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ARTICLE INFO ABSTRACT

Keywords:
Medical image matting

Image matting is to predict alpha mattes that reflects the opacity of images, recently showing potential in
identifying transition regions of lesions in computer aided diagnosis. Image matting can be modeled as a
large-scale combinatorial optimization problem that has numerous subproblems. Evolutionary algorithms (EAs)
have been applied to predict accurate alpha mattes. The advantage of EAs-based methods is the ability to
predict alpha mattes with weak prior like trimaps that provide value of opacity for pixels effortless to annotate
compared to recent deep learning-based methods. However, it is challenging for EAs to solve the problem
efficiently due to numerous subproblems and the large size of the decision set. Based on the observation that
the similarity of subproblems correlates with the similarity of their objective spaces, this paper proposes a
method for estimating a microscale subset of the decision set from the solving process of similar subproblems.
A framework is designed to reduce the exploration cost of EAs in the large-scale decision set by guiding EAs
to search in this estimated microscale subsets. Three medical image matting datasets are used to validate our
method’s improvement in the efficiency of evolutionary algorithms. Experimental results demonstrate that EAs
embedded in the proposed framework obtain the best prediction of alpha mattes on medical images and also
in weak scenarios involving natural images. Comparative experimental results on multi-objective performance
metrics indicate that our method is capable of finding superior solutions using fewer fitness evaluations. The
contribution of our work is to make EAs an efficient approach to solving the medical image matting problem
with weak prior.

Microscale-searching
Large-scale combinatorial optimization

1. Introduction calculated by:
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Image matting is a fundamental task for computer vision, playing

a critical role in film editing [1], preprocessing for remote sensing [2]
and video postprocessing [3]. Recently, it has shown potential in com-
puter aided diagnosis by automatically generating masks that preserve
ambiguous transition region from target lesions to healthy regions [4].
This advancement provides clinicians with enhanced visual delineation
of pathological structures, thereby offering critical decision support
in oncological diagnosis. Image matting involves generating an alpha
matte « by which an image I can be separated into a foreground image
F and a background image B. The color of the ith pixel in I can be
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where ¢;, ranging from 0 to 1, represents the foreground opacity of
a pixel. Pixels with « values of 0, 1, and those ranging from 0 to
1 correspond to background, foreground, and opaque pixels, respec-
tively. F; and B, are the selected foreground and background pixels,
respectively. For a three-channel image I, the only known variable
in Eq. (1) is I;, while there are a total of seven unknown variables
on the right side of Eq. (1). It means that image matting problem is
ill-posed. Prior is needed to solve such ill-posed problem. Trimaps as
prior are provided by users to roughly segment all pixels into three
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(d) Alpha Matte

(e) Foreground (h) Trimap

Fig. 1. Comparison of annotations between a trimap (a—d) and an alpha matte (e-h).
The locations of white and black pixels are annotated with values of 1 and 0 in both (d)
and (h), respectively. The locations of purple pixels are annotated with a real number
between 0 and 1 in (d). The locations of gray pixels are annotated with a value of 0.5
in (h).

types: foreground pixels (shown in white), background pixels (shown
in black), and unknown pixels (shown in gray) as shown in the second
row of Fig. 1. Both single-objective EAs and multi-objective EAs have
been applied to search for the optimal pixel pairs [5-7].

Prior is crucial for solving the image matting problem. Prior in
image matting can be classified into weak prior and strong prior
according to the number of pixels that need to be annotated and the
range of annotation values. The production of these two types of prior
are trimaps and detailed alpha mattes, respectively. The differences
between them are illustrated in Fig. 1. For detailed annotated alpha
mattes, all pixels must be assigned values between 0 and 1, a process
that is both time-consuming and labor-intensive. Several image matting
datasets have emerged recently, containing a large number of detailed
annotated alpha mattes [8-10]. Many efficient deep learning-based
matting methods have been developed by training on these datasets.
However, the deep models in these methods exhibit high parameter
complexity due to the large number of unknown pixels requiring alpha
value prediction. This complexity can limit the generalization perfor-
mance of these methods, making them sensitive to the change of data
distributions if the number and variety of detailed annotated alpha
mattes are also limited. Especially in medical imaging, it is particularly
challenging to produce datasets with detailed annotated alpha mattes
on the scale of popular image matting datasets. The production of
detailed annotated alpha mattes for medical images requires a high
level of expert knowledge. In contrast, traditional image matting meth-
ods are not affected by data distribution, as they typically rely on
weak priors like trimaps. For the trimaps, all or a portion of the fully
transparent pixels and fully opaque pixels need to be labeled as 0
and 1, respectively. The remaining pixels, considered as unknown and
to be predicted, are uniformly assigned a value, typically 0.5. In the
context of medical imaging, fully transparent pixels represent regions
unrelated to the target lesion, while fully opaque pixels correspond to
the definitive target lesion.

Among traditional image matting methods, EAs-based methods
achieve high accuracy. The goal of EAs-based image matting problem
is to solve the following problem [5]:

¢ ¢ ¢
min G(X) = (Y} (e, D hoxi)s s D By 2
k=1 k=1 k=1

st X =(x1,%9,...,%.),¢ = |[Qy] 3)
xp = (g, xgp) bk =1,2,...,|Qy] 4

xer €{1,2,...,12F]} (5)

xg €{1,2,...,1923]} (6)
where Ay, hyp, ... kyk = 1,2,...,c are N different measurement

functions of the kth pixel . Q, Qf, and 25 denote the sets of unknown
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(e) Natural im-
age image

(f) MRI (g) CT (h) Dermoscopic

Fig. 2. Comparison of pixel distributions of natural images and medical images. (e)-(h)
are the distributions of pixel intensities in (a)-(d), respectively.

pixels, foreground pixels, and background pixels, respectively, as de-
fined in the trimap. (h;(x;), hog(xp), ..., Ay (x;)) is a subproblem of G.
The decision set of each subproblem is the combination of foreground
pixels and background pixels. The number of subproblems is equal
to the number of unknown pixels. The sizes of Qy, 2, and Qj are
summarized in Table 1. As shown in Table 1, the size of the decision
set and the number of subproblems are large, which constrains the
efficiency of EAs. This constraint is a primary reason why the appli-
cation of EAs-based methods are restricted compared to other types
of methods. Consequently, it is essential to design efficient methods
that enhance the effectiveness of EAs-based methods to expand their
application scenarios, such as in medical imaging.

Single-objective and multi-objective EAs have been employed to
tackle the image matting problem [5,7,16]. In methods based on single-
objective EAs, the objective function aggregates various metrics that
assess the quality of pixel pairs. This aggregation overlooks conflicts
among multiple metrics, which can increase the discrepancy between
the optimal pixel pair and the optimal solution of the objective func-
tion. Multi-objective optimization models have been proposed to miti-
gate the impact of these conflicts [6]. MOEA/D was applied to solve the
optimization problem [5,17]. To enhance the efficiency of MOEA/D,
the number of subproblems is reduced by selecting representatives
from groups of subproblems that are clustered based on the spatial
correlation of pixels. Spatial correlation is also used in single-objective
EAs-based methods to reduce the number of subproblems [7]. However,
the reduction of subproblems is limited by the number of groups, as it is
essential to maintain similarity among subproblems within each group.
The large size of the decision set still constraints the efficiency of EAs.
Especially for medical images, as shown in Fig. 2, although the color
distribution of pixels is less complex compared to natural images, the
color changes in natural images are smoother and more diverse than in
medical images. This smoothness and diversity facilitate the application
of continuous EAs to solve the image matting problem after the problem
has been continuousized, which can improve the efficiency of solving
the image matting problem [18]. In contrast, for medical images, the
decision set may contain a large number of similar solutions that
have large difference from the optimal pixel pairs. This situation poses
challenges for EAs in efficiently searching for the optimal solution.

The efficiency of EAs can be enhanced based on the observation
that the spaces of objective functions of similar unknown pixels exhibit
analogous properties. Two rows in each subfigure of Fig. 3 present
contour plots of the objective functions for two similar unknown pixels,
x; and x;,i # j. The arrows in Fig. 3 visualize the gradients of the
objective functions with respect to the two decision variables. Four
objective functions are depicted in the figure. One is the aggregation
of three objective functions, and the other three correspond to each
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Table 1
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The summary of the mean, maximum, and minimum numbers of foreground pixels, background pixels, and unknown pixels in testing data across different datasets. |2z|, [2,],

|2, | denote the sets of foreground, background, and unknown pixels, respectively.

Dataset names Total number of images Qp 2, Q4
avg avg avg max min

AlphaMatting [11] 27 4.74e+05 4.74e+05 4.74e+05 5.75e+05 3.92e+05

DIM-481 [8] 1000 2.28e+06 2.28e+06 2.28e+06 3.69e+06 5.62e+05
Natrual images Distinctions-646 [12] 1000 2.23e+06 2.23e+06 2.23e+06 7.96e+06 2.40e+05

SIMD [9] 116 2.36e+06 2.36e+06 2.36e+06 3.69e+06 9.21e+05

Brain-growth [13] 39 6.97e+02 1.22e+04 2.66e+03 3.70e+03 2.24e+03
Medical images LIDC-IDRI [14] 1609 1.36e+02 1.57e+04 5.06e+02 2.24e+03 1.95e+02

ISIC [15] 120 5.41e+04 1.18e+05 2.29e+04 1.28e+05 1.85e+02
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Fig. 3.

individual objective function. The red stars represent non-dominated
solutions in the aggregated objective function diagram and denote the
best solutions in the single objective function diagrams. Since the large
size of the decision set reduces the clarity of visualization, we randomly
sampled 50 pixels each from the foreground and background pixel sets
to form a subset of the pixel pair set. As shown in the figure, for
aggregated objective function and all individual objective functions, the
gradient directions and the distribution of objective values are largely
consistent across the objective functions of x; and x,. The optimal
solutions for these two unknown pixels are also close to each other.
This implies that the solutions and heuristic information obtained by
EAs while optimizing one unknown pixel are beneficial for optimizing
the other.

In this paper, we propose a framework to improve the efficiency of
EAs from the perspective of subsets of the decision set. The key in this
framework is to estimate a microscale subset of the decision set for a
group of similar subproblems. Two key points need to be considered
when estimating this subset: (1) The solutions included in this subset
should be beneficial for EAs to find the optimal solution. (2) The size of
the subset should be microscale. This paper proposes a dynamic fitness
evaluation allocation strategy based on convergence and divergence
of solutions to estimate a microscale subset online from the solution
sets when EAs solve similar subproblems. The information about the
explored regions of the decision set is compressed in the microscale
subset. This compression process is guided by EAs themselves. The
contributions of this paper are summarized as follows:

(1) We propose a framework for enhancing the efficiency of EAs in
solving the image matting optimization problem based on a microscale
subset of the decision set. Unlike subproblem reduction methods, this
approach uses the microscale subset to guide the search process of EAs,
thereby reducing the exploration cost to solve numerous subproblems
with large-scale decision sets.

Contour plots of the objective spaces for two similar unknown pixels.

(2) We propose a dynamic fitness evaluation allocation method
based on the analysis of convergence and diversity, enabling EAs to au-
tomatically estimate the microscale subset during the problem-solving
process.

(3) Experimental results on medical imaging datasets demonstrate
that our method effectively improves the efficiency of EAs. Addition-
ally, results under weak prior scenarios confirm that our approach
makes EAs efficient methods for image matting.

The remainder of this paper is organized as follows. Section 2
discusses related work and gaps in existing methods. Sections 3 and
4 introduce our framework. Section 5 demonstrates the experimental
validation results. Section 6 concludes the paper.

2. Related work

This section provides a concise review, categorizing existing image
matting works into weak prior-based and strong prior-based methods
based on the prior required for predicting alpha mattes.

2.1. Strong prior-based methods

Strong prior-based methods primarily rely on deep learning tech-
niques. A large amount of training data with detailed annotated alpha
mattes is required to train deep neural network models. The gener-
alization performance of deep learning-based image matting methods
is closely tied to the quality and diversity of data in image matting
datasets. These methods emerged following the introduction of the
Composition-1K dataset [8,19-21]. The diversity of foregrounds in the
Composition-1K dataset is insufficient because the dataset includes
many consecutive video frames and different cropped patches of the
same images. Subsequently, datasets with more foreground diversity,
such as Distinctions-646 [12] and SIMD [9], have been proposed.
However, synthetic data is broadly produced to increase the number
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of training data in most exiting methods due to the high complexity of
model parameters. Consequently, the disparity between synthetic and
real-world data significantly impacts the generalization performance
of these methods [10]. Recently, some researchers have extended the
use of image matting for segmenting the transition regions of lesions
in medical images [4]. The boundaries of these transition regions are
often blurred, ambiguous, and difficult to delineate with precise edges.
Researchers have assumed a function mapping between the alpha
values computed using the matting formula Eq. (1) and the uncertainty
of whether a pixel belongs to lesions. However, these methods find
it challenging to achieve consistent results across different imaging
modalities constrained by the limited number of detailed annotated
alpha mattes.

2.2. Weak prior-based methods

Methods based on weak prior refer to techniques that require prior
that is effortless to be obtained, such as a trimap of the target image, for
alpha matte prediction. Propagation-based methods, sampling-based
methods, and optimization-based methods can be classified under this
approach.

Propagation-based methods: Quadratic optimization models are con-
structed in propagation-based methods under a smoothness assump-
tion. The smoothness assumption is that the optimal pixel pairs of
pixels in certain regions change smoothly [22]. If the alpha values
of some pixels in these regions are known, these values can be prop-
agated to other pixels with unknown alpha values. The propagation
of alpha values is confined to local regions in early methods [22,23].
More accurate prediction of alpha values are obtained by propagating
alpha values of pixels in non-local regions that better accommodate
the smoothness assumption [24,25]. However, the accuracy of alpha
mattes predicted by these methods is limited because violations of
the smoothness assumption, such as those with multiple holes, are
widespread in natural images.

Sampling-based methods: Pixel features, such as pixel color, spatial,
and texture information, are leveraged to find subsets of pixel pair set
for unknown pixels in sampling-based methods [26-29]. The best pixel
pairs are selected from these subsets using a hand-crafted function.
Subsets of pixel pairs are found by selecting foreground and background
pixels that have high similarity with unknown pixels [26]. Foreground
and background pixels on the boundaries of local regions centered
around unknown pixels are also frequently used to form pixel pair
subsets [27,29]. For sampling-based methods, the quality of the pixel
pairs included in the subset determines the accuracy of the predicted
alpha mattes. If pixel pairs in the subsets have large difference from
the optimal pairs, the accuracy of predicted alpha mattes will rapidly
decline [6].

Optimization-based methods: Optimization-based methods select
pixel pairs from the whole pixel pair set using well-designed single-
objective functions or multi-objective functions. EAs are used to solve
these functions due to their powerful ability of global optimization.
Single-objective EAs are employed to search for optimal solutions based
on an aggregation of various metric functions of pixel pairs [7,16,
18]. However, conflicts among these metric functions complicate the
objective function space, increasing the difficulty of finding optimal
solutions [6]. Multi-objective models were introduced to mitigate these
conflicts [5,6]. Existing methods focus on the improvement of the
efficiency of EAs due to the large size of the decision set and nu-
merous subproblems. Cooperative optimization framework is used to
share heuristic information among subproblems [7,18]. Some methods
leverage spatial correlation of pixels to reduce the number of subprob-
lems [5]. However, The improvement of efficiency for EAs through
subproblem reduction is limited, as the number of similar subproblems
is significantly smaller compared to the total number of subproblems.
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3. Microscale valid decision subset for large-scale combinatorial
optimization problem of image matting

This section presents the concept of valid decision subsets, an algo-
rithm to estimate a microscale valid decision subsets based on similar
subproblems, and a framework for EAs to solve the image matting
problem based on a microscale-searching strategy.

3.1. Assumption of microscale searching

Let X{,X,,...,Xy denote a group of similar subproblems and D
denote the decision set for each subproblem that is the combination of
the indices for foreground and background pixels. A feasible solution
X for a subproblem in the decision set is encoded as a set of vectors
(xp,xp) where xp € {1,2,...,|Q¢|} and x5 € {1,2,...,|25]|}. A subset
of all feasible solutions that the algorithm can find within the maximum
number of iterations is defined as:

Definition 1 (Decision Subset). A decision subset V is the subset of a
decision set D that consists of feasible solutions found by algorithms.

For the ith subproblem, a decision subset ¥/ is obtained at the rth
iteration. Let S! denote a region which can be theoretically explored
by EAs at the rth iteration and V' is a subset of S!. Hausdorff distance
dy(-,-) is used to calculate the distance between two sets. Let 2?,‘ be
the set of non-dominated solutions within ¥/, we have 4 H(é\?t" ,X%) <
dp (X, X*),VX C S[i, where X is a random feasible solution and X*
is the Pareto set. As the number of iterations increases, there exists
a time 7 that V1 > 7, P(X* c ) > P(X* c 0),Q = D/S!, implying
that a solution é?; closest to the Pareto set exists in the decision subset
after the rth iteration. A decision subset can be defined as follows if it
contains distinct z\?t’ for every rth iteration after the rth iteration:

Definition 2 (Valid Decision Subset). Let ¥V denote a decision subset of
D. V is a valid decision subset if V satisfies the following conditions

d(X*, ®) < d(X*,X) VRXCV,X¢V %)

where d(-,-) is the Hausdorff distance to calculate the difference be-
tween two sets of solutions. X* is the Pareto set. X is a subset of V. X
is not a subset of V.

Eq. (7) indicates that more solutions that have shorter distance to
X* can be found based on a valid decision subset because the Hausdorff
distance suggests the existence of solutions closer to the optimal solu-
tion, since it is calculated using the maximum of the minimum distances
between elements among two sets. We configure two search strategies
for EAs: (1) Search based on u’,'. (2) Search in the set V. For the above
two strategies, EAs needs to search among |D| — |.S;| and |V| solutions,
respectively. Although EAs under the second strategy can only search
within a small set, the explored region of EAs intersects with that of
EAs under the first strategy theoretically. The exploration cost of EAs is
lower than that of the first strategy. The number of fitness evaluations
required for searching within V is proportional to the size of V. The
remaining fitness evaluations can be used to explore extra regions based
on the solutions found in V.

3.2. Estimating a microscale valid decision subset

Algorithm 1 is proposed to estimate a valid decision subset for a
group of similar subproblems. Let X, and X, denote the feasible solution
sets of the x, and x;,i,k € {1,2,..., N}. X, have a relationship with &,
as follows:

3e>0,d(X,X)<e YR CV,X CV, (€)

where ¢ is a real number that is close to 0. It reflects how x; is similar
to x;. If e is equal to 0, x; and x; can be seen as the same. Let V; denote
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a valid decision subset of the x;. 2?1.* is the Pareto set of x,. X, is any
solution set not included in V. According to Definition 2, the relation
of X, ¥, and X, satisfies:

AR, X" <dX, X)) VX CV. X ¢V 9)

If we replace X, by X, Eq. (9) can be rewritten as follows by substitut-
ing Eq. (8) into Eq. (9)

VR C VL& CV, X LV, (10)
3e > 0,d(R, X)) < dXy, X)) +d(X), &) + e an

Eq. (11) indicates that the solutions in ¥, can be estimated by &,.
According to Eq. (11), the upper bound of estimation accuracy is
determined by e and d(?k,Xi*) + d(?k,P?i). Once k is selected, the
minimal ¢ is fixed. An accurate estimation of V; needs to find V, that
minimizes min({d(X,, X)) + d(X;, ®)|X; C V. X, ¢ V). It can be
achieved by maximizing the size of the intersection of V, and V, where
V, is the complement set of V,. According to Fig. 3, similar local
regions exist in the objective spaces of similar subproblems. A large
intersection is more likely to contain solutions in these local regions.
d (X Y, A’ ) diminishes as solutions within these local regions are included
in V. d(Xk,X*) decreases along with d(Xk,X ). The maximization of
the size of V, is equal to minimizing the size of V,. It means that the
estimation of a valid decision subset for a group of similar subproblems
can be achieved by finding a microscale subset from the decision subset.

We estimate a valid decision subset by gradually constructing a
subset during the optimization of subproblems in Algorithm 1. The
non-dominated solutions are selected from the population of each
generation to limit the increase in the size of the estimated subset.
The size of the estimated valid decision subset is also constrained by
controlling the allocation of fitness evaluations. Two indicators are
introduced to control this allocation.

The first indicator utilizes the non-dominated solutions from both
the current and history populations to measure the convergence trend
of EAs. The indicator is defined as follows

=10, N Q.|/1Cx! (12)

where O, and Q. are the sets of non-dominated solutions from the
current and history populations, respectively. A high value of I, indi-
cates that non-dominated solutions have been barely updated in recent
iterations. This suggests that EAs struggle to benefit from the currently
explored region. The allocation of fitness evaluations should decrease
as the value of I, increases. The second indicator is used to assess
the quality of the regions currently being explored by EAs, based on
the repetitive evaluation of solutions across different subproblems. The
indicator is defined as follows

|XRl
exp(—1 = ¢;) (13)
I, = |X | 2 p
¢ =0(%) % €Xpi=12 . |Xgl a4

where Xy is the set of solutions repetitively evaluated for different
subproblems. ¢ is used to measure the quality of the regions that
contain these solutions. We use crowding distance as ¢ [30]. A high
value of I, suggests EAs explore similar regions for these subproblems,
as the objective function values are close. If this high value occurs early
in the optimization process, it may result from random initialization.
EAs can explore different regions in subsequent iterations. If this high
value continues to appear during optimization, EAs might explore these
similar regions in future iterations, as EAs tends to converge as the
number of iterations increases. The aggregation of these two indicators
is adaptively adjusted for the ith subproblem according to the number
of iterations as follows

L=n-I1+(1=n) 1L (15)
ny = yoil* (16)
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where y is a decay parameter close to 1. ¢; is the number of iterations
consumed by EAs to optimize the ith subproblem. The number of fitness
evaluations to be allocated is positively proportional to I;. Eq. (15)
indicates that in the early stages of optimization, the allocation of
fitness evaluations is primarily governed by the convergence trend. If
EAs converge early, fitness evaluations will be preserved for EAs to
continue search under the guidance of the valid decision subset to
find better solutions. As iterations increase, the allocation of fitness
evaluations is mainly controlled by the quality of the explored regions.
If the explored region is low-quality, fitness evaluations will also be pre-
served. I; is updated after certain iterations. The algorithm to estimate
a valid decision subset is shown in Algorithm 1.

Algorithm 1 Estimation of a Valid Decision Subset

Input: y,7,,,e,population size n,,number of subproblems n
Output: estimated valid decision subset V,
preserved fitness evaluations {v,,v,,...,v, }

1: Initialize a population P, for each subproblem, i = 1,2,...,n,
2: Initialize H, as an empty set, i = 1,2,...,n;

3: Initialize r; as 1 for i = 1,2,...,n,

4: Initialize v, as 0 for i = 1,2, ..., n;

5: Initialize ¥ as empty set

6: Allocate |e/n,| fitness evaluations for each subproblem

7: for i=1to |e/(n,-n,-t;)| do

8: for j=1ton, do

9: setyn,r;

10: vy v+t on, - (1=r))

11: if s < n, then

12: continue

13: end if

14: Update P; by EAs with s fitness evaluations

15: Calculate I, using Eq. (12) with P; and H;

16: Calculate 7, using Eq. (13) with P; and H,, H,,.... H,
17: Calculate r; using Eq. (15) with 7, and I,

18: H, <« H,UP

19: Obtain the non-dominated solutions from P; and add them into ¥
20: end for

21: end for

22: return YV, {v;,0;,..,0, }

Let all subproblems be clustered into M groups, with each group
containing n;,i = 1,2, ..., M subproblems. The size of the valid decision
subset estimated by Algorithm 1 is less than the number of fitness
evaluations used for »; subproblems:

V| <n;-e. a7

Let D denote the decision set. The size of the D is |D| = |Q2p]| - [2p].
Let n denote the ratio of sizes of the valid decision subset to that of the
decision set.  can be written as:
PVl e

o ST 18
[D] = |2F] - 12]

r’ =
In practice, the number of fitness evaluations is far less than |Q|-|Q2|.
The value of  will become much smaller than 1 as the number of
unknown pixels increases. Therefore, the size of the estimated valid
decision subset V is microscale.

4. Framework of microscale-searching evolutionary optimization
for image matting

This section presents a framework called microscale-searching evo-
lutionary optimization (MSEO) for EAs to solve the image matting
problem based on microscale-searching as shown in Fig. 5. Microscale-
searching refers to the process of searching for the best pixel pairs
under the guidance of the microscale valid decision subset estimated by
Algorithm 1. Fig. 4 illustrates the differences between the microscale-
searching evolutionary optimization image matting method and exist-
ing EAs-based matting methods. Assume that the EA is used to optimize
three similar subproblems: x|, x,, and x3. Fig. 4 depicts solutions found
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* optimal solutions.
solutions in the
decision set

solutions in the valid
decision set

Fig. 4. The black rectangle represents the decision set. Red, green, and yellow solid
circles represent feasible solutions for subproblems x,, x,, and x;, respectively. Yellow
diamonds also represent feasible solutions for x;. Solid lines indicate the EA’s search
process. Three different colored dashed ellipses denote the optimal valid decision
subsets for different subproblems. A yellow solid ellipse represents the valid decision
subset estimated from the feasible solutions of the other two subproblems.

during the optimization of x; as yellow circles and yellow diamonds.
The diamond specifically represent solutions within the valid decision
subset. This subset is estimated based on the solutions of x; and x,
(shown as green and brown circles, respectively), leveraging subprob-
lem similarity. We assume the EA can find better solutions using fewer
evaluations since the valid decision subset is close to the optimal
solution for x;.

According to Definition 2, solutions within a valid decision subset
are supposed to be closer to the Pareto set than other solutions. The
allocation of fitness evaluations should be prioritized to search in the
valid decision subset. Fitness evaluations should also be allocated to
search outside the valid decision subset considering the estimation
error between the estimated valid decision subset and the optimal
valid decision subset. EAs can search outside the valid decision subset
more efficiently under the guidance of the valid decision subset, as
repetitive evaluations can be reduced. In the framework, EAs search
alternatively inside and outside the valid decision subset. The best
solution found in the valid decision subset serves as the initial solution
for EAs to search outside the valid decision subset. Non-dominated
solutions found outside the valid decision subsets are added into the
valid decision subset.

On the other hand, the similarity among subproblems within the
same group is inconsistent. For subproblems with lower similarity, the
deviation of estimated valid decision subset from the optimal valid
decision subset tends to be larger compared to those with higher
similarity. The allocation of fitness evaluations should be prioritized to
search outside the valid decision subset. The similarity of subproblems
is calculated using the Euclidean distance of computer vision feature
vectors of pixels. As suggested in [25], the feature vector f; of the x;
is defined as f; = (r;,g:b;,x;,y;)", where (r;,g.b,)" and (x;,y,)7 are
the RGB color vector and coordinate vector of the ith unknown pixel.
Subproblems with smaller distance values exhibit higher similarity. In
the framework, a roulette wheel method determines whether fitness
evaluations are allocated to search within or outside the valid decision
subset based on a probability vector W. W is obtained by the feature
vectors as follows:

- 1Y Ifi =7l

f=—= f,~,w,-=—,,, — (19)
n; Z‘ Yl W= £l

W = (w,wy,...,w,) (20)

7 is the centroid vector of feature vectors. Subproblems that are far
from the centroid vector are more likely to be selected to search outside
the valid decision subsets.

The algorithm to find the best solution with the valid decision subset
is shown in Algorithm 2.

In the algorithm, EAs search alternatively in and out of the valid
decision subset according to a; (Lines 12-18) every 1, iterations. EAs

Swarm and Evolutionary Computation 98 (2025) 102065

Cluster subproblems into M groups by
pixel features
i=1

v

Initialize populations for all subproblems
in the i-th group

|

a valid decision subset
V; has been estimated

yes

subproblems by roulette wheel. The

Generate offsprings for all
subproblems in the decision set Lrest subproblems are denoted as S?A

Generate offsprings for Sy in the
decision set

\ J

v
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Generate offsprings for S based on
i

] ( Select subproblems S from all )

Select individuals from all offsprings
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no-Fitness evaluations are exhuasted=>
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Fig. 5. Framework of microscale-searching evolutionary optimization.
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Fig. 6. Convergence comparison of MOEA/D-MCD and MS-MOEA/D. (a) and (b)
present the changes of GD metric for unknown pixels with the highest similarity. (c)
and (d) present the changes of GD metric for unknown pixels with the lowest similarity.
The curves in the figure represent the average GD changes over 30 experiments, while
the bandwidth indicates the variance of the GD changes.

uses the population updated in the subset as the initial solution if EAs
search out of the valid decision subset (Line 13). EAs are not guided by



L. Kang et al.

Swarm and Evolutionary Computation 98 (2025) 102065

(a) (b) (© (C) (e)
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Fig. 7. Visual comparison on samples from Brain-growth, LIDC, and ISIC datasets. (a)-(c) and (f)-(h) are original image, trimap, ground truth alpha matte, respectively. (d)-(e)
and (i)—(j) are predicted alpha mattes of MOEA/D-MCD, MS-MOEA/D, respectively. The red arrows indicate regions where the differences in the predicted alpha mattes from these

methods are obvious.

the valid decision subset if optimizing subproblems with low similarity
(Line 10). Finally, the best pixel pairs are selected from the non-
dominated solutions of the three populations based on an aggregate
evaluation function (Line 22).

5. Experiments

This section will present several experiments to address the follow-
ing questions:

Q1: What is the effect of the microscale-searching strategy on the
performance of EAs in solving the medical image matting problem?

Q2: How does the EAs based on the microscale-searching strategy
perform in weak prior scenarios?

E1: The microscale-searching strategy-based EAs are compared with
the original versions of EAs on three medical datasets from the perspec-
tives of matting metrics, visualization results, and convergence trends
(for answering Q1).

E2: The microscale-searching strategy-based EAs are compared with
other image matting methods under different weak prior scenarios (for
answering Q2).

5.1. Experimental setup

In this study, three medical image matting datasets, Brain-growth
of the QUBIQ dataset [13], LIDC-IDRI [14], and ISIC [15], and a
natural image matting dataset AlphaMatting [11] are used to evaluate
the performance of different methods. Brain-growth consists of low-
intensity contrast T2-W MR images for the newborn brain’s white
matter tissue myelination process. LIDC-IDRI dataset includes thoracic
CT scans for lung nodules diagnosis. ISIC is a large-scale dermoscopic
images dataset consisting of 10,000 images. 39 images of Brain-growth,
1609 images of LIDC-IDRI, and 120 images of ISIC are selected and
labeled alpha mattes [4]. 27 natural images are available for evaluation
in AlphaMatting.

We select MOEA/D-MCD [5] to be embedded into the framework
for our experiments, which we designate MS-MOEA/D. MOEA/D-MCD
has been verified as a method based on multi-objective evolutionary
algorithms capable of accurately predicting alpha mattes. However,
some solutions that contribute negatively to the whole optimization
are repeatedly evaluated when similar subproblems are optimized. We
verify the effectiveness of the microscale-searching strategy in our
experiments by comparing the performance of MS-MOEA/D against
MOEA/D-MCD. The parameter settings for the proposed method are
as follows: The parameters of MOEA/D-MCD are set according to the
recommended settings. In Algorithm 1, the decay factor y is set to 0.99,
with 7 and 7, set to 10 and 5, respectively. In Algorithm 2, 7, is set to
5.

Algorithm 2 Scheme of Allocation of FEs among Different Subproblems

Input: v,ns,np,tz,D,W,{ul,vz,...,vn‘ I

Output: the best pixel pairs p, p5, ..., P

1: Initialize ¢, = 0,i = 1,2,..., 1,

2: Initialize populations E’”,Pf”’,ﬁ;’”’ for each subproblem, i = 1,2,...,n

3: while v, > n,i=12,..n do

4: fori=1ton, do

5 if v; <n, then

6: continue

7: end if

8 idx <« the index of a decision vector selected by roulette-wheel
selection based on W

9: if i == idx then

10: Update }A’i““’ by searching in D

11: else

12: if a; == 1 then

13: Use P/" as the initial population to update P* by searching in

D and Update vV

14: a;, <0

15: else

16: Update P/" by searching in V

17: a; <1

18: end if

19: end if

20: v v~

21: if v; < n, then

22: Obtain the best pixel pair p; from the non-dominated solutions of
P[m’ })[ﬂlll’ P‘lou!

23: end if

24:  end for

25: end while
26: return p’]‘pzp

*
s

Three measurement functions are used as objectives suggested
by [5]. For the ith unknown pixel, selected pth foreground pixel, and
g background pixel, h;(p, g) is color chromatic criteria, h,;(p) is spatial
closeness criteria for foreground pixels, and £5;(q) is spatial closeness
criteria for background pixels. The formulations of three criteria are
presented as:

hii(p,@) = (Cy); — &(Cp), — (1 = &)(Cp), I (21)
hyi(p) = I(Sg); = (Sp),lI° (22)
hyi(@) = [1(Sp); = (Sp), 1% (23)

(C,); and (S,); are the ith color vector and the ith spatial coordinate
vector of the pixel in x,x € {F, B,U}, where F, B,U represent the sets
of foreground pixels, background pixels, and unknown pixels, respec-
tively. According to [5], the combination of measurement functions H
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Table 2
The results of the mean and standard deviation for all samples in three datasets.
Numbers in boldface indicate the best results.

(a) Brain-growth

MOEA/D-MCD MS-MOEA/D
MSE 0.0744 + 0.0237 0.0740 + 0.0237
SAD 0.5634 + 0.1016 0.5619 + 0.1005
CON 0.8834 + 0.2851 0.8758 + 0.2836
GRAD 0.5684 + 0.1050 0.5667 + 0.1035
(b) LIDC

MOEA/D-MCD MS-MOEA/D
MSE 0.0262 + 0.0250 0.0262 + 0.0250
SAD 0.0525 + 0.0397 0.0524 + 0.0396
CON 0.0788 + 0.0767 0.0786 + 0.0765
GRAD 0.0507 + 0.0395 0.0507 + 0.0394
(c) ISIC

MOEA/D-MCD MS-MOEA/D
MSE 0.1784 + 0.0706 0.1765 + 0.0710
SAD 7.5443 + 6.5885 7.4518 + 6.5220
CON 4.8961 + 2.4095 4.8656 + 2.4076
GRAD 7.7882 + 6.7793 7.6810 + 6.6958

Table 3

Number of samples on the Brain-growth dataset for which the proposed method is
significantly better than, equal to, or significantly worse than MOEA/D-MCD.

MSE SAD CON GRAD
29/0/10 27/0/12 30/0/9 27/0/12

is defined as:

hy; - 0.5(hy; + hy;)
T—(I—hy)-(1=05- (hy + hy)
H 1is used to select the best pixel pairs from the non-dominated solu-
tions of the final population.

H(hy;, hyj, hyp) = (24)

5.2. Effect of microscale-searching strategy

In this subsection, we validate the effect of the microscale-searching
strategy by comparing MOEA/D-MCD [5] and MOEA/D-MCD based on
microscale-searching strategy (MS-MOEA/D). Four metrics, MSE, SAD,
CON, and CON, are used to measure the quality of predicted alpha
mattes. MSE and SAD measure the numerical difference between the
predicted alpha mattes and the ground truth. CON and GRAD assess the
visual difference between the predicted alpha mattes and the ground
truth. Small values indicate high-quality predicted alpha mattes for
these four metrics.

Table 2 summarize the mean and standard deviation of the matting
metrics for all methods across all datasets. The best results are indi-
cated in boldface. The result indicates that the microscale-searching
strategy enables MOEA/D-MCD to predict alpha mattes with higher
accuracy. The improvement of MOEA/D-MCD is not significant on the
LIDC dataset. This is because images in the LIDC contain the fewest
unknown pixels among the three datasets, which reduces the number
of similar subproblems. Consequently, the diversity of solutions in
the valid decision subset decreases, making it difficult to effectively
enhance the efficiency of MOEA/D-MCD. We conducted the Wilcoxon
rank-sum test on the results from 30 independent experiments on the
Brain-growth dataset to demonstrate the statistical superiority of the
proposed method. Table 3 presents the number of samples, out of a
total of 39, for which the proposed method is significantly better than,
equal to, or significantly worse than MOEA/D-MCD across four matting
metrics. The results in Table 3 indicate that the proposed method is
significantly better than MOEA/D-MCD on a majority of samples for
these four matting metrics.

Fig. 7 visualizes several predicted alpha mattes. It shows that the
microscale-searching strategy can improve the accuracy of predicted
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alpha values of regions where the foreground and background are very
similar.

We demonstrate the enhancement in the EA’s optimization effi-
ciency due to the microscale-searching strategy by tracking the change
in Generational Distance (GD) during optimization. GD provides a more
direct reflection of solution quality compared to matting metrics. The
enhancement is related to the valid decision subsets according to the
proposed method which are estimated based on subproblem similarity.
We observed the GD changes using two groups selected from two
samples case01 and case08 in the Brain-growth dataset.

The curves in Fig. 6 represent the average GD changes over 30
independent experiments, while the bandwidth indicates the variance
of the GD changes. A small value of GD indicates that the solutions
found by the algorithm are closer to the reference set. The Pareto fronts
of subproblems are used as the reference sets. The results in Fig. 6 show
that without the aid of the microscale-searching strategy, GD cannot di-
verge to a small value when MOEA/D-MCD optimizing the two groups
of subproblems in case01 and case08 with the highest similarity. Under
the guidance of the microscale-searching strategy, GD can converge to
a small value smoothly. This indicates that the microscale-searching
strategy enables MOEA/D-MCD to find high-quality solutions with
fewer fitness evaluations. During the optimization of the group of sub-
problems with the lowest similarity in case08, although the effect of the
estimated valid decision subset is limited by the low similarity of sub-
problems, the small size of valid decision subset ensures that there are
still sufficient fitness evaluations for MOEA/D-MCD to search beyond
the valid decision subset to converge. Overall, the microscale-searching
strategy can facilitate EAs find high-quality solutions, resulting in more
accurate alpha mattes.

5.3. Performance on weak-prior scenarios

In this section, we demonstrate that microscale-searching strategy
can make MOEA/D-MCD an efficient method in weak prior scenarios
by comparing different image matting methods and the microscale-
searching-based MOEA/D-MCD. The strong prior-based methods in-
clude DIM [8], FBA [31], DiffMatte [32] and MedicalMatting [4]. DIM,
FBA, and DiffMatte are pre-trained on the Composition-1K dataset [8].
The MedicalMatting models pre-trained on the Brain-growth, LIDC, and
ISIC datasets are denoted as MM', MM¥*, and MM’, respectively. The
weak prior methods include: (1) Propagation-based methods: Closed-
Form [22], KNN [25], Information-Flow [33]. (2) Sampling-based
methods: Bayesian Matting [34], PDMS [6]. We construct a weak
prior dataset in the following manner: randomly selecting 27 images
from one medical dataset and combining them with the AlphaMatting
dataset to form a new dataset. The prediction of alpha mattes for this
dataset represents a weak prior scenario for MedicalMatting, DIM, and
FBA, as the training data for MedicalMatting does not include natural
images, and the training data for DIM and FBA does not include medical
images. When predicting the mask of the target image, only a trimap
is provided.

The sub-tables within Table 4 represent the results of data from the
Brain-growth, LIDC, and ISIC datasets combined with the natural image
dataset, respectively. The results of Table 4 show that the proposed
method achieve the best result on MSE over all methods. MSE reflects
the difference between the predicted alpha matte and the ground truth
alpha matte. Compared to SAD, MSE is more sensitive to variations in
these differences. This result indicates that most weak-prior methods
can predict the alpha matte more accurately than other methods. Most
weak prior methods achieve results comparable to, or even better than,
those of deep learning-based methods on MSE. One reason is that
the deep learning-based methods were not trained on datasets that
have data with the same distribution as test datasets. Additionally,
the efficiency of weak prior methods is less affected by variations in
data distribution compared to deep learning-based methods. PDMS is
the best-performing sampling-based method. The strong performance of
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Table 4
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The results of the mean and standard deviation for all samples in three datasets. Numbers in boldface indicate the best results.

(a) Brain-growth

Methods MSE SAD CON GRAD

DIM 0.0530 + 0.0012 2.2397 + 0.0073 2.4806 + 0.0136 2.1518 + 0.0076

FBA 0.0725 + 0.0031 1.7979 + 0.0120 1.7552 + 0.0253 1.7624 + 0.0122

MM* 0.3372 + 0.0025 20.1287 + 0.0140 17.9438 + 0.0307 20.3772 + 0.0143
MM’ 0.3746 + 0.0036 22.0245 + 0.0151 20.8340 + 0.0356 22.0070 + 0.0153
DiffMatte 0.1695 + 0.0827 0.8596 + 0.2528 0.8746 + 0.2588 1.4369 + 0.5392

Closed-Form
KNN
Information-Flow

0.0500 + 0.0013
0.0564 + 0.0007
0.0464 + 0.0013

2.9354 + 0.0058
3.6230 + 0.0050
2.7059 + 0.0054

5.0067 + 0.0134
4.1823 + 0.0098
2.5809 + 0.0103

2.8837 + 0.0062
3.5249 + 0.0054
2.6365 + 0.0057

Bayesian 0.1548 + 0.0016 14.8008 + 0.0065 17.5435 + 0.0114 14.9725 + 0.0067
PDMS 0.0443 + 0.0016 2.7769 + 0.0057 2.6824 + 0.0131 2.6692 + 0.0060

MS-MOEA/D 0.0426 + 0.0015 2.5310 + 0.0052 2.4297 + 0.0119 2.4392 + 0.0055

(b) LIDC

Methods MSE SAD CON GRAD

DIM 0.0339 + 0.0042 1.9666 + 0.0049 1.9250 + 0.0164 1.8745 + 0.0048

FBA 0.0232 + 0.0072 1.4407 + 0.0051 1.2064 + 0.0151 1.3984 + 0.0052

MM’ 0.3300 + 0.0083 19.8434 + 0.0080 20.6576 + 0.0199 19.7624 + 0.0081
MM’ 0.3862 + 0.0053 21.5872 + 0.0123 19.0615 + 0.0267 21.5728 + 0.0125
DiffMatte 0.1480 + 0.1282 0.1194 + 0.0661 0.1197 + 0.0683 0.2568 + 0.2373

Closed-Form
KNN
Information-Flow

0.0257 + 0.0015
0.0422 + 0.0030
0.0252 + 0.0006

2.6831 + 0.0057
3.3692 + 0.0053
2.4565 + 0.0021

4.5389 + 0.0085
3.6968 + 0.0106
2.1586 + 0.0042

2.6265 +
3.2625 + 0.0053
2.3821 +

Bayesian 0.1649 + 0.0043 14.5393 + 0.0071 17.1334 + 0.0113 14.7074 + 0.0071
PDMS 0.0193 + 0.0022 2.5187 + 0.0049 2.2635 + 0.0079 2.4071 + 0.0048
MS-MOEA/D 0.0184 + 0.0028 2.2751 + 0.0040 2.0356 + 0.0095 2.1797 + 0.0041
(c) ISIC

Methods MSE SAD CON GRAD

DIM 0.2558 + 0.0141 21.0238 + 0.3167 21.2210 + 0.2194 20.6760 + 0.3327
FBA 0.3574 + 0.0176 24.2613 + 0.8494 16.8167 + 0.1655 24.6705 + 0.8887
MM’ 0.2576 + 0.0117 21.0875 + 0.3235 21.2290 + 0.2150 20.6894 + 0.3093
MM* 0.3644 + 0.0196 24.6034 + 1.0938 16.8411 + 0.2019 25.0629 + 1.1702
DiffMatte 0.1451 + 0.1019 6.6806 + 6.9632 3.0475 + 1.8488 6.7881 + 7.1212

Closed-Form
KNN
Information-Flow

0.1350 + 0.0039
0.0955 + 0.0044
0.1289 + 0.0089

6.9599 + 0.7856
6.6171 + 0.4830
6.4981 + 0.9441

7.0953 + 0.2204
7.1436 + 0.3343
5.1209 + 0.3253

7.0338 + 0.8047
6.5674 + 0.5003
6.5239 + 0.9852

Bayesian 0.2557 + 0.0101 20.8585 + 1.3120 19.2447 + 0.1555 21.2693 + 1.3133
PDMS 0.1042 + 0.0079 6.4836 + 0.6320 4.9668 + 0.3318 6.5051 + 0.6405
MS-MOEA/D 0.0939 + 0.0034 5.9425 + 0.5536 4.3701 + 0.1764 5.9452 + 0.5438
Table 5
Mean and standard deviation of matting metrics for predicted alpha mattes from all samples of Brain-growth dataset under different settings
of 1, and t,.
1/t MSE SAD CON GRAD
5/5 7.350E—02(2.348E-02) 5.598E—01(9.783E-02) 8.548E—01(2.742E-01) 5.646E—01(1.009E—01)
5/10 7.356E-02(2.341E-02) 5.602E-01(9.742E-02) 8.544E-01(2.727E-01) 5.652E-01(1.000E-01)
5/15 7.363E-02(2.305E—-02) 5.606E-01(9.645E—02) 8.548E-01(2.727E-01) 5.654E-01(9.901E-02)
10/5 7.361E—02(2.355E-02) 5.607E—01(9.935E-02) 8.613E—01(2.774E-01) 5.657E—01(1.022E-01)
10/10 7.360E—-02(2.354E—-02) 5.603E-01(9.764E—02) 8.607E-01(2.753E-01) 5.652E-01(1.006E-01)
10/15 7.357E-02(2.340E—-02) 5.606E-01(9.825E—-02) 8.616E-01(2.737E-01) 5.655E-01(1.011E-01)
15/5 7.371E-02(2.348E—-02) 5.609E-01(9.934E—-02) 8.676E-01(2.794E-01) 5.658E-01(1.025E-01)
15/10 7.328E—-02(2.318E-02) 5.594E—01(9.884E—02) 8.641E—-01(2.747E-01) 5.643E—01(1.017E-01)
15/15 7.356E—-02(2.329E-02) 5.606E-01(9.924E—-02) 8.670E-01(2.782E-01) 5.654E-01(1.023E-01)

PDMS indicates that designing efficient methods to find higher quality
non-dominated solution sets can improve the accuracy of predicted
alpha mattes, as PDMS uses the non-dominated solution set as the
sampling subset of pixel pairs. MS-MOEA/D achieved the best results
in all weak prior scenarios. This indicates that the microscale-searching
strategy can make EA an efficient matting method in weak prior
scenarios.

5.4. Parameter investigation
This subsection presents the results for the proposed method with

varying values of ¢, and ¢, to further investigate its underlying mecha-
nism. Table 5 summarizes the mean and standard deviation of matting

metrics for the predicted alpha mattes generated by the proposed
method on all samples of the Brain-growth dataset. The parameter
t, is proportional to the total number of iterations allocated for the
EA to search for solutions outside the valid decision subset. Table 5
indicates that when 7, equals 10 and 15, the allocation of an excessive
number of fitness evaluations leads to a decrease in the accuracy of the
predicted alpha mattes. This also suggests that the valid decision subset
contains better solutions compared to other regions of the decision
set. When #; = 5, the algorithm obtains better alpha mattes if more
fitness evaluations are allocated outside the valid decision subset. This
occurs because 7, is related to the diversity of solutions within the
valid decision subset. A small value of ¢; reduces the diversity of
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solutions within this subset. An increase in ¢, enriches the diversity of
solutions within the valid decision subset. However, this also raises the
exploration cost for the valid decision subset. Consequently, the quality
of the solutions can be unstable, as evident from the results when ¢, =
15.

6. Conclusion

In this paper, we propose a framework for MOEAs to solve the med-
ical image matting problem based on a microscale-searching strategy.
The exploration cost of MOEAs in large-scale decision set is reduced
by guiding EAs to search in the valid decision subset estimated in
the framework. Experimental results demonstrate that EAs with the
microscale-searching strategy are able to find competitive solutions
with fewer FEs compared to the results obtained solely by EAs. The
alpha mattes predicted by the EAs with the microscale-searching strat-
egy are more accurate than those of EAs-based methods. In the future,
we will try to design more efficient EAs-based approaches based on the
concept of microscale valid decision subsets for other computer vision
tasks.
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