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Abstract—Constraint-handling techniques and genetic opera-
tors are two crucial components in constrained multi-objective
evolutionary algorithms (CMOEAs). Recent research in most of
CMOEAs has primarily focused on adaptive designs of these
components to address various constrained multi-objective opti-
mization problems (CMOPs). However, the evolutionary process
of solving a CMOP can involve various characteristics, such
as continuity, discreteness, degeneracy, or some combination
thereof, necessitating the tailored selection of constraint-handling
techniques and genetic operators across different generations.
This study conceptualizes these selections as a temporal sequence
of constrained handling selection, where the time means the
generation number. We argue that discovering the systematic
patterns within the sequence based on the historical data of
applying different selections significantly improves the perfor-
mance of CMOEAs in finding Pareto optimal solutions. Based
on this conceptualization, we propose a CMOEA with a deep
reinforcement learning model for solving CMOPs. Specifically,
the deep reinforcement learning model dynamically refines the
selection of constraint-handling techniques and genetic operators
for upcoming generations by learning from the performance of
previous selections, thereby enhancing the predictive accuracy for
subsequent selections. Experiments are conducted to validate the
performance of the proposed algorithm against nine CMOEAs
on thirty-seven benchmark problems and an unmanned aerial
vehicle path planning problem. Experimental results show that
the proposed algorithm substantially outperforms the compared
algorithms regarding the obtained Pareto optimal solutions.
Additionally, the results verify that discovering the systematic
patterns within the sequence for CMOEAs has a positive impact
on solving CMOPs in terms of objective optimization and
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constraint satisfaction.
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I. INTRODUCTION

There are a variety of real-world applications that can be
attributed to constrained multi-objective optimization problems
(CMOPs), such as Internet of Things applications [1]], au-
tonomous vehicle path planning problems [2]], analog circuit
sizing [3]], and short-term crude oil scheduling problems [4].
Without loss of generality, a CMOP can be defined as follows:

min F(x) = (f1(x), fa(x), .., fn(x))"

gl(x) <0, 1=1,2,..,q (1)
s.t. < hi(x) =0, i=q+1,q+2,....,p
x € D¢

where x is a c-dimensional decision vector, F'(x) is an m-
dimensional objective vector, g;(x) and h;(x) are the inequal-
ity and equality constraints, respectively, ¢ is the number of
inequality constraints, and p is the total number of constraints.
The constraint violation of x at the ¢-th constraint is calculated

as:
oy ) max(0,gi(x))

0u(x) = { max(0, |1y (x)] — 8)

where § is a very small positive value to relax the equality

constraints into inequality ones. It is generally set to 0.0001
[5]. The overall constraint violation of x can be calculated as:

1<i<g

g+1<i<p @

G(x) = 0i(x) 3)

A solution x is feasible if G(x) is equal to zero; otherwise,
the solution is infeasible.

In recent designs of constrained multi-objective evolution-
ary algorithms (CMOEAs), emphasis has been placed on
effectively balancing convergence, diversity, and feasibility
[S]-[16]. This balance is crucial because it directly affects
the ability of CMOEAs to explore and exploit the feasible
regions of the search space while addressing CMOPs. Conver-
gence focuses on guiding solutions towards the Pareto front,
which improves their alignment with the objectives. Diversity
facilitates a comprehensive exploration of the Pareto front,
enabling the generation of a diverse solution set to cater to
different preferences. Meanwhile, feasibility is critical because
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it guarantees that all solutions satisfy the constraints. Li ef al.
[12] proposed a two-archive evolutionary algorithm for solving
CMOPs. One archive focuses on feasibility and convergence,
while the other aims at promoting diversity. These archives are
utilized collaboratively to maintain the balance. Additionally, a
restricted mating selection mechanism is designed to enhance
the efficacy of the genetic operators. Similarly, Ming et al.
[16] proposed a dual-population CMOEA with self-adaptive
penalties to achieve this balance. Both constraint-handling
techniques (CHTs) and genetic operators play essential roles
in the design of CMOEAs, with their appropriate selection
being vital to maintaining the balance.

Population at generation t; Population at generation t,
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Fig. 1. Illustration of various challenges at two different
evolutionary generations ¢; and to (t1 < t2).

The selections of CHTs and genetic operators are very
challenging during the evolutionary process. The constraints
of a CMOP restrict the feasible region in the objective space.
This restriction can result in the Pareto front showing various
characteristics, such as continuous, discrete, mixed, and de-
generate [[17], leading to difficulties in continuously adjusting
the selections. An example to illustrate this idea is shown in
Fig. [I] Suppose a CMOEA encounters an infeasible region
at generation ¢, it is imperative to employ a CHT designed
to prioritize objective minimization. Note that the constrained
Pareto front is distributed on several disjoint feasible regions
(i.e., the grey regions labeled with numbers 1-4), utilizing
a genetic operator with exploration capabilities is beneficial
for the CMOEA to find optimal solutions [[17]. By the time
the generation number reaches t;, the CMOEA employs a
CHT that prioritizes constraint satisfaction as the population
is near the constrained Pareto front. Additionally, the CMOEA
can use a genetic operator with strong exploitation capabilities
to speed up convergence to the constrained Pareto front. The
appropriate selection of CHTs and genetic operators at these
two generations can improve the ability of the CMOEA to
obtain Pareto optimal solutions.

Recent research on CMOEAs can be grouped into four
categories. The first category consists of CMOEAs based on
multiple populations [S[l, [6fl, [12]-[15], [18]. These algo-
rithms employ multiple populations, each utilizing a unique
CHT. The selected CHTs have different focuses in balancing
convergence, diversity, and feasibility, enabling cooperation
among the various populations. The second category includes
CMOEAs based on multiple stages [8], [19]-[23], each of
which handles constraints using different CHTs at different
stages of the evolutionary process. Generally, these algorithms

ignore constraint violations in the early stages and gradually
consider feasibility in the latter stages. The third category
comprises CMOEAs based on penalty functions [9], [[16], [24].
These algorithms incorporate penalty terms into the objective
functions, thereby transforming the CMOP into an uncon-
strained one. The last category consists of CMOEAs based
on learning strategies [7]], [10], [25]-[27]. These algorithms
focus on adaptively selecting strategies for solving CMOPs by
utilizing population information, such as the feasibility ratio
in the current population, changes in constraint violations, and
the relationship between constrained and unconstrained Pareto
fronts.

CMOEAs within the previously described four categories
do not prioritize the selection of CHTs and genetic operators
in each generation. The selections throughout the evolutionary
process can be conceptualized as a temporal sequence, where
the time refers to the generation number. By leveraging
the historical data of applying CHTs and genetic operators,
discovering the structured patterns within this sequence is
advantageous for a CMOEA in finding Pareto optimal solu-
tions, as the discovery enables the algorithm to identify which
selections were the most effective in similar past environments.
The primary motivation of this paper is to utilize the historical
performance of previous selections to predict the current selec-
tion when solving a CMOP with evolutionary algorithms. This
facilitation is crucial because the effectiveness of a CMOEA
is closely tied to its ability to maintain the balance.

This paper focuses on the temporal sequence of constrained
handling selection (see Definition [I)) for solving CMOPs. The
main contributions of this paper are summarized as follows:

« Different from current adaptive CMOEAs, the selections
of CHTs and genetic operators throughout the evolu-
tionary process are modeled as a temporal sequence of
constrained handling selection in this study. By concep-
tualizing the selections as such, the proposed algorithm
can dynamically adapt to the diverse requirements of
balancing convergence, diversity, and feasibility encoun-
tered during the evolutionary process, thereby enhancing
its performance in finding Pareto optimal solutions. It is
noteworthy that, from an essential perspective of adap-
tively designing CHTSs and genetic operators for solving
CMOPs, other CMOEAs can be considered special in-
stances within the framework of the proposed model.

o We argue that discovering the systematic patterns in the
temporal sequence of constrained handling selection is
beneficial for CMOEAs in finding Pareto optimal solu-
tions. To facilitate this discovery, a deep reinforcement
learning model is designed in this study. This model
leverages historical data of previous selections to predict
the most effective selection in each generation. By contin-
uously learning from past experiences, the model dynam-
ically refines its strategies, improving predictive accuracy
and decision-making effectiveness. Experimental results
substantiate our argument, demonstrating that discovering
the systematic patterns within the temporal sequence
of constrained handling selection positively impacts the
resolution of CMOPs.
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The remainder of this paper is organized as follows. Sec-
tion [ reviews the recent research about constrained multi-
objective optimization. Section introduces the temporal
sequence of constrained handling selection method. Section
provides a detailed introduction of the proposed CMOEA
based on the temporal sequence of constraint-handling selec-
tion methods. Section [V] presents experimental results. Section
provides the conclusion and outlines future research direc-
tions.

II. RELATED WORK

In this section, we present recent advancements in con-
strained multi-objective optimization, organized according to
the four categories described in Section [I|

CMOEAs based on multiple populations utilize the coop-
eration of multiple populations. Qiao et al. [6] proposed a
multitasking constrained multi-objective optimization frame-
work for solving CMOPs. This algorithm employs a dynamic
auxiliary population to facilitate the evolution of the main
population through knowledge transfer. Ming et al. [15]] pre-
sented a competitive and cooperative swarm optimizer for
solving CMOPs. The competitive swarm optimizer aims to
approximate the Pareto front, while the cooperative swarm
optimizer focuses on escaping local optima. Liu et al. [[14] de-
vised a novel bidirectional coevolution CMOEA with one main
population and one archive population. The main population
is designed to prioritize constraint satisfaction, and the archive
population is designed to focus on objective minimization.
Although these CMOEAs employ multiple cooperative CHT's
across the populations, the selection of these CHTs is predeter-
mined. Moreover, the selection remains unchanged throughout
the evolutionary process, thereby limiting the performance of
CMOEAs in finding Pareto optimal solutions.

CMOEAs based on multiple stages segment the evolution-
ary process into distinct stages, each employing a distinct
CHT. Fan et al. [19] proposed a CMOEA with a push stage
and a pull stage. The algorithm disregards constraints at the
push stage, whereas it uses an improved ¢ method to guide
the population back to feasible regions at the pull stage. To
switch the push stage to the pull stage, a switching condition
is designed based on the change of both the ideal and the
nadir points. Zhang et al. [21] proposed a two-stage multi-
objective evolutionary process to solve CMOPs, designing
a parameter-less CHT to decompose the entire population
into three subsets. The design of the CHT aims to balance
convergence and constraint satisfaction across different subsets
at various stages. Most of these CMOEAs adopt a specific
CHT at a stage. Therefore, they have difficulty in adapting
to the generation-varying requirements for the balance at this
stage. Besides, the use of the CHTs during different stages is
manually determined, which is labor-intensive and problem-
dependent.

CMOEAs based on penalty function use a penalty term to
penalize infeasible solutions. Ma et al. [24] proposed a new
fitness function based on the constraint domination principle
(CDP) to solve CMOPs. The algorithm uses the weighted
sum of two rankings based on CDP and Pareto domination

to evaluate the superiority of the solutions, where the weight
is related to the proportion of feasible solutions in the current
population. Maldonado et al. [28|] proposed a dynamic penalty
function within MOEA/D for CMOPs. The penalty term is
dynamically adjusted along the evolutionary process, so as to
utilize the genetic information from the interaction between
the feasible and infeasible solutions.

CMOEAs based on learning strategy utilize the informa-
tion generated during the evolutionary process for adaptive
decision-making. Liang et al. [7] designed a CMOEA based
on the utilization of the relationship between the unconstrained
and constrained Pareto fronts. The evolutionary process is
divided into the learning and evolving stages. The purpose
of the learning stage is to measure the relationship between
the two Pareto fronts. Subsequently, the information obtained
at the learning stage is used to choose a better evolving
strategy for the evolving stages. Peng et al. [26] proposed
a two-stage framework for locating the reference point in the
decomposition-based CMOEAs. By learning the approximate
locations of the unconstrained and constrained Pareto fronts
at the first stage, a local estimation mechanism is designed
to estimate the best fit location of the reference point for a
CMOEA at the second stage. Most of these CMOEASs oper-
ate under the assumption that different constrained handling
strategies exhibit distinct performance levels when solving
specific CMOPs. To maintain overall performance across
a variety of CMOPs, these algorithms incorporate adaptive
mechanisms that accommodate the diverse characteristics of
CMOPs, thereby enhancing their robustness in addressing the
CMOPs effectively.

Recently, some studies use evolutionary algorithms with
reinforcement learning to solve CMOPs [10], [27]. To alleviate
the burden of selecting genetic operators, Zou et al. [[10] intro-
duced a process knowledge-guided strategy that employs deep
reinforcement learning. The strategy automatically recom-
mends a suitable genetic operator to the CMOEA (PKAEO).
Ming et al. [27] presented an adaptive auxiliary task selection
for multitasking-assisted constrained multi-objective optimiza-
tion with the utilization of the Q-Learning (CMOQLMT) and
deep Q-Learning models (CMODQLMT). The reinforcement
learning models intelligently suggest the optimal knowledge
transfer auxiliary task. Compared to the CMOEAs that utilize
reinforcement learning for selecting CHT's or genetic operators
to address CMOPs, this study conceptualizes the selections as
a temporal sequence of constrained handling selection from an
essential perspective (see Definition [I)). This conceptualization
is significant for enhancing the performance of CMOEAs
in identifying Pareto optimal solutions. Additionally, this
study enables the comprehensive selections of both CHTs
and genetic operators for the proposed CMOEA, improving
the adaptability and overall effectiveness of the CMOEA to
dynamically respond to the generation-varying landscapes of
a CMOP.

III. TEMPORAL SEQUENCE OF CONSTRAINED
HANDLING SELECTION

This section presents the foundation related to the tem-
poral sequence of constrained handling selection. Moreover,
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a method that leverages this sequence is introduced in de-
tail, aiming to enhance the adaptability and effectiveness of
CMOEAs in finding Pareto optimal solutions. For a quick
reference to the parameters defined in this study, we provide
a summary in Tables S-I and S-II in the supplementary
document.

A. Foundation about the temporal sequence of constrained
handling selection

The concept of the temporal sequence of constrained han-
dling selection refers to a sequence of the constraint-handling
strategies throughout the evolutionary process. For a CMOEA
and CMOP, let P; represent the initial population with size
N, Thax denote the maximum number of generations, and A
denote a set of constraint-handling strategies with size I. The
definition of the temporal sequence of constrained handling
selection is given as follows:

Definition 1. (Temporal Sequence of Constrained Handling
Selection). A series Y := [ay,aq,...,ar,,] is called a
temporal sequence of constrained handling selection, where
each a; represents a CHT with a genetic operator in the ¢-th
generation, and a; € A. The sequence is recursively defined
as follows:

,ai-1) “4)

where U is a predictive model that is used to output the next
selection a; in A based on the historical sequence of the
constrained handling strategies, and t = 2,3,...,Th. The
initial constrained handling strategy a; is randomly selected
from A following a uniform distribution.

¢ = U(al,a27...

Based on Definition [I] current CMOEAs with designing
adaptive CHTs and operators can be considered as special
instances within the proposed model of the temporal sequence
of constrained handling selection. For example, CMOEAs
based on multiple stages adopt multiple CHTs at different
stages of the evolutionary process. The adoption of the CHTs
throughout the evolutionary process forms a temporal se-
quence of constrained handling selection, where each stage
corresponds to a specific segment of the temporal sequence
in our model. Our model generalizes these CMOEAs by
providing a unified structure that captures the dynamic and
sequential nature of constrained handling selection throughout
the evolutionary process.

B. Temporal sequence of constrained handling selection based
on deep reinforcement learning

This subsection presents the framework of the temporal
sequence of constrained handling selection based on deep
reinforcement learning and introduces how to utilize the deep
Q-network to seek the systematic patterns within the sequence.
As shown in Fig. [2] the primary distinction between the
proposed algorithm and other CMOEAs that utilize deep rein-
forcement learning is that our algorithm facilitates comprehen-
sive selections of both CHTs and genetic operators in an online
manner. The selection necessitates modifications in key aspects
of the deep reinforcement learning design, including state

representation, action space, and reward scheme. These tailor-
designed components enable our algorithm to adapt more
effectively to the dynamic requirements of solving CMOPs,
resulting in better performance in finding Pareto optimal solu-
tions compared with the existing deep reinforcement learning-
based CMOEAs.

GO;: the i-th genetic operator
POP;: the i-th auxiliary task
CHT;: the i-th CHT
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Fig. 2. Comparison between the proposed algorithm and two
recent CMOEAs based on deep reinforcement learning for
adaptively selecting constrained handling strategies.

Considering that a CHT and genetic operator in each gener-
ation are selected from A according to Definition [I] the total
number of possible selection paths scales exponentially with
the number of generations. Therefore, identifying the system-
atic patterns in the sequence is a computationally demanding
task. In this context, reinforcement learning plays a crucial
role in mitigating this computational challenge. It enables the
agent to dynamically refine its strategies based on feedback
from the evolutionary process, thereby enhancing decision-
making within CMOEAs by focusing on empirically effective
strategies. Consequently, reinforcement learning streamlines
the search process and provides a feasible method to reduce
the complexity involved in identifying the systematic patterns
within the sequence for CMOEAs.

In this paper, the deep Q-network is utilized to seek the
structured patterns in the temporal sequence of constrained
handling selection, as shown in Fig. [3| The deep Q-network
characterizes the selection of CHTs and genetic operators as
action, with specific population information serving as the
state. Besides, it measures the improvement in objective opti-
mization and constraint satisfaction between two consecutive
populations to determine the reward. During the evolutionary
process, the proposed algorithm adjusts the CHT and genetic
operator based on the reward in each generation, generating
data samples for training the deep Q-network. As a result,
the deep Q-network can become more accurate for predicting
selections.

In Algorithm E], the state, denoted as s;, is obtained based
on population P; (Lines 1-2). To balance exploration and
exploitation, an action, denoted as a¢, is randomly selected
with a small probability using an Epsilon-greedy strategy [29],
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Constrained handling selection based on the deep Q-network
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Fig. 3. Framework of the temporal sequence of constrained
handling selection based on the deep Q-network.

particularly when the number of training samples is less than
the batch size, denoted as b. This ensures that the training
process always begins with at least a full batch of data (Lines
3-6). If there are enough samples, s; serves as the input to
the main network, denoted as (), within the deep Q-network.
This input generates a set of distinct Q-values, each associated
with a specific action. Subsequently, the action a; with the
maximum Q-value is selected as the optimal action (Lines 8-
10).

We discuss the key components, i.e., the state, action,
reward, training, and updating of the deep Q-network in the
following subsections.

1) Design of the state: In this paper, feasibility, conver-
gence, and diversity are utilized to characterize the state in
each generation.

Two features are used to characterize the feasibility of
the population. One is the ratio of the feasible solutions in
population P;, as shown in Equation (5).

Uy
Y= T
|||
where 1J; denotes the number of feasible solutions in P;. An-

other is the ratio of the feasible non-dominated solutions over
the non-dominated solutions in P;, as shown in Equation @

&)

Ot

(6)

Tt —
Wi
where o; and w; denote the number of feasible non-dominated
solutions and non-dominated solutions in P;, respectively.
Two features are adopted to describe the population conver-
gence. The ideal point, denoted as z*, can be used to measure

Algorithm 1: Temporal sequence of constrained han-
dling selection based on the deep Q-network

Input: The population P, at generation ¢,
the main network @,
the set of actions A,
the generation number ¢
Output: The selected action ay,
the state s;

1 /*Equation is derived from Equations */
2 Obtain s; of P; according to Equation ll
3 /*¢ is a predefined value between 0 and 1 */
4 if rand < £ or t < b then
5 Randomly select an index ¢ from 1 to ||A| with a
uniform distribution;
6 a; < the i-th element in A;
7 else
8 /*pick up the action with the maximum Q-value */
9 Obtain ||A|| Q-values by inputting s; to @;
10 as — argmaXQ(st,a/);
a' €A
11 end

12 return s;, a;

how far a population is close to the regions with the minimum
objective values. It is given as follows:

)

where z; = min (f;(x)|x € P), P is the set of all individuals
found so far. Besides, the center point, denoted as vy, of P
can be used to reflect the position where a population reaches
along the evolutionary process. It is given as follows:

z* = (21,22, .., 2m)

(®)

vy = (th,uf,...,u,{"')

> fi(x)
where V,f = %, and:=1,2,...,m.

Population diversity plays a pivotal role in characterizing the
state, as different degrees of population diversity necessitate
varying constraint-handling strategies [30]. Two metrics are
adopted to quantify population diversity, i.e., the average
distance between P; and v4, denoted as k;, and standard
deviation of P;, denoted as p;. They are given in Equations (9)

and (I0), respectively.

> d(F(x), )

_ xEP; (9)
. I1P,]]
A(F(x),vg) — kir)?
. T (P ). ) — 1) )
' I1P,]]

where d(F'(x),v:) calculates the Euclidean distance between
F(x) and vy.

A binary control parameter, denoted as flag, is employed
to manage transitions between two distinct stages of the
evolutionary process. The reason is that each stage in the
evolutionary process is characterized by distinct requirements
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on balancing feasibility, convergence, and diversity. The pa-
rameter flag is designed to reflect the update ratio of the
population every ten generations, as defined in Equation (TT).
The algorithm is in the exploration stage, with a focus on
expanding the search to explore a diverse range of solutions
when flag is equal to 0. Conversely, the population is roughly
considered to have reached the unconstrained Pareto front
when flag is switched to 1.

1, if py < pue forall j € J
flag = { 0, otherwise an
where (1; represents the ratio of individuals in the temporary
archive, denoted as TA, that are updated by the offspring
population in each update scheme (see Lines 24-25 in Al-
gorithm EI) Specifically, p; is calculated as the number of
new individuals that replace older ones in TA divided by the
total number of individuals in TA. The archive TA stores
the best non-dominated individuals identified by the offspring.
Furthermore, pu, is a preset threshold, and J represents a set
comprising every ten consecutive generation numbers.

The state s; for the deep Q-network is formulated as a
vector composed of the seven aforementioned features, in
which the features are calculated by Equations (3)-(IT). The
state s; is represented as follows:

St = (’Yt,Tt,Z*,Vt,Ht,pt,flag) (12)

2) Design of the action: Both CHTs and genetic operators
play a significant role in solving CMOPs [31]. As for CHTs,
there are a lot of CHTs enabling CMOEAs to well handle
different kinds of CMOPs [22], [32]]. In general, they can
be grouped into three categories based on their sensitivity to
the constraint violations. The first group is characterized by
its insensitivity to constraint violations, causing the CMOEAs
to completely ignore constraint violations. The second group
exhibits semi-sensitivity to constraint violations. The £ method
is a representative CHT which enables the CMOEAs to
choose some individuals with tolerable constraint violations
to the next generation. The last group is characterized by its
complete sensitivity to constraint violations, as it prioritizes
feasible solutions all the time. CDP is a prime example of this
category. To enhance the capability of the proposed algorithm
in addressing a diverse range of CMOPs with various char-
acteristics, one representative CHT is taken from each of the
three groups, i.e., ignoring constraint violations (ICV) [19],
the £ method [6], and CDP [33]].

As for genetic operators, differential evolution (DE) op-
erators and simulated binary crossover (SBX) [34] are the
most commonly used to solve CMOPs recently due to their
strong search ability [6], [[16]. Several types of DE operators
have shown excellent ability to solve optimization problems.
DE/rand/1/bin and DE/rand/2/bin are two of them that enable
fine-tuning of the search process by adjusting parameters to
improve the population diversity [10]. Consequently, both are
integrated as key genetic operators in the proposed algorithm
to leverage their distinct advantages. SBX is another genetic
operator that is chosen in this study, as it has a different
working paradigm with DE operators.

The action set, denoted as A, consists of nine unique actions,
each formed by pairing a CHTs with a genetic operators, as
shown in Table [I} The actions are indexed from 1 to 9, where
each index number corresponds to a specific pair of the CHT
and genetic operator. The details of the CHTs and genetic
operators used in this study are presented in Section I-A and
Section I-B in the supplementary materials, respectively.

TABLE I
DESIGN OF THE ACTION IN THIS STUDY.

Action CHT Genetic operator

1 ICV SBX

2 Icv DE/rand/1/bin
3 Icv DE/rand/2/bin
4 € method SBX

5 e method DE/rand/1/bin
6 € method DE/rand/2/bin
7 CDP SBX

8 CDP DE/rand/1/bin
9 CDP DE/rand/2/bin

3) Design of the reward: The reward evaluates the value
of the action taken, assigning the maximum value to the best
action. In this study, we design an adaptive credit assignment
function to dynamically assign a reward to an action based
on the state in each generation. The reward is designed in
two phases to guide the proposed algorithm to explore the
search space at the beginning of the evolutionary process and
subsequently to focus on finding Pareto optimal solutions. The
reward, denoted as Ry, is presented as follows:

(IGthIGDtH)-lO:‘, flag=10
Ri= . (13)
otherwise

Li+1 Pt+1
(I=[ye+1]) b+ [ve+1]m s

where /GD; and /G D, represent the inverted generational
distance (IGD) [35] of P; and P according to Equation ([E[)
respectively. |v;41] denotes the floor function applied to the
feasibility ratio in Py;;. n is the number of the updated
individuals in the output archive storing the best N feasible
non-dominated solutions, denoted as FIP, at generation t. ¢
and +/ are the sum of the overall constraint violations on all
individuals in P;, 1 and TA, respectively. p;1 and p’ are the
standard deviations of P, and TA based on Equation (10},
respectively. (b and ub are the lower and upper bound for
the reward, respectively. (b is less than 0 and ub is greater
than 0. It is worth noting that the reward is limited to the
domain [lb, ub]. The reward is capped at the lower bound if
it falls below b or at the upper bound if it exceeds ub. The
reason is that the reward is taken as one of the features for
training the deep Q-network, and its value that is outside of
the usual range can cause large gradients to back-propagation,
resulting in permanently shutting of activation functions due
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to the vanishing gradients [36].

S md(F(x),F)
1GD. — x€TA
G [[TA]]

The Equation (T4) calculates the Euclidean distance between
the individual x in TA and its closest individual in P; based
on their objective values.

(14)

flag=0

170 190

150
generation number

Fig. 4. Example regarding the working paradigm of the
reward during the evolutionary process.

To understand the working paradigm of the reward during
evolutionary process, an example of how the change of the
reward is associated with the evolutionary process is given in
Fig. @ The reward mechanism designed in this study consists
of two phases. In the first phase (i.e., when flag = 0),
the reward is determined by the improvement between two
consecutive populations. As the population approaches the
unconstrained Pareto front, the rewards gradually decrease be-
cause the two consecutive populations become similar. When
flag switches to 1, the proposed algorithm enters the second
phase, aiming to find Pareto optimal solutions. In this phase,
the algorithm engages with two scenarios. In the first scenario
where there exists at least an infeasible individual in P, the
reward is determined by the sum of constraint violations on
all individuals in P;;; and TA. In the second scenario where
all individuals in P, are feasible, the reward is determined
by the number of updated individuals in the output archive FPP
using the offspring of Py, diversity of the populations Py, 1,
and diversity of TA.

4) Training and updating of the deep Q-network: Training
and updating the deep Q-network are essential processes
designed to continuously enhance its capacity to predict and
evaluate action outcomes effectively. The deep Q-network
comprises two networks, i.e., the main network, denoted as @,
and target network, denoted as Q’. The main network () learns
and predicts the Q-values for different actions, while Q)" serves
to stabilize the training process [37]. The initialization of ()
involves setting up its architecture with random weights, which
are then refined through training. The experience regarding
the selection of the CHTs and genetic operators in each
generation can be used to train and update the two networks
for more accurate predictions. For instance, the next population
P, is produced through the action a; applied to the current

population P; at generation ¢. An experience sample, denoted
as e;, is produced during the process. It consists of four
components, i.e., 8¢, a;, R and s, where a; is the selection
of the CHT and genetic operator based on Table Il R; is
the reward obtained according to Section [[II-B3| s; and s;4;
are the states of P, and P, respectively. The experience
sample is collected into an experience replay pool, denoted
as [E. where E is a queue that operates on a first-in-first-out
basis in this study. It is worth noting that the head sample is
removed when E exceeds its pre-defined cardinality. The deep
Q-network uses the samples from E to train ) by randomly
selecting a batch of samples with size b when there are enough
samples, i.e., generation number ¢ is no less than b. A gradient
descent method is adopted to train () for w epochs by using
the b selected samples with the loss function by Equation (I3).

loss = (R; + Arr}aif Q' (st41,0) — Qs ar))®  (15)
a €

where A is a discount factor for the future reward,

max @ (Sty1,a ) is the maximum Q-value of all actions

a’ €A

output by Q' at the state St+1, Q(8t, at) is the output of Q) at
the state s;. The target network Q' undergoes periodic updates,
which involve copying the weights from @ to Q' every fixed
number of generations, as specified by the update frequency
parameter. This process ensures that ()’ gradually adapts to
the improved estimates of () while providing a stable baseline
for computing the loss during training.

IV. CMOEA BASED ON THE PROPOSED TEMPORAL
SEQUENCE

This section introduces the details of the proposed CMOEA
based on the temporal sequence of constrained handling se-
lection. Additionally, an analysis of the computational time
complexity is provided.

A. Main framework of the proposed CMOEA

The pseudo-code of the proposed CMOEA based on the
temporal sequence of constrained handling selection is pre-
sented in Algorithm 2]

1) Discovering the systematic patterns within the temporal
sequence of constrained handling selection: The deep Q-
network is facilitated to refine the selection of CHTs and
genetic operators in each generation. Moreover, it is trained
and updated to be more accurate in predicting the selections
by utilizing the data acquired through the interaction with the
evolutionary environment.

In each generation (Line 9), the population P;, main network
@, action set A, and generation number ¢ serve as the input
for Algorithm [} The best action, comprising a pair of
CHT and genetic operator, denoted as CHT' and GO respec-
tively, is selected for its highest expected cumulative reward.
Consequently, the deep Q-network leverages the accumulated
experience to identify the most effective selection. According
to Section [[II-B4] the network is consistently trained and
updated in each generation (Lines 33-34), which enhances the
accuracy of the CHTs and genetic operators selected by the
proposed algorithm.
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2) Evolutionary framework based on the temporal sequence

of constrained handling selection: The evolutionary algorithm

Algorithm 2: Main framework of the proposed algo- receives the action from the deep Q-network. Subsequently,

rithm the genetic operator GO is utilized to generate the offspring

population, while CHT is applied to select the subsequent
generation within the population.

The binary tournament selection mechanism is utilized to

choose the mating parents from the neighbors of each individ-

ual in the reproduction scheme. The neighbor relationship is

Input: An initial population P; with size IV,
the maximum generation number 7T,
QOutput: The set of Pareto optimal solutions FIP
1 Initialize the main network ) in the deep Q-network;

2 Ql + @Q; /* Target network */
3 TA + Py; /* Temporary archive */ defined by an angle-based decomposition method [38]], which
4 FP < P;; /* Output archive */ is given as follows:
* 1 *k
[P B v o B (lB(F0) 5 () 0%, €RUTE) 09
7 while ¢t < T,,,, do where Bj represents the neighbors of the individual xj in
8 /* The action a; is an index from 1 to 9, each index P;, @ (F (xk), F (x,)) is the angle between vectors F' (xy)
represents a combination of a genetic operator GO and and F(x,), and 0 is a preset angle. An offspring opj is
CHT CHT, as in Tabl * obtained by applying GO in a; to the k-th individual in P
9 8t, ar < Algorithm [I[(P;, Q, A, t); (Lines 10-18). A selection scheme is performed on P, with
10 rand < a random value between 0 and 1 with each newly generated individual opy based on CHT in a;
11 a uniform distribution; (Line 20). The selection is influenced by the used CHT. For
12 | for k<« 1t N do instance, a CMOEA selects individuals only based on objective
13 if rand < 0.9 then values if it uses ICV, i.e., completely ignoring the constraint
14 Pparent <— the mating parents selected from violations. The fitness is defined by the density estimation
the neighbors of the k-th individual via method [39] that is adopted to truncate the individuals at the
the binary tournament selection; same front rather than the crowding distance in this study.
15 else The reason is that the crowding distance may mis-estimate
16 Pparent <— the mating parents selected from the diversity of the population when the number of objectives
P; and FP via the binary tournament comes up to more than two [40]. This mechanism is adopted
selection; to select individuals throughout this study. The output archive
17 end FP which stores feasible non-dominated individuals and the
18 opy, < an offspring generated by Pparent via temporary archive TA which stores the best non-dominated
GO in a; according to Table individuals based on ICV are updated accordingly (Lines 21-
19 NP < P, U {opy }; 25). Following the final update of FP in each generation, the
20 Pt 41 < the N individuals selected from NP reward R; is calculated according to Equation (I3) and TA
based on CHT in a; according to Table in Section (Lines 27-28). Besides, s;,1 is obtained
21 /* Update archives FI’ and TA */ according to Equation (Line 29). Subsequently, E is
2 NF « FP U {opx }; updated with the newly generated experience sample e; to
23 FIP < the NN individuals selected from NF facilitate later training and updating of the networks (Lines
based on CDP; 30-32).
24 NT < TA U {opx }; The proposed algorithm repeats the loop when the stopping
25 TA < the N individuals selected from NT criterion is not met. Otherwise, the feasible solutions in the
based on ICV; output archive FIP are taken as the Pareto optimal solutions
26 | end for the given CMOP.
27 /* Calculate reward and obtain s¢y1 */
28 R, + the reward obtained according to Equation . . .
and TA. B. Computational time complexity
29 Obtain s;; of P;,; according to Equation ; The time complexity of the proposed algorithm primarily
30 /* Collect samples into E */ comes from two components. The first component is the
31 e < {st,as, Ry, 8111} evolutionary process that mainly includes parent selection,
32 E+ EU {e}. population updating, and neighbor assignment. The second
3 /* Train and update the networks with E */ component is related to the deep Q-network, including the
34 Train Q and update Q' by Sectionm evaluation of the state, evaluation of the reward, and the
35 tt+1; training of the deep Q-network itself.
36 end Suppose that the dimension of the objective space for

37 return FP

CMOPs is m and the population size is IV, the time com-
plexity of parent selection in a generation is O(mN?). The
time complexity of updating the population is determined by
density estimation and truncation procedure [39], with the
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worst-case complexity being O(mN?3). The time complexity
of the neighbor assignment is O(mN?), primarily determined
by computing the angle between any two solutions.

In the deep Q-network, the computationally intensive task
is to calculate the non-dominated rank of the population,
which has a time complexity of O(mN log N) per generation.
The complexity of calculating the reward is derived from
computing either the IGD or the standard deviation of the
population in the objective space, each with a computational
complexity of O(mN?). Let [ represent the number of hidden
layers in the network, h represent the average number of
nodes per hidden layer, r represent the number of nodes in the
input layer, and o represent the number of nodes in the output
layer. For training the network, each training session selects
b samples for w epochs. The time complexity of training the
deep Q-network is O(((I — 1)h? + (r + 0)h)wb) [10].

From the above analysis, the time complexity of the pro-
posed algorithm for a maximum number of generations 7T,y is
O (Thnax(mMN3+((I—1)h2+(r+o0)h)wbd))). While the deep Q-
network training contributes to the overall time complexity, the
integration does not change the computational order of either
the evolutionary algorithm or the deep Q-network components.

V. EXPERIMENTAL SETUP

This section presents a series of experiments to validate the
effectiveness of discovering systematic patterns in the temporal
sequence of constraint handling selection within the proposed
algorithm, denoted as CMOEA-TS. The experiments are given
as follows:

o The first experiment is designed to directly validate the
positive impact of discovering systematic patterns within
the sequence for CMOEA-TS on solving CMOPs. By
conducting a comparative analysis of CMOEA-TS against
nine CMOEAs, we aim to demonstrate the enhanced
capabilities of CMOEA-TS in terms of objective op-
timization and constraint satisfaction, as presented in
Section

o The second experiment is designed to investigate how
discovering the systematic patterns in the sequence based
on the deep reinforcement learning influences the perfor-
mance of CMOEA-TS, as presented in Section

o The third experiment is designed to contrast CMOEA-TS
with a recent CMOEA based on the deep Q-network, as
presented in Section

o The fourth experiment is designed to evaluate the influ-
ence of the selected CHTs on CMOEA-TS, as presented
in Section

o The fifth experiment is designed to examine the ef-
fects of varying genetic operators on the performance of
CMOEA-TS, as presented in Section In conjunction
with the fourth experiment, the two experiments aim to
validate that the comprehensive selection of both CHTs
and genetic operators improves the adaptability and over-
all effectiveness of CMOEA-TS, enabling CMOEA-TS to
dynamically respond to the generation-varying landscapes
of a CMOP.

o The sixth experiment is designed to investigate the ef-
fectiveness of the proposed credit assignment function in

generating the temporal sequence of constrained handling
selection, as presented in Section

e Due to space limitations, the final experiment, which
includes sensitivity analyses of the parameters (i.e., 6,
ub, Ib, pnr, A, Thmax, N, and network structures), an
analysis of the weaknesses of CMOEA-TS, a quantitative
comparison of algorithm execution times, and a real-
world application of CMOEA-TS to an unmanned aerial
vehicle path planning problem [41]], is presented in the
supplementary materials.

A. Experimental setting

Three commonly used benchmark suites are adopted for
the experimental studies, i.e., MW [42], LIR-CMOP [43]], and
DAS-CMOP [32]. The performance of CMOEA-TS is com-
pared with nine algorithms, including MTCMO [6]], cDPEA
[44], BiCo [14], ShiP [9], CMOEA-MS [8], CCMO [45], PPS
[19], CTAEA [12], and CMODQLMT [27]. The parameters
related to CMOEA-TS and the compared algorithms are set
as follows:

« Population Size: 100 for two-objective CMOPs and 300
for three-objective CMOPs.

¢ Termination Condition: For MW, the maximum genera-
tion 7.y 18 set to 1000. For LIR-CMOP and DAS-CMOP,
Thmax 18 set to 1500. All compared algorithms share the
same maximum number of function evaluations for each
benchmark problem.

e Number of Independent Runs: All algorithms are run
independently on each benchmark problem 30 times.

e Genetic Operators: For SBX, the crossover probability
and distribution index are set to 1.0 and 20, respectively.
For DE/rand/1/bin, the scalar factor (F') and crossover
rate (CR) are set to 0.5 and 1.0, respectively. For
DE/rand/2/bin, F' and C'R are set to 0.1 and 1.0, respec-
tively. The mutation probability and distribution index of
the polynomial mutation in the above genetic operators
are set to 1/c and 20, respectively, as in the source
reference [[19].

o Parameters of Algorithms: The compared algorithms are
implemented on PIatEMO 4.2 [46]], using the platform’s
default parameters. For CMOEA-TS, the parameters are
set as follows. 6, [b, ub, and p, are set to /20, —20, 20,
and 0.1, respectively. For the deep Q-network, the number
of nodes in the input layer r is set to the dimension of
s¢ and the number of nodes in the output layer o is set
to 9. The number of hidden layers [ is set to 5 and their
numbers of nodes are 8, 16, 32, 16, and 8, respectively.
The nodes of each layer are fully connected to each other
using Exponential Linear Units (ELU) as the activation
function. The learning rate of network training [r is set to
0.001. The update frequency of the target network is set
to 10. The cardinality of E is set to 50. The parameters
A, &, b, and w are set to 0.1, 0.1, 32, and 10, respectively.

Two commonly used metrics, i.e., IGD and HV, are used to
evaluate the performance of the CMOEAs in finding a set of
Pareto optimal solutions. IGD mainly measures convergence
by calculating the minimum sum of distances from points on
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the true Pareto front to the set of solutions obtained by an
algorithm. A smaller IGD value indicates better overall per-
formance in terms of convergence. HV measures the volume
enclosed by the nondominated solutions and a reference point,
where each objective value of the reference point is set to 1.1
times the corresponding extreme objective value of the Pareto
front in this paper. A larger HV value corresponds to better
overall performance in terms of convergence and diversity. In
addition, the Wilcoxon rank-sum test with a significance level
of 0.05 and Friedman test on IGD results are used to analyze
the results.

B. Performance of the proposed algorithm

Table [[I] presents the comparisons of CMOEA-TS with
the competing algorithms based on the IGD and Wilcoxon
rank-sum test results on the MW, LIR-CMOP, and DAS-
CMOFP test instances. Additionally, the HV results obtained
by all considered algorithms are provided in Table S-IV of
the supplementary materials.

CMOEA-TS outperforms nine competing algorithms in the
three benchmarks, i.e., MW, LIR-CMOP, and DAS-CMOP
test instances, affirming its superiority in both IGD and HV
metrics. Specifically, CMOEA-TS achieves the best average
IGD values in 10 out of 14 MW test instances and attains the
best HV values in 12 out of 14 instances, as detailed in Table
S-1V. In the LIR-CMOP test instances, CMOEA-TS is the
top performer in 9 out of 14 test instances according to both
IGD and HV metrics. Moreover, CMOEA-TS demonstrates
superior performance compared with the other algorithms in
the DAS-CMOP test instances, with IGD values significantly
better than the nine comparison algorithms in 6, 7, 7, 9, 5,
6, 9, 7, and 5 test instances, respectively. Similarly, the HV
values are significantly better in 4, 8,9, 9, 5, 6,9, 9, and 7
test instances.

The average ranking of the Friedman statistical test is used
to evaluate the performance of the algorithms, as shown in
Fig. Bl where the lower ranking indicates better performance.
The proposed algorithm has the best overall performance with
the Friedman ranking of 2.25 among the compared algorithms.
The result indicates that CMOEA-TS can find a set of better
Pareto optimal solutions compared with the other algorithms
on the three benchmark suites.

The enhanced performance of CMOEA-TS can be attributed
to its strategic integration of the deep Q-network, aimed at
identifying the consistent trends within the temporal sequence
of constrained handling selection (see the analysis in Sec-
tion [V-C). The reinforcement learning agent in CMOEA-
TS methodically adjusts the CHTs and genetic operators,
thereby enhancing its responsiveness to balance feasibility,
convergence, and diversity in each generation.

C. Effectiveness of discovering the systematic patterns within
the sequence

CMOEA-TS is compared with its variant, denoted as TS-
g. TS-g randomly selects action in each generation, while
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Fig. 5. Average ranking of the Friedman test for the ten
compared CMOEAs on MW, LIR-CMOP, and DAS-CMOP
test instances.

Average ranking of the Friedman test

CMOEA-TS selects actions based on the deep Q-network.
The rest of the parameter settings remains the same as in
Section|[V-A] The Wilcoxon rank-sum test results are presented
in Table [T} The IGD and HV results are provided in Table S-
V and Table S-VI in the supplementary materials, respectively.
Additionally, Fig. illustrates the comparative analysis
based on the average ranking of the Friedman test.

The experimental results demonstrate that CMOEA-TS sig-
nificantly outperforms TS-g on 26 of the 28 test problems
in terms of HV, underscoring the crucial role of the deep Q-
network in its operational strategy. CMOEA-TS methodically
evaluates potential actions based on their historical success,
thereby guiding CMOEA-TS to prioritize strategies that ensure
an optimal balance of feasibility, convergence, and diversity.
Consequently, the ability of CMOEA-TS to adapt its strategies
based on both real-time feedback and accumulated insights
directly enhances its performance and significantly bolsters its
robustness in solving CMOPs.

An illustration is provided to offer deeper insight into
the results, demonstrating how discovering the systematic
patterns within the sequence correlates with the performance
of CMOEA-TS on LIR-CMOPS, as shown in Figs. [6(a)|
through [(f)] Initially, the selections of constrained handling
strategies in CMOEA-TS and TS-g exhibit varied responses, as
shown in Fig. and Fig. indicative of an exploratory
phase where various strategies are tested. Over time, these
selections become more uniform, suggesting that CMOEA-
TS has refined its selection process to consistently apply
the most effective actions based on accumulated insights.
As shown in Fig. and Fig. CMOEA-TS applies
the effective actions that enable the population to traverse
infeasible regions and reaches the Pareto front. In contrast, TS-
g is impeded by the infeasible regions. This progression toward
more consistent action choices enhances overall performance,
as evidenced by the improved consistency of specific action
indices throughout the evolutionary process. The impact of
these refined selections across generations is further illustrated
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TABLE 11
IGD RESULTS OF CMOEA-TS AND THE OTHER NINE PEER ALGORITHMS ON THE THREE SETS OF BENCHMARK PROBLEMS. ‘NAN’ INDICATES THAT NO
FEASIBLE SOLUTION IS FOUND IN AT LEAST ONE INSTANCE. "+, ’-”, AND ’=" INDICATE RESULTS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND
STATISTICALLY SIMILAR TO THAT OF CMOEA-TS, RESPECTIVELY. THE BEST AND SECOND-BEST AVERAGE VALUE ARE SHADED WITH DARK-GRAY AND
A LIGHT-GRAY BACKGROUND, RESPECTIVELY.

Problem MTCMO cDPEA BiCo ShiP CMOEA-MS CCMO PPS CTAEA CMODQLMT CMOEA-TS
MW1 1.6141e-03 - 1.7386e-03 -  1.5508e-03 - NAN - NAN - 1.5167e-03 - NAN - 2.0059e-03 - 1.7548e-03 - 1.4187e-03
MwW2 2.0167e-02 - 1.7777e-02 - 1.2822e-02 -  2.7690e-02 - 1.9505e-02 -  2.1144e-02 - NAN - 1.7420e-02 -~ 1.1253e-02 - 3.5662e-03
MW3 4.9790e-03 - 4.9408e-03 -  5.0196e-03 -  6.9993e-02 -  5.3174e-03 -  4.8433e-03 -  6.0906e-03 -  4.9782e-03 - = 4.8177e-03 - 4.4840e-03
Mw4 2.0992e-02 - = 2.0436e-02 -  2.1131e-02 - 3.1903e-02 - 2.2800e-02 -  2.0999e-02 -  3.3616e-02 -  3.1317e-02 - 2.2674e-02 - 1.9735e-02
MWS5 3.0878e-02 + 3.2740e-03 + 7.6446e-03 =  2.9643e-01 - NAN - 1.4889e-03 + 5.0081e-01 - 1.2946e-02 - | 1.4657¢-03 = 1.9089¢-03
MW6 2.2396e-02 - 1.1777e-02 -  8.9192e-03 -  4.3428e-02 -  2.4177e-02 -  5.4458e-02 - NAN - 1.1188e-02 -  6.8106e-03 - 3.0439e-03
MW7 4.2417e-03 =  4.1677e-03 + 4.6564e-03 -  6.5628e-02 -  3.1032e-02 -  4.4736e-03 -  4.7087e-03 -  6.6625¢-03 -  4.6033e-03 - 4.3028e-03
MW8 2.2008e-02 - 2.1227e-02 - 2.1790e-02 - 3.1922e-02 - 2.1854e-02 -  2.1506e-02 - NAN - 2.8338e-02 - 2.1042e-02 - 2.0597e-02
MW9 5.8335e-03 - 2.9996e-02 = 8.5361e-03 -  6.0640e-02 -  1.1855e-01 - | 5.2389e-03 - 1.0134e-01 -  8.7984e-03 - 8.3719e-03 - 5.6427e-03
MWI10 4.2368e-02 - 2.4486e-02 -  3.1562e-02 - NAN - 4.5238e-02 - 3.8625e-02 - NAN - 1.6080e-02 -~ 1.0135e-02 - 3.5593e-03
MW11 1.5624e-02 = 1.5762e-02 = 1.5617e-02 = 3.3727e-01 -  3.3533e-02 = 1.5569e-02 = 1.6765e-02 -  2.3046e-02 - | 1.5536e-02 = 1.5585e-02
MWI12 1.3736e-02 =  2.7218e-02 - =~ 4.7441e-03 - 3.4194e-02 -  1.8768e-02 -  4.9737e-03 - 1.5799¢-01 -  7.9152¢-03 - 4.8900e-03 - 4.6805e-03
MW13 6.9376e-02 -  2.9605e-02 -  2.7500e-02 - 2.6295e-01 - 9.5804e-02 -  5.8974e-02 -  5.0053e-01 -  4.4946e-02 - = 1.9664e-02 - 1.0787e-02
MW14 5.3709e-02 - 5.3093e-02 -  5.5182e-02 -  7.4753e-02 -  6.7257e-02 -  5.3469e-02 -  8.1877e-02 -  5.4076e-02 -  5.4820e-02 - 5.0816e-02

LIR-CMOP1 1.3673e-01 - 1.5374e-01 - 2.0357e-01 - NAN - 3.2864e-01 - 2.5401e-01 - = 1.9875e-02 - NAN - 1.4539¢-01 - 1.6384¢-02
LIR-CMOP2  1.1957e-01 - 1.5130e-01 -  1.7745e-01 - NAN - 2.7794e-01 - 2.1375e-01 - =~ 1.1329e-02 - 1.8830e-01 -  9.0760e-02 - 6.0173e-03
LIR-CMOP3  1.6111e-01 -  1.685le-01 -  2.2735e-01 - NAN - 3.2138e-01 - 2.7408e-01 - | 2.1715e-02 + NAN - 1.6421e-01 - 4.6944¢-02
LIR-CMOP4  1.6057e-01 - 1.6994e-01 - 2.2653e-01 - NAN - 3.2819¢-01 - 2.9414e-01 - | 8.5107e-03 + NAN - 1.9777e-01 - 2.8008e-02
LIR-CMOP5 ~ 7.1157e-01 - 2.8865e-01 -  1.2201e+00 -  1.2183e+00 -  3.2029¢-01 -  2.8229e-01 - = 6.9498e-03 -  1.1289e+00 -  2.3324e-01 - 4.6912¢-03
LIR-CMOP6 ~ 7.4372e-01 - 3.7924e-01 -  1.3463e+00 - 1.3467e+00 -  3.5149e-01 - 3.2036e-01 - = 7.8179e-03 -  1.3149e+00 -  2.5338e-01 - 4.4317e-03
LIR-CMOP7 ~ 1.2900e-01 -  1.2648e-01 -  5.4894e-01 -  4.0054e-01 -  1.3143e-01 -  1.2001e-01 - = 3.1361e-02 -  1.3696e-01 -  3.8183e-02 - 1.1802e-02
LIR-CMOP8  1.9243e-01 - 1.6992¢-01 - 9.5949¢-01 - 1.1099e+00 -  2.0579¢-01 - 1.8321e-01 - =~ 1.0908e-02 -  6.9988e-01 -  2.4374e-02 - 6.6122¢-03
LIR-CMOPY9  6.7425e-01 - 3.6354e-01 - 9.0014e-01 - 9.6509e-01 -  6.1746e-01 -  4.3234e-01 -  2.4566e-01 -  4.2761e-01 - ~ 1.6932e-01 - 1.1749e-01
LIR-CMOPI10  4.2444e-01 - 2.3711e-01 = 8.9992e-01 -  8.5083e-01 -  3.3323e-01 -  1.1715e-01 + | 4.0801e-02 = 2.7816e-01 - = 5.3252e-02 + 1.8957e-01
LIR-CMOPI1  3.0857e-01 - 8.4994e-02 -  5.8145e-01 -  7.8407e-01 -  2.3167e-01 - = 6.2393e-02 -  1.7335e-01 -  2.1036e-01 - | 2.8844e-02 - 8.4163e-02
LIR-CMOPI12  3.6769e-01 - 1.4996e-01 -  4.9759e-01 -  8.3405e-01 -  3.2646e-01 -  1.8613e-01 -  8.2681e-02 -  2.1431e-01 - = 4.3202e-02 - 4.1441e-02
LIR-CMOP13  1.3036e+00 - 5.0749e-02 =  1.2628e+00 -  1.3086e+00 - | 5.0123e-02 = 5.0198e-02 = 7.4207e-02 -  6.1719¢-02 -  5.0562¢-02 =  5.1095e-02
LIR-CMOP14  1.2598e+00 -  5.2679e-02 -  1.2605e+00 -  1.2648e+00 - = 5.1808e-02 -  5.2637e-02 -  6.9681e-02 -  6.8121e-02 -  5.3007e-02 - 4.9824e-02
DAS-CMOP1  6.7678e-01 - 6.7199e-01 - 7.2262e-01 -  7.3497e-01 - 7.2503e-01 - 7.1577e-01 -  4.3293e-02 -  1.8143e-01 - | 3.9358e-03 - 3.1340e-02
DAS-CMOP2  2.2439¢-01 - 2.3009e-01 - 2.4778e-01 - 2.7325e-01 - 2.5727e-01 -  2.3026e-01 -  5.1108e-03 -  8.4193e-02 - = 4.5949¢-03 - 4.0280e-03
DAS-CMOP3  2.6231e-01 -  2.9566e-01 -  3.1033e-01 -  3.5220e-01 -  3.5157e-01 -  3.3981e-01 -  2.5048e-01 - = 1.3241e-01 = = 1.9858e-02 + 1.3395e-01
DAS-CMOP4 | 1.1598e-03 + 2.4504e-03 -  5.0753e-02 -  2.4131e-01 -  6.5908e-02 = 1.2633e-03 = 1.8297e-01 -  9.3364e-03 - 2.6901e-03 - 1.2782e-03
DAS-CMOP5 | 2.7042e-03 + | 2.6552e-02 -  2.4655e-02 -  3.2127e-01 - 1.7754e-02 + = 2.7445e-03 = 7.2893e-03 - NAN - 2.9711e-03 - 2.7920e-03
DAS-CMOP6  4.0697e-02 = 2.1639e-02 =  8.0289e-02 -  4.7963e-01 -  1.5534e-01 -  3.3584e-02 - NAN - 1.9486e-02 + | 3.3460e-02 - 2.0759e-02
DAS-CMOP7  1.8209e-02 - 1.7948e-02 -  1.7861e-02 =  2.3190e-02 - | 1.7516e-02 + | 1.7928e-02 -  3.1470e-02 -  2.8820e-02 -  1.7828e-02 = 1.7762e-02
DAS-CMOP8  2.4689e-02 - = 2.3249e-02 + 2.3469e-02 + 2.8422e-02 - 2.3731e-02 + 2.3993e-02 = 5.5317e-02 -  3.8468e-02 - | 23116e-02 + | 2.4142¢-02
DAS-CMOP9  1.9211e-01 - 6.2221e-02 -  2.6720e-01 -  3.3909e-01 - 3.1294e-01 - 3.2284e-01 -  3.5977e-02 -  5.1977e-02 - | 2.2874e-02 + @ 2.3411e-02
+-I= 3/30/4 3/29/5 1/33/3 0/37/0 3/31/3 2/30/5 2/34/1 1/35/1 4/29/4

in the convergence graph of the median HV value in Fig. D. Comparison of the CMOEAs based on the deep Q-network

and Fig. showing marked performance improvements
compared with TS-g. It is noteworthy that TS-g achieves
no improvement in HV, as it selects constrained handling
strategies randomly, resulting in solutions that do not fall
within the area enclosed by the reference point.

TABLE III
WILCOXON RANK-SUM TEST FOR IGD AND HV ON MW AND LIR-CMOP
TEST INSTANCES.

IGD(+/-/=) HV(+/-1=)

TS-g vs. CMOEA-TS 0/19/9 0/26/2

This subsection examines the performance of CMOEA-
TS compared with another recent CMOEA that utilizes the
deep Q-network, namely CMODQLMT. It is important to note
that CMODQLMT primarily employs the deep Q-network to
select auxiliary populations that assist in evolving solutions
for CMOPs. By integrating the deep Q-network to systemat-
ically refine both the CHTs and genetic operators, CMOEA-
TS more effectively adapts to the specific requirements of
each generation. Consequently, CMOEA-TS achieves a better
approximation of the Pareto front in the majority of the test
instances, specifically in 33 out of 37 instances regarding
the IGD metric, showing results no worse than those of
CMODQLMT, as detailed in Table |m
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Fig. 6. Effectiveness of discovering the systematic patterns
within the temporal sequence of constrained handling
selection on LIR-CMOPS.

E. Influence of the selections of CHTs

CMOEA-TS is compared with its three variants: TS-a, TS-
b, and TS-c. Each variant utilizes a distinct CHT: TS-a uses
ICV, TS-b employs the e-method, and TS-c utilizes CDP. In
contrast, CMOEA-TS automatically selects one of these three
CHTs based on the deep Q-network. The rest of the parameter
settings remains the same as in Section[V-A] CMOEA-TS, TS-
a, TS-b, and TS-c are independently run 30 times on the MW
and LIR-CMOP test instances. The Wilcoxon rank-sum test
results are presented in Table The IGD and HV results are
provided in Table S-V and Table S-VI in the supplementary
materials, respectively. Additionally, Fig. [[(a)] illustrates the
comparative analysis based on the average ranking of the
Friedman test.

The results suggest that CMOEA-TS achieves the best
performance, significantly outperforming TS-a and TS-c. The
reason is that TS-a and TS-c prioritize constraint satisfaction
and objective minimization, respectively, and such a bias
is not beneficial for solving CMOPs. Although CMOEA-

TS shows slightly inferior performance to TS-b in the LIR-
CMOP1-4, it outperforms TS-b in the majority of the other
test instances. TS-b adopts a dynamic decreasing constraint
boundary approach, while CMOEA-TS can flexibly choose
different CHTs according to the evolving requirements for
balancing feasibility, convergence, and diversity during the
evolutionary process. This flexibility effectively compensates
for the deficiencies of a single CHT, thereby exhibiting en-
hanced robustness.
TABLE IV

WILCOXON RANK-SUM TEST FOR IGD AND HV ON MW AND LIR-CMOP
TEST INSTANCES.

IGD(+/-/=) HV(+/-/=)
TS-a vs. CMOEA-TS 2/13/13 2/21/5
TS-b vs. CMOEA-TS 6/10/12 5/11/12
TS-c vs. CMOEA-TS 1/19/8 0/22/6

FE. Influence of the selections of genetic operators

CMOEA-TS is compared with its three variants, denoted as
TS-d, TS-e, and TS-f, each employing a distinct genetic op-
erator: TS-d uses DE/rand/1/bin, TS-e deploys DE/rand/2/bin,
and TS-f applies SBX. In contrast, CMOEA-TS automatically
selects one of these three genetic operators based on the deep
Q-network. The rest of the parameter settings remains the
same as in Section[V-A] The four algorithms are independently
run 30 times on the MW and LIR-CMOP test instances. The
Wilcoxon rank-sum test results are presented in Table |V| The
IGD and HV results are provided in Table S-V and Table S-VI
in the supplementary materials, respectively. Additionally, Fig.
illustrates the comparative analysis based on the average
ranking of the Friedman test.

The results show that CMOEA-TS achieves the best overall
performance. The reason is that a single genetic operator
cannot be applied to solve all problems, as shown in Table
S-V. The algorithm with SBX significantly outperforms the
algorithms with DE/rand/1/bin and DE/rand/2/bin on MW test
instances, while the two DE genetic operators are more suit-
able than SBX for the CMOEA to solve LIR-CMOP test in-
stances. The algorithms with DE/rand/1/bin and DE/rand/2/bin
display variant performance on solving LIR-CMOP, hinting
at their unique strengths. By integrating the three genetic
operators, CMOEA-TS leverages their collective strengths
and adaptively selects the most suitable genetic operator at
different evolutionary stages when solving CMOPs.

G. Effectiveness of the credit assignment function in generat-
ing the sequence

This study designs an adaptive credit assignment function
that evaluates each temporal sequence of constrained handling
selection by assessing the executed actions at every generation.
CMOEA-TS adjusts its strategy based on the rewards received
from this function. To verify the effectiveness of the proposed
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TABLE V
WILCOXON RANK-SUM TEST FOR IGD AND HV ON MW AND LIR-CMOP
TEST INSTANCES.

IGD(+/-/=) HV(+/-/=)
TS-d vs. CMOEA-TS 5/18/5 3/20/5
TS-e vs. CMOEA-TS 1/21/6 0/23/5
TS-f vs. CMOEA-TS 0/19/9 4/21/3

credit assignment function, CMOEA-TS is compared with its
variant, TS-h, where the rewards of TS-h are determined solely
based on the improvement in IGD between two successive
populations, as defined in Equation (I3). The rest of the
parameter settings remains the same as in Section [V-A] Both
algorithms are independently run 30 times on the MW and
LIR-CMOP test instances. The Wilcoxon rank-sum test results
are presented in Table The IGD and HV results are
provided in Table S-V and Table S-VI in the supplementary
materials, respectively. Additionally, Fig. [{d)] illustrates the
comparative analysis based on the average ranking of the
Friedman test.

The results indicate that CMOEA-TS significantly outper-
forms TS-h. The underlying reason is that the reward scheme
in TS-h is designed only to enhance objective optimization,
without sufficiently considering population feasibility. This
oversight leads the deep Q-network to learn suboptimal behav-
iors. In contrast, the reward scheme in CMOEA-TS is adap-
tively adjusted across different evolutionary stages, enabling
a more comprehensive evaluation of strategy effectiveness.
Consequently, the adaptive credit assignment function enables
CMOEA-TS to achieve superior performance in obtaining
Pareto optimal solutions compared with TS-h.

TABLE VI
WILCOXON RANK-SUM TEST FOR IGD AND HV ON MW AND LIR-CMOP
TEST INSTANCES.

IGD(+/-/=) HV(+/-/=)

TS-h vs. CMOEA-TS 3/18/7 2/20/6

VI. CONCLUSION

This study focused on the temporal sequence of constrained
handling selection for solving CMOPs. The selections of CHT's
and genetic operators throughout the evolutionary process are
modeled as the temporal sequence of constrained handling
selection (see Definition [T)). With this model, most CMOEAs
focusing on the design of CHTs and genetic operators can
be viewed as special cases. An essential aspect of effectively
solving CMOPs with this sequence is utilizing historical data
from past selections to predict upcoming ones, thereby enhanc-
ing decision-making capabilities. To achieve this, the deep Q-
network was employed to identify systematic patterns within
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and its variants on MW and LIR-CMOP test instances.

(d) Effectiveness of the proposed
credit assignment function.

the sequence. It tracks and analyzes the effectiveness of vari-
ous CHTSs and genetic operators across successive generations.
By pinpointing strategies that have yielded optimal outcomes
in past generations, the proposed CMOEA dynamically adjusts
its constrained handling strategies to effectively respond to the
evolving dynamics of CMOPs.

The statistical experimental results from the Wilcoxon rank-
sum test and Friedman test showed that CMOEA-TS based on
the temporal sequence of constrained handling selection out-
performed the nine competing CMOEAs. These results verify
that discovering the systematic patterns within the sequence
for CMOEA-TS has a positive impact on solving CMOPs
in terms of objective optimization and constraint satisfaction,
as presented in Section [V-B] Additionally, the effectiveness
of the deep Q-network in recognizing consistent trends in
the temporal sequence of constrained handling selection was
validated in Section[V-C| This network empowers CMOEA-TS
to dynamically adapt its strategies to meet the requirements of
balancing feasibility, convergence, and diversity throughout the
evolutionary process. Moreover, the two experiments validated
that the comprehensive selection of both CHTs and genetic
operators improves the adaptability and overall effectiveness
of CMOEA-TS in solving CMOPs, as presented as in Section
[V-E] and Section [V-H

In the future, we plan to extend the applicability of
CMOEA-TS to large-scale constrained optimization problems,
focusing on its adaptability and performance with an increased
number of decision variables and constraints. Furthermore, we
aim to adapt CMOEA-TS for dynamic constrained optimiza-
tion problems, emphasizing scalability and efficiency in com-
putationally intensive scenarios, particularly where constraints
and objectives are subject to change over time.
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