10]. Recently, some researchers have extended the 
use of image matting for segmenting the transition regions of lesions 
in medical images [4]. The boundaries of these transition regions are 
often blurred, ambiguous, and difficult to delineate with precise edges. 
Researchers have assumed a function mapping between the alpha 
values computed using the matting formula Eq. (1) and the uncertainty 
of whether a pixel belongs to lesions. However, these methods find 
it challenging to achieve consistent results across different imaging 
modalities constrained by the limited number of detailed annotated 
alpha mattes.

2.2. Weak prior-based methods

Methods based on weak prior refer to techniques that require prior 
that is effortless to be obtained, such as a trimap of the target image, for 
alpha matte prediction. Propagation-based methods, sampling-based 
methods, and optimization-based methods can be classified under this 
approach.

Propagation-based methods: Quadratic optimization models are con-
structed in propagation-based methods under a smoothness assump-
tion. The smoothness assumption is that the optimal pixel pairs of 
pixels in certain regions change smoothly [22]. If the alpha values 
of some pixels in these regions are known, these values can be prop-
agated to other pixels with unknown alpha values. The propagation 
of alpha values is confined to local regions in early methods [22,23]. 
More accurate prediction of alpha values are obtained by propagating 
alpha values of pixels in non-local regions that better accommodate 
the smoothness assumption [24,25]. However, the accuracy of alpha 
mattes predicted by these methods is limited because violations of 
the smoothness assumption, such as those with multiple holes, are 
widespread in natural images.
Sampling-based methods: Pixel features, such as pixel color, spatial, 
and texture information, are leveraged to find subsets of pixel pair set 
for unknown pixels in sampling-based methods [26–29]. The best pixel 
pairs are selected from these subsets using a hand-crafted function. 
Subsets of pixel pairs are found by selecting foreground and background 
pixels that have high similarity with unknown pixels [26]. Foreground 
and background pixels on the boundaries of local regions centered 
around unknown pixels are also frequently used to form pixel pair 
subsets [27,29]. For sampling-based methods, the quality of the pixel 
pairs included in the subset determines the accuracy of the predicted 
alpha mattes. If pixel pairs in the subsets have large difference from 
the optimal pairs, the accuracy of predicted alpha mattes will rapidly 
decline [6].
Optimization-based methods: Optimization-based methods select
pixel pairs from the whole pixel pair set using well-designed single-
objective functions or multi-objective functions. EAs are used to solve 
these functions due to their powerful ability of global optimization. 
Single-objective EAs are employed to search for optimal solutions based 
on an aggregation of various metric functions of pixel pairs [7,16,
18]. However, conflicts among these metric functions complicate the 
objective function space, increasing the difficulty of finding optimal 
solutions [6]. Multi-objective models were introduced to mitigate these 
conflicts [5,6]. Existing methods focus on the improvement of the 
efficiency of EAs due to the large size of the decision set and nu-
merous subproblems. Cooperative optimization framework is used to 
share heuristic information among subproblems [7,18]. Some methods 
leverage spatial correlation of pixels to reduce the number of subprob-
lems [5]. However, The improvement of efficiency for EAs through 
subproblem reduction is limited, as the number of similar subproblems 
is significantly smaller compared to the total number of subproblems.
4 
3. Microscale valid decision subset for large-scale combinatorial 
optimization problem of image matting

This section presents the concept of valid decision subsets, an algo-
rithm to estimate a microscale valid decision subsets based on similar 
subproblems, and a framework for EAs to solve the image matting 
problem based on a microscale-searching strategy.

3.1. Assumption of microscale searching

Let x1, x2,… , x𝑁  denote a group of similar subproblems and 𝐷
denote the decision set for each subproblem that is the combination of 
the indices for foreground and background pixels. A feasible solution 
 for a subproblem in the decision set is encoded as a set of vectors 
(𝑥𝐹 , 𝑥𝐵) where 𝑥𝐹 ∈ {1, 2,… , |𝛺𝐹 |} and 𝑥𝐵 ∈ {1, 2,… , |𝛺𝐵|}. A subset 
of all feasible solutions that the algorithm can find within the maximum 
number of iterations is defined as: 

Definition 1 (Decision Subset). A decision subset 𝑉  is the subset of a 
decision set 𝐷 that consists of feasible solutions found by algorithms. 

For the 𝑖th subproblem, a decision subset 𝑉 𝑖
𝑡  is obtained at the 𝑡th 

iteration. Let 𝑆 𝑖
𝑡  denote a region which can be theoretically explored 

by EAs at the 𝑡th iteration and 𝑉 𝑖
𝑡  is a subset of 𝑆 𝑖

𝑡 . Hausdorff distance 
𝑑𝐻 (⋅, ⋅) is used to calculate the distance between two sets. Let ̂ 𝑖

𝑡  be 
the set of non-dominated solutions within 𝑉 𝑖

𝑡 , we have 𝑑𝐻 (̂ 𝑖
𝑡 ,

∗) ≤
𝑑𝐻 ( ,∗),∀ ⊆ 𝑆 𝑖

𝑡 , where  is a random feasible solution and ∗

is the Pareto set. As the number of iterations increases, there exists 
a time 𝜏 that ∀𝑡 > 𝜏, 𝑃 (∗ ⊂ 𝑆 𝑖

𝑡 ) > 𝑃 (∗ ⊂ 𝑄), 𝑄 = 𝐷∕𝑆 𝑖
𝑡 , implying 

that a solution ̂ 𝑖
𝑡  closest to the Pareto set exists in the decision subset 

after the 𝜏th iteration. A decision subset can be defined as follows if it 
contains distinct ̂ 𝑖

𝑡  for every 𝑡th iteration after the 𝜏th iteration: 

Definition 2 (Valid Decision Subset). Let  denote a decision subset of 
𝐷.  is a valid decision subset if  satisfies the following conditions 
𝑑(∗, ̂) < 𝑑(∗,) ∀̂ ⊆  , ⊈  (7)

where 𝑑(⋅, ⋅) is the Hausdorff distance to calculate the difference be-
tween two sets of solutions. ∗ is the Pareto set. ̂ is a subset of  . 
is not a subset of  . 

Eq. (7) indicates that more solutions that have shorter distance to 
∗ can be found based on a valid decision subset because the Hausdorff 
distance suggests the existence of solutions closer to the optimal solu-
tion, since it is calculated using the maximum of the minimum distances 
between elements among two sets. We configure two search strategies 
for EAs: (1) Search based on 𝑣𝑖𝑡. (2) Search in the set  . For the above 
two strategies, EAs needs to search among |𝐷|− |𝑆𝑖| and || solutions, 
respectively. Although EAs under the second strategy can only search 
within a small set, the explored region of EAs intersects with that of 
EAs under the first strategy theoretically. The exploration cost of EAs is 
lower than that of the first strategy. The number of fitness evaluations 
required for searching within  is proportional to the size of  . The 
remaining fitness evaluations can be used to explore extra regions based 
on the solutions found in  .

3.2. Estimating a microscale valid decision subset

Algorithm 1 is proposed to estimate a valid decision subset for a 
group of similar subproblems. Let ̂𝑘 and ̂𝑖 denote the feasible solution 
sets of the 𝑥𝑘 and 𝑥𝑖, 𝑖, 𝑘 ∈ {1, 2,… , 𝑁}. ̂𝑘 have a relationship with ̂𝑖
as follows: 
∃𝜖 ≥ 0, 𝑑(̂𝑘, ̂𝑖) ≤ 𝜖 ∀̂𝑘 ⊆ 𝑘, ̂𝑖 ⊆ 𝑖 (8)

where 𝜖 is a real number that is close to 0. It reflects how 𝑥𝑖 is similar 
to 𝑥 . If 𝜖 is equal to 0, 𝑥  and 𝑥  can be seen as the same. Let   denote 
𝑘 𝑖 𝑘 𝑖
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a valid decision subset of the 𝑥𝑖. ̂∗
𝑖  is the Pareto set of 𝑥𝑖.  𝑖 is any 

solution set not included in 𝑖. According to Definition  2, the relation 
of ̂𝑖, ∗

𝑖 , and  𝑖 satisfies: 

𝑑(̂𝑖,∗
𝑖 ) < 𝑑( 𝑖,∗

𝑖 ) ∀̂𝑖 ⊆ 𝑖, 𝑖 ⊈ 𝑖 (9)

If we replace ̂𝑖 by ̂𝑘, Eq. (9) can be rewritten as follows by substitut-
ing Eq. (8) into Eq. (9)
∀̂𝑘 ⊆ 𝑘, ̂𝑖 ⊆ 𝑖,𝑘 ⊈ 𝑘 (10)

∃𝜖 ≥ 0, 𝑑(̂𝑘,∗
𝑖 ) ≤ 𝑑(𝑘,∗

𝑖 ) + 𝑑(𝑘, ̂𝑖) + 𝜖 (11)

Eq. (11) indicates that the solutions in 𝑖 can be estimated by ̂𝑘. 
According to Eq. (11), the upper bound of estimation accuracy is 
determined by 𝜖 and 𝑑(𝑘,∗

𝑖 ) + 𝑑(𝑘, ̂𝑖). Once 𝑘 is selected, the 
minimal 𝜖 is fixed. An accurate estimation of 𝑖 needs to find 𝑘 that 
minimizes 𝑚𝑖𝑛({𝑑(𝑘,∗

𝑖 ) + 𝑑(𝑘, ̂𝑖)|̂𝑖 ⊆ 𝑖,𝑘 ⊈ 𝑘}). It can be 
achieved by maximizing the size of the intersection of 𝑘 and 𝑖 where 
𝑘 is the complement set of 𝑘. According to Fig.  3, similar local 
regions exist in the objective spaces of similar subproblems. A large 
intersection is more likely to contain solutions in these local regions. 
𝑑(𝑘, ̂𝑖) diminishes as solutions within these local regions are included 
in 𝑘. 𝑑(𝑘,∗

𝑖 ) decreases along with 𝑑(𝑘, ̂𝑖). The maximization of 
the size of 𝑘 is equal to minimizing the size of 𝑘. It means that the 
estimation of a valid decision subset for a group of similar subproblems 
can be achieved by finding a microscale subset from the decision subset.

We estimate a valid decision subset by gradually constructing a 
subset during the optimization of subproblems in Algorithm 1. The 
non-dominated solutions are selected from the population of each 
generation to limit the increase in the size of the estimated subset. 
The size of the estimated valid decision subset is also constrained by 
controlling the allocation of fitness evaluations. Two indicators are 
introduced to control this allocation.

The first indicator utilizes the non-dominated solutions from both 
the current and history populations to measure the convergence trend 
of EAs. The indicator is defined as follows 
𝐼1 = |𝑄ℎ ∩𝑄𝑐 |∕|𝑄ℎ| (12)

where 𝑄ℎ and 𝑄𝑐 are the sets of non-dominated solutions from the 
current and history populations, respectively. A high value of 𝐼1 indi-
cates that non-dominated solutions have been barely updated in recent 
iterations. This suggests that EAs struggle to benefit from the currently 
explored region. The allocation of fitness evaluations should decrease 
as the value of 𝐼1 increases. The second indicator is used to assess 
the quality of the regions currently being explored by EAs, based on 
the repetitive evaluation of solutions across different subproblems. The 
indicator is defined as follows

𝐼2 =
1

|𝑋𝑅|

|𝑋𝑅|
∑

𝑖=1
exp(−1 ∗ 𝑐𝑖) (13)

𝑐𝑖 = 𝜎(x̂𝑖) x̂𝑖 ∈ 𝑋𝑅, 𝑖 = 1, 2,… , |𝑋𝑅| (14)

where 𝑋𝑅 is the set of solutions repetitively evaluated for different 
subproblems. 𝜎 is used to measure the quality of the regions that 
contain these solutions. We use crowding distance as 𝜎 [30]. A high 
value of 𝐼2 suggests EAs explore similar regions for these subproblems, 
as the objective function values are close. If this high value occurs early 
in the optimization process, it may result from random initialization. 
EAs can explore different regions in subsequent iterations. If this high 
value continues to appear during optimization, EAs might explore these 
similar regions in future iterations, as EAs tends to converge as the 
number of iterations increases. The aggregation of these two indicators 
is adaptively adjusted for the 𝑖th subproblem according to the number 
of iterations as follows
𝐼𝑖 = 𝜂𝑖 ⋅ 𝐼1 + (1 − 𝜂𝑖) ⋅ 𝐼2 (15)

𝜂𝑖 = 𝛾𝑐𝑖∕𝜏 (16)
5 
where 𝛾 is a decay parameter close to 1. 𝑐𝑖 is the number of iterations 
consumed by EAs to optimize the 𝑖th subproblem. The number of fitness 
evaluations to be allocated is positively proportional to 𝐼𝑖. Eq. (15) 
indicates that in the early stages of optimization, the allocation of 
fitness evaluations is primarily governed by the convergence trend. If 
EAs converge early, fitness evaluations will be preserved for EAs to 
continue search under the guidance of the valid decision subset to 
find better solutions. As iterations increase, the allocation of fitness 
evaluations is mainly controlled by the quality of the explored regions. 
If the explored region is low-quality, fitness evaluations will also be pre-
served. 𝐼𝑖 is updated after certain iterations. The algorithm to estimate 
a valid decision subset is shown in Algorithm 1.
Algorithm 1 Estimation of a Valid Decision Subset
Input: 𝛾,𝜏,𝑡1,𝑒,population size 𝑛𝑝,number of subproblems 𝑛𝑠
Output: estimated valid decision subset  ,

preserved fitness evaluations {𝑣1, 𝑣2, ..., 𝑣𝑛𝑠}
1: Initialize a population 𝑃𝑖 for each subproblem, 𝑖 = 1, 2, ..., 𝑛𝑠
2: Initialize 𝐻𝑖 as an empty set, 𝑖 = 1, 2, ..., 𝑛𝑠; 
3: Initialize 𝑟𝑖 as 1 for 𝑖 = 1, 2, ..., 𝑛𝑠
4: Initialize 𝑣𝑖 as 0 for 𝑖 = 1, 2, ..., 𝑛𝑠
5: Initialize  as empty set 
6: Allocate ⌊𝑒∕𝑛𝑠⌋ fitness evaluations for each subproblem 
7: for 𝑖 = 1 to ⌊𝑒∕(𝑛𝑠 ⋅ 𝑛𝑝 ⋅ 𝑡1)⌋ do 
8: for 𝑗 = 1 to 𝑛𝑠 do 
9: 𝑠 ← 𝑡1 ⋅ 𝑛𝑝 ⋅ 𝑟𝑗
10: 𝑣𝑗 ← 𝑣𝑗 + 𝑡1 ⋅ 𝑛𝑝 ⋅ (1 − 𝑟𝑗 )
11: if 𝑠 < 𝑛𝑝 then 
12: continue
13: end if
14: Update 𝑃𝑗 by EAs with 𝑠 fitness evaluations 
15: Calculate 𝐼1 using Eq. (12) with 𝑃𝑗 and 𝐻𝑗
16: Calculate 𝐼2 using Eq. (13) with 𝑃𝑗 and 𝐻1,𝐻2, ...,𝐻𝑛𝑠
17: Calculate 𝑟𝑗 using Eq. (15) with 𝐼1 and 𝐼2
18: 𝐻𝑗 ← 𝐻𝑗 ∪ 𝑃𝑗
19: Obtain the non-dominated solutions from 𝑃𝑗 and add them into 
20: end for
21: end for
22: return  , {𝑣1, 𝑣2, ..., 𝑣𝑛𝑠}

Let all subproblems be clustered into 𝑀 groups, with each group 
containing 𝑛𝑖, 𝑖 = 1, 2,… ,𝑀 subproblems. The size of the valid decision 
subset estimated by Algorithm 1 is less than the number of fitness 
evaluations used for 𝑛𝑖 subproblems: 

|| ≤ 𝑛𝑖 ⋅ 𝑒. (17)

Let 𝐷 denote the decision set. The size of the 𝐷 is |𝐷| = |𝛺𝐹 | ⋅ |𝛺𝐵|. 
Let 𝜂 denote the ratio of sizes of the valid decision subset to that of the 
decision set. 𝜂 can be written as: 

𝜂 =
||
|𝐷|

≤ 𝑒
|𝛺𝐹 | ⋅ |𝛺𝐵|

(18)

In practice, the number of fitness evaluations is far less than |𝛺𝐹 |⋅|𝛺𝐵|. 
The value of 𝜂 will become much smaller than 1 as the number of 
unknown pixels increases. Therefore, the size of the estimated valid 
decision subset  is microscale.

4. Framework of microscale-searching evolutionary optimization 
for image matting

This section presents a framework called microscale-searching evo-
lutionary optimization (MSEO) for EAs to solve the image matting 
problem based on microscale-searching as shown in Fig.  5. Microscale-
searching refers to the process of searching for the best pixel pairs 
under the guidance of the microscale valid decision subset estimated by
Algorithm 1. Fig.  4 illustrates the differences between the microscale-
searching evolutionary optimization image matting method and exist-
ing EAs-based matting methods. Assume that the EA is used to optimize 
three similar subproblems: 𝑥 , 𝑥 , and 𝑥 . Fig.  4 depicts solutions found 
1 2 3
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Fig. 4. The black rectangle represents the decision set. Red, green, and yellow solid 
circles represent feasible solutions for subproblems 𝑥1, 𝑥2, and 𝑥3, respectively. Yellow 
diamonds also represent feasible solutions for 𝑥3. Solid lines indicate the EA’s search 
process. Three different colored dashed ellipses denote the optimal valid decision 
subsets for different subproblems. A yellow solid ellipse represents the valid decision 
subset estimated from the feasible solutions of the other two subproblems.

during the optimization of 𝑥3 as yellow circles and yellow diamonds. 
The diamond specifically represent solutions within the valid decision 
subset. This subset is estimated based on the solutions of 𝑥1 and 𝑥2
(shown as green and brown circles, respectively), leveraging subprob-
lem similarity. We assume the EA can find better solutions using fewer 
evaluations since the valid decision subset is close to the optimal 
solution for 𝑥3.

According to Definition  2, solutions within a valid decision subset 
are supposed to be closer to the Pareto set than other solutions. The 
allocation of fitness evaluations should be prioritized to search in the 
valid decision subset. Fitness evaluations should also be allocated to 
search outside the valid decision subset considering the estimation 
error between the estimated valid decision subset and the optimal 
valid decision subset. EAs can search outside the valid decision subset 
more efficiently under the guidance of the valid decision subset, as 
repetitive evaluations can be reduced. In the framework, EAs search 
alternatively inside and outside the valid decision subset. The best 
solution found in the valid decision subset serves as the initial solution 
for EAs to search outside the valid decision subset. Non-dominated 
solutions found outside the valid decision subsets are added into the 
valid decision subset.

On the other hand, the similarity among subproblems within the 
same group is inconsistent. For subproblems with lower similarity, the 
deviation of estimated valid decision subset from the optimal valid 
decision subset tends to be larger compared to those with higher 
similarity. The allocation of fitness evaluations should be prioritized to 
search outside the valid decision subset. The similarity of subproblems 
is calculated using the Euclidean distance of computer vision feature 
vectors of pixels. As suggested in [25], the feature vector 𝑓𝑖 of the x𝑖
is defined as 𝑓𝑖 = (𝑟𝑖, 𝑔𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖)𝑇 , where (𝑟𝑖, 𝑔𝑖, 𝑏𝑖)𝑇  and (𝑥𝑖, 𝑦𝑖)𝑇  are 
the RGB color vector and coordinate vector of the 𝑖th unknown pixel. 
Subproblems with smaller distance values exhibit higher similarity. In 
the framework, a roulette wheel method determines whether fitness 
evaluations are allocated to search within or outside the valid decision 
subset based on a probability vector 𝑊 . 𝑊  is obtained by the feature 
vectors as follows:

𝑓 = 1
𝑛𝑗

𝑛𝑗
∑

𝑖=1
𝑓𝑖, 𝑤𝑖 =

‖𝑓𝑖 − 𝑓‖2
∑𝑛𝑗

𝑘=1 ‖𝑓𝑘 − 𝑓‖2
(19)

𝑊 = (𝑤1, 𝑤2,… , 𝑤𝑛) (20)

𝑓 is the centroid vector of feature vectors. Subproblems that are far 
from the centroid vector are more likely to be selected to search outside 
the valid decision subsets.

The algorithm to find the best solution with the valid decision subset 
is shown in Algorithm 2.

In the algorithm, EAs search alternatively in and out of the valid 
decision subset according to 𝑎  (Lines 12–18) every 𝑡  iterations. EAs 
𝑖 2

6 
Fig. 5. Framework of microscale-searching evolutionary optimization.

Fig. 6. Convergence comparison of MOEA/D-MCD and MS-MOEA/D. (a) and (b) 
present the changes of GD metric for unknown pixels with the highest similarity. (c) 
and (d) present the changes of GD metric for unknown pixels with the lowest similarity. 
The curves in the figure represent the average GD changes over 30 experiments, while 
the bandwidth indicates the variance of the GD changes.

uses the population updated in the subset as the initial solution if EAs 
search out of the valid decision subset (Line 13). EAs are not guided by 
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Fig. 7. Visual comparison on samples from Brain-growth, LIDC, and ISIC datasets. (a)–(c) and (f)–(h) are original image, trimap, ground truth alpha matte, respectively. (d)–(e) 
and (i)–(j) are predicted alpha mattes of MOEA/D-MCD, MS-MOEA/D, respectively. The red arrows indicate regions where the differences in the predicted alpha mattes from these 
methods are obvious.
the valid decision subset if optimizing subproblems with low similarity 
(Line 10). Finally, the best pixel pairs are selected from the non-
dominated solutions of the three populations based on an aggregate 
evaluation function (Line 22).

5. Experiments

This section will present several experiments to address the follow-
ing questions:

Q1: What is the effect of the microscale-searching strategy on the 
performance of EAs in solving the medical image matting problem?

Q2: How does the EAs based on the microscale-searching strategy 
perform in weak prior scenarios?

E1: The microscale-searching strategy-based EAs are compared with 
the original versions of EAs on three medical datasets from the perspec-
tives of matting metrics, visualization results, and convergence trends 
(for answering Q1).

E2: The microscale-searching strategy-based EAs are compared with 
other image matting methods under different weak prior scenarios (for 
answering Q2).

5.1. Experimental setup

In this study, three medical image matting datasets, Brain-growth 
of the QUBIQ dataset [13], LIDC-IDRI [14], and ISIC [15], and a 
natural image matting dataset AlphaMatting [11] are used to evaluate 
the performance of different methods. Brain-growth consists of low-
intensity contrast T2-W MR images for the newborn brain’s white 
matter tissue myelination process. LIDC-IDRI dataset includes thoracic 
CT scans for lung nodules diagnosis. ISIC is a large-scale dermoscopic 
images dataset consisting of 10,000 images. 39 images of Brain-growth, 
1609 images of LIDC-IDRI, and 120 images of ISIC are selected and 
labeled alpha mattes [4]. 27 natural images are available for evaluation 
in AlphaMatting.

We select MOEA/D-MCD [5] to be embedded into the framework 
for our experiments, which we designate MS-MOEA/D. MOEA/D-MCD 
has been verified as a method based on multi-objective evolutionary 
algorithms capable of accurately predicting alpha mattes. However, 
some solutions that contribute negatively to the whole optimization 
are repeatedly evaluated when similar subproblems are optimized. We 
verify the effectiveness of the microscale-searching strategy in our 
experiments by comparing the performance of MS-MOEA/D against 
MOEA/D-MCD. The parameter settings for the proposed method are 
as follows: The parameters of MOEA/D-MCD are set according to the 
recommended settings. In Algorithm 1, the decay factor 𝛾 is set to 0.99, 
with 𝜏 and 𝑡1 set to 10 and 5, respectively. In Algorithm 2, 𝑡2 is set to 
5.
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Algorithm 2 Scheme of Allocation of FEs among Different Subproblems
Input:  ,𝑛𝑠,𝑛𝑝,𝑡2,𝐷,𝑊 ,{𝑣1, 𝑣2, ..., 𝑣𝑛𝑠};
Output: the best pixel pairs 𝑝∗1 , 𝑝∗2 , ..., 𝑝∗𝑛𝑠 ; 
1: Initialize 𝑎𝑖 = 0, 𝑖 = 1, 2, ..., 𝑛𝑠
2: Initialize populations 𝑃 𝑖𝑛

𝑖 , 𝑃 𝑜𝑢𝑡
𝑖 , 𝑃 𝑜𝑢𝑡

𝑖  for each subproblem, 𝑖 = 1, 2, ..., 𝑛
3: while 𝑣𝑖 ≥ 𝑛𝑝, 𝑖 = 1, 2, ..., 𝑛 do 
4: for 𝑖 = 1 to 𝑛𝑠 do 
5: if 𝑣𝑖 < 𝑛𝑝 then 
6: continue
7: end if
8: 𝑖𝑑𝑥 ← the index of a decision vector selected by roulette-wheel 

selection based on 𝑊
9: if 𝑖 == 𝑖𝑑𝑥 then 
10: Update 𝑃 𝑜𝑢𝑡

𝑖  by searching in 𝐷
11: else 
12: if 𝑎𝑖 == 1 then 
13: Use 𝑃 𝑖𝑛

𝑖  as the initial population to update 𝑃 𝑜𝑢𝑡
𝑖  by searching in 

𝐷 and Update 
14: 𝑎𝑖 ← 0
15: else 
16: Update 𝑃 𝑖𝑛

𝑖  by searching in 
17: 𝑎𝑖 ← 1
18: end if
19: end if
20: 𝑣𝑖 ← 𝑣𝑖 − 𝑡2 ⋅ 𝑛𝑝
21: if 𝑣𝑖 < 𝑛𝑝 then 
22: Obtain the best pixel pair 𝑝∗𝑖  from the non-dominated solutions of 

𝑃 𝑖𝑛
𝑖 , 𝑃 𝑜𝑢𝑡

𝑖 , 𝑃 𝑜𝑢𝑡
𝑖

23: end if
24: end for
25: end while
26: return 𝑝∗1 , 𝑝

∗
2 , ..., 𝑝

∗
𝑛𝑠

Three measurement functions are used as objectives suggested 
by [5]. For the 𝑖th unknown pixel, selected 𝑝th foreground pixel, and 
𝑞 background pixel, ℎ1𝑖(𝑝, 𝑞) is color chromatic criteria, ℎ2𝑖(𝑝) is spatial 
closeness criteria for foreground pixels, and ℎ3𝑖(𝑞) is spatial closeness 
criteria for background pixels. The formulations of three criteria are 
presented as:
ℎ1𝑖(𝑝, 𝑞) = ‖(𝐶𝑈 )𝑖 − 𝛼̂(𝐶𝐹 )𝑝 − (1 − 𝛼̂)(𝐶𝐵)𝑞‖2 (21)

ℎ2𝑖(𝑝) = ‖(𝑆𝑈 )𝑖 − (𝑆𝐹 )𝑝‖2 (22)

ℎ3𝑖(𝑞) = ‖(𝑆𝑈 )𝑖 − (𝑆𝐹 )𝑝‖2. (23)

(𝐶𝑥)𝑖 and (𝑆𝑥)𝑖 are the 𝑖th color vector and the 𝑖th spatial coordinate 
vector of the pixel in 𝑥, 𝑥 ∈ {𝐹 ,𝐵, 𝑈}, where 𝐹 ,𝐵, 𝑈 represent the sets 
of foreground pixels, background pixels, and unknown pixels, respec-
tively. According to [5], the combination of measurement functions 𝐻
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Table 2
The results of the mean and standard deviation for all samples in three datasets. 
Numbers in boldface indicate the best results.
 (a) Brain-growth  
 MOEA/D-MCD MS-MOEA/D  
 MSE 0.0744 ± 0.0237 0.0740 ± 0.0237 
 SAD 0.5634 ± 0.1016 0.5619 ± 0.1005 
 CON 0.8834 ± 0.2851 0.8758 ± 0.2836 
 GRAD 0.5684 ± 0.1050 0.5667 ± 0.1035 
 (b) LIDC  
 MOEA/D-MCD MS-MOEA/D  
 MSE 0.0262 ± 0.0250 0.0262 ± 0.0250 
 SAD 0.0525 ± 0.0397 0.0524 ± 0.0396 
 CON 0.0788 ± 0.0767 0.0786 ± 0.0765 
 GRAD 0.0507 ± 0.0395 0.0507 ± 0.0394 
 (c) ISIC  
 MOEA/D-MCD MS-MOEA/D  
 MSE 0.1784 ± 0.0706 0.1765 ± 0.0710 
 SAD 7.5443 ± 6.5885 7.4518 ± 6.5220 
 CON 4.8961 ± 2.4095 4.8656 ± 2.4076 
 GRAD 7.7882 ± 6.7793 7.6810 ± 6.6958 

Table 3
Number of samples on the Brain-growth dataset for which the proposed method is 
significantly better than, equal to, or significantly worse than MOEA/D-MCD.
 MSE SAD CON GRAD  
 29/0/10 27/0/12 30/0/9 27/0/12 

is defined as: 

𝐻(ℎ1𝑖, ℎ2𝑖, ℎ3𝑖) =
ℎ1𝑖 ⋅ 0.5(ℎ2𝑖 + ℎ3𝑖)

1 − (1 − ℎ1𝑖) ⋅ (1 − 0.5 ⋅ (ℎ2𝑖 + ℎ3𝑖))
(24)

𝐻 is used to select the best pixel pairs from the non-dominated solu-
tions of the final population.

5.2. Effect of microscale-searching strategy

In this subsection, we validate the effect of the microscale-searching 
strategy by comparing MOEA/D-MCD [5] and MOEA/D-MCD based on 
microscale-searching strategy (MS-MOEA/D). Four metrics, MSE, SAD, 
CON, and CON, are used to measure the quality of predicted alpha 
mattes. MSE and SAD measure the numerical difference between the 
predicted alpha mattes and the ground truth. CON and GRAD assess the 
visual difference between the predicted alpha mattes and the ground 
truth. Small values indicate high-quality predicted alpha mattes for 
these four metrics.

Table  2 summarize the mean and standard deviation of the matting 
metrics for all methods across all datasets. The best results are indi-
cated in boldface. The result indicates that the microscale-searching 
strategy enables MOEA/D-MCD to predict alpha mattes with higher 
accuracy. The improvement of MOEA/D-MCD is not significant on the 
LIDC dataset. This is because images in the LIDC contain the fewest 
unknown pixels among the three datasets, which reduces the number 
of similar subproblems. Consequently, the diversity of solutions in 
the valid decision subset decreases, making it difficult to effectively 
enhance the efficiency of MOEA/D-MCD. We conducted the Wilcoxon 
rank-sum test on the results from 30 independent experiments on the 
Brain-growth dataset to demonstrate the statistical superiority of the 
proposed method. Table  3 presents the number of samples, out of a 
total of 39, for which the proposed method is significantly better than, 
equal to, or significantly worse than MOEA/D-MCD across four matting 
metrics. The results in Table  3 indicate that the proposed method is 
significantly better than MOEA/D-MCD on a majority of samples for 
these four matting metrics.

Fig.  7 visualizes several predicted alpha mattes. It shows that the 
microscale-searching strategy can improve the accuracy of predicted 
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alpha values of regions where the foreground and background are very 
similar.

We demonstrate the enhancement in the EA’s optimization effi-
ciency due to the microscale-searching strategy by tracking the change 
in Generational Distance (GD) during optimization. GD provides a more 
direct reflection of solution quality compared to matting metrics. The 
enhancement is related to the valid decision subsets according to the 
proposed method which are estimated based on subproblem similarity. 
We observed the GD changes using two groups selected from two 
samples case01 and case08 in the Brain-growth dataset.

The curves in Fig.  6 represent the average GD changes over 30 
independent experiments, while the bandwidth indicates the variance 
of the GD changes. A small value of GD indicates that the solutions 
found by the algorithm are closer to the reference set. The Pareto fronts 
of subproblems are used as the reference sets. The results in Fig.  6 show 
that without the aid of the microscale-searching strategy, GD cannot di-
verge to a small value when MOEA/D-MCD optimizing the two groups 
of subproblems in case01 and case08 with the highest similarity. Under 
the guidance of the microscale-searching strategy, GD can converge to 
a small value smoothly. This indicates that the microscale-searching 
strategy enables MOEA/D-MCD to find high-quality solutions with 
fewer fitness evaluations. During the optimization of the group of sub-
problems with the lowest similarity in case08, although the effect of the 
estimated valid decision subset is limited by the low similarity of sub-
problems, the small size of valid decision subset ensures that there are 
still sufficient fitness evaluations for MOEA/D-MCD to search beyond 
the valid decision subset to converge. Overall, the microscale-searching 
strategy can facilitate EAs find high-quality solutions, resulting in more 
accurate alpha mattes.

5.3. Performance on weak-prior scenarios

In this section, we demonstrate that microscale-searching strategy 
can make MOEA/D-MCD an efficient method in weak prior scenarios 
by comparing different image matting methods and the microscale-
searching-based MOEA/D-MCD. The strong prior-based methods in-
clude DIM [8], FBA [31], DiffMatte [32] and MedicalMatting [4]. DIM, 
FBA, and DiffMatte are pre-trained on the Composition-1K dataset [8]. 
The MedicalMatting models pre-trained on the Brain-growth, LIDC, and 
ISIC datasets are denoted as MM†, MM‡, and MM′, respectively. The 
weak prior methods include: (1) Propagation-based methods: Closed-
Form [22], KNN [25], Information-Flow [33]. (2) Sampling-based 
methods: Bayesian Matting [34], PDMS [6]. We construct a weak 
prior dataset in the following manner: randomly selecting 27 images 
from one medical dataset and combining them with the AlphaMatting 
dataset to form a new dataset. The prediction of alpha mattes for this 
dataset represents a weak prior scenario for MedicalMatting, DIM, and 
FBA, as the training data for MedicalMatting does not include natural 
images, and the training data for DIM and FBA does not include medical 
images. When predicting the mask of the target image, only a trimap 
is provided.

The sub-tables within Table  4 represent the results of data from the 
Brain-growth, LIDC, and ISIC datasets combined with the natural image 
dataset, respectively. The results of Table  4 show that the proposed 
method achieve the best result on MSE over all methods. MSE reflects 
the difference between the predicted alpha matte and the ground truth 
alpha matte. Compared to SAD, MSE is more sensitive to variations in 
these differences. This result indicates that most weak-prior methods 
can predict the alpha matte more accurately than other methods. Most 
weak prior methods achieve results comparable to, or even better than, 
those of deep learning-based methods on MSE. One reason is that 
the deep learning-based methods were not trained on datasets that 
have data with the same distribution as test datasets. Additionally, 
the efficiency of weak prior methods is less affected by variations in 
data distribution compared to deep learning-based methods. PDMS is 
the best-performing sampling-based method. The strong performance of 
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Table 4
The results of the mean and standard deviation for all samples in three datasets. Numbers in boldface indicate the best results.
 (a) Brain-growth  
 Methods MSE SAD CON GRAD  
 DIM 0.0530 ± 0.0012 2.2397 ± 0.0073 2.4806 ± 0.0136 2.1518 ± 0.0076  
 FBA 0.0725 ± 0.0031 1.7979 ± 0.0120 1.7552 ± 0.0253 1.7624 ± 0.0122  
 MM‡ 0.3372 ± 0.0025 20.1287 ± 0.0140 17.9438 ± 0.0307 20.3772 ± 0.0143  
 MM′ 0.3746 ± 0.0036 22.0245 ± 0.0151 20.8340 ± 0.0356 22.0070 ± 0.0153  
 DiffMatte 0.1695 ± 0.0827 0.8596 ± 0.2528 0.8746 ± 0.2588 1.4369 ± 0.5392  
 Closed-Form 0.0500 ± 0.0013 2.9354 ± 0.0058 5.0067 ± 0.0134 2.8837 ± 0.0062  
 KNN 0.0564 ± 0.0007 3.6230 ± 0.0050 4.1823 ± 0.0098 3.5249 ± 0.0054  
 Information-Flow 0.0464 ± 0.0013 2.7059 ± 0.0054 2.5809 ± 0.0103 2.6365 ± 0.0057  
 Bayesian 0.1548 ± 0.0016 14.8008 ± 0.0065 17.5435 ± 0.0114 14.9725 ± 0.0067  
 PDMS 0.0443 ± 0.0016 2.7769 ± 0.0057 2.6824 ± 0.0131 2.6692 ± 0.0060  
 MS-MOEA/D 0.0426 ± 0.0015 2.5310 ± 0.0052 2.4297 ± 0.0119 2.4392 ± 0.0055  
 (b) LIDC  
 Methods MSE SAD CON GRAD  
 DIM 0.0339 ± 0.0042 1.9666 ± 0.0049 1.9250 ± 0.0164 1.8745 ± 0.0048  
 FBA 0.0232 ± 0.0072 1.4407 ± 0.0051 1.2064 ± 0.0151 1.3984 ± 0.0052  
 MM† 0.3300 ± 0.0083 19.8434 ± 0.0080 20.6576 ± 0.0199 19.7624 ± 0.0081  
 MM′ 0.3862 ± 0.0053 21.5872 ± 0.0123 19.0615 ± 0.0267 21.5728 ± 0.0125  
 DiffMatte 0.1480 ± 0.1282 0.1194 ± 0.0661 0.1197 ± 0.0683 0.2568 ± 0.2373  
 Closed-Form 0.0257 ± 0.0015 2.6831 ± 0.0057 4.5389 ± 0.0085 2.6265 ± 0.0058  
 KNN 0.0422 ± 0.0030 3.3692 ± 0.0053 3.6968 ± 0.0106 3.2625 ± 0.0053  
 Information-Flow 0.0252 ± 0.0006 2.4565 ± 0.0021 2.1586 ± 0.0042 2.3821 ± 0.0021  
 Bayesian 0.1649 ± 0.0043 14.5393 ± 0.0071 17.1334 ± 0.0113 14.7074 ± 0.0071  
 PDMS 0.0193 ± 0.0022 2.5187 ± 0.0049 2.2635 ± 0.0079 2.4071 ± 0.0048  
 MS-MOEA/D 0.0184 ± 0.0028 2.2751 ± 0.0040 2.0356 ± 0.0095 2.1797 ± 0.0041  
 (c) ISIC  
 Methods MSE SAD CON GRAD  
 DIM 0.2558 ± 0.0141 21.0238 ± 0.3167 21.2210 ± 0.2194 20.6760 ± 0.3327  
 FBA 0.3574 ± 0.0176 24.2613 ± 0.8494 16.8167 ± 0.1655 24.6705 ± 0.8887  
 MM† 0.2576 ± 0.0117 21.0875 ± 0.3235 21.2290 ± 0.2150 20.6894 ± 0.3093 
 MM‡ 0.3644 ± 0.0196 24.6034 ± 1.0938 16.8411 ± 0.2019 25.0629 ± 1.1702  
 DiffMatte 0.1451 ± 0.1019 6.6806 ± 6.9632 3.0475 ± 1.8488 6.7881 ± 7.1212  
 Closed-Form 0.1350 ± 0.0039 6.9599 ± 0.7856 7.0953 ± 0.2204 7.0338 ± 0.8047  
 KNN 0.0955 ± 0.0044 6.6171 ± 0.4830 7.1436 ± 0.3343 6.5674 ± 0.5003  
 Information-Flow 0.1289 ± 0.0089 6.4981 ± 0.9441 5.1209 ± 0.3253 6.5239 ± 0.9852  
 Bayesian 0.2557 ± 0.0101 20.8585 ± 1.3120 19.2447 ± 0.1555 21.2693 ± 1.3133  
 PDMS 0.1042 ± 0.0079 6.4836 ± 0.6320 4.9668 ± 0.3318 6.5051 ± 0.6405  
 MS-MOEA/D 0.0939 ± 0.0034 5.9425 ± 0.5536 4.3701 ± 0.1764 5.9452 ± 0.5438  
Table 5
Mean and standard deviation of matting metrics for predicted alpha mattes from all samples of Brain-growth dataset under different settings 
of 𝑡1 and 𝑡2.
 𝑡1∕𝑡2 MSE SAD CON GRAD  
 5/5 7.350E−02(2.348E−02) 5.598E−01(9.783E−02) 8.548E−01(2.742E−01) 5.646E−01(1.009E−01) 
 5/10 7.356E−02(2.341E−02) 5.602E−01(9.742E−02) 8.544E−01(2.727E−01) 5.652E−01(1.000E−01) 
 5/15 7.363E−02(2.305E−02) 5.606E−01(9.645E−02) 8.548E−01(2.727E−01) 5.654E−01(9.901E−02) 
 10/5 7.361E−02(2.355E−02) 5.607E−01(9.935E−02) 8.613E−01(2.774E−01) 5.657E−01(1.022E−01) 
 10/10 7.360E−02(2.354E−02) 5.603E−01(9.764E−02) 8.607E−01(2.753E−01) 5.652E−01(1.006E−01) 
 10/15 7.357E−02(2.340E−02) 5.606E−01(9.825E−02) 8.616E−01(2.737E−01) 5.655E−01(1.011E−01) 
 15/5 7.371E−02(2.348E−02) 5.609E−01(9.934E−02) 8.676E−01(2.794E−01) 5.658E−01(1.025E−01) 
 15/10 7.328E−02(2.318E−02) 5.594E−01(9.884E−02) 8.641E−01(2.747E−01) 5.643E−01(1.017E−01) 
 15/15 7.356E−02(2.329E−02) 5.606E−01(9.924E−02) 8.670E−01(2.782E−01) 5.654E−01(1.023E−01) 
PDMS indicates that designing efficient methods to find higher quality 
non-dominated solution sets can improve the accuracy of predicted 
alpha mattes, as PDMS uses the non-dominated solution set as the 
sampling subset of pixel pairs. MS-MOEA/D achieved the best results 
in all weak prior scenarios. This indicates that the microscale-searching 
strategy can make EA an efficient matting method in weak prior 
scenarios.

5.4. Parameter investigation

This subsection presents the results for the proposed method with 
varying values of 𝑡1 and 𝑡2 to further investigate its underlying mecha-
nism. Table  5 summarizes the mean and standard deviation of matting 
9 
metrics for the predicted alpha mattes generated by the proposed 
method on all samples of the Brain-growth dataset. The parameter 
𝑡2 is proportional to the total number of iterations allocated for the 
EA to search for solutions outside the valid decision subset. Table  5 
indicates that when 𝑡1 equals 10 and 15, the allocation of an excessive 
number of fitness evaluations leads to a decrease in the accuracy of the 
predicted alpha mattes. This also suggests that the valid decision subset 
contains better solutions compared to other regions of the decision 
set. When 𝑡1 = 5, the algorithm obtains better alpha mattes if more 
fitness evaluations are allocated outside the valid decision subset. This 
occurs because 𝑡1 is related to the diversity of solutions within the 
valid decision subset. A small value of 𝑡  reduces the diversity of 
1
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solutions within this subset. An increase in 𝑡1 enriches the diversity of 
solutions within the valid decision subset. However, this also raises the 
exploration cost for the valid decision subset. Consequently, the quality 
of the solutions can be unstable, as evident from the results when 𝑡1 =
15.

6. Conclusion

In this paper, we propose a framework for MOEAs to solve the med-
ical image matting problem based on a microscale-searching strategy. 
The exploration cost of MOEAs in large-scale decision set is reduced 
by guiding EAs to search in the valid decision subset estimated in 
the framework. Experimental results demonstrate that EAs with the 
microscale-searching strategy are able to find competitive solutions 
with fewer FEs compared to the results obtained solely by EAs. The 
alpha mattes predicted by the EAs with the microscale-searching strat-
egy are more accurate than those of EAs-based methods. In the future, 
we will try to design more efficient EAs-based approaches based on the 
concept of microscale valid decision subsets for other computer vision 
tasks.
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