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Abstract—Multi-source unsupervised domain adaptation source domains, while the prototype combination regularization

(MSUDA) is a technique that transfers knowledge from multiple
labeled source domains to an unlabeled target domain. The
challenge of MSUDA is to reduce the domain shift and effectively
amalgamate knowledge from disparate source domains. To address
this challenge, it is necessary to model the target domain as a
weighted combination of the source domains at the category
level. Therefore, we propose a prototype combination method for
multi-source unsupervised domain adaptation, which establishes
multiple domain alignment in a combinatorial manner. Our
method is established on a set of semantic category prototypes,
each of which is a representative category embedding. A prototype
combination mechanism (i.e., a feature-fusion scheme) is designed
to select which source class features should be aligned with the
corresponding target class features. This method incorporates
contrastive prototype adaptation (i.e., a category-wise alignment
approach) to accommodate the label distributions of the target
domain. Furthermore, a prototype combination regularization
(i.e., a domain-wise alignment metric) is designed to reduce
the distributional differences between the source -category
prototypes and the target samples of low-quality pseudo-labels.
The experimental results on three benchmark datasets demonstrate
that our prototype combination mechanism is capable of selecting
and combining category-discriminative features across multiple
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can further reduce the domain shift.
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1. INTRODUCTION

RADITIONAL machine learning algorithms are funda-

mentally reliant on a substantial amount of labeled data
to train the learning model effectively [1], [2], [3], [4], [5].
These algorithms operate under the assumption that the training
data and the test data follow an identical feature distribution
pattern [6]. Nevertheless, training data is invariably limited,
while test data is unlabeled and unknown. The domain shift [7],
[8] between a labeled training dataset (i.e., source domain) and
another unlabeled testing dataset (i.e., target domain) can lead
to severe performance degradation.

Domain adaptation is a domain-shift mitigation technique
that adapts a model trained on a labeled source domain to
an unlabeled target domain. This technique has been widely
adopted across various fields, including computer vision [9],
[10], natural language processing [11], [12], [13], and health
care [14], [15], [16]. Currently, numerous single-source unsu-
pervised domain adaptation (SUDA) methods [17], [18], [19]
focus on transferring valuable knowledge from a labeled do-
main to another unlabeled domain. However, it is common that
the labeled data are collected from multiple available source
domains (e.g., data from different scenarios and devices). It is
unreasonable to assume that all source domains follow the same
distribution pattern [20]. Therefore, multi-source unsupervised
domain adaptation (MSUDA) was developed to integrate the
transferrable knowledge from multiple source domains to en-
hance the adaptation to a target domain. The simplest MSUDA
approach is to treat the multi-source domains as one single
source domain, followed by applying single-source domain
adaptation methods to align distributions. Nonetheless, single-
source domain adaptation methods are prone to overlooking
distributional differences across different source domains, which
impedes their ability to minimize the domain shift among the
source domains [21].

With the advancement of deep learning, recent MSUDA
efforts have concentrated on distributional alignment across
multiple source domains and a target domain. Based on the
fineness of alignment, these efforts can be primarily categorized
into a category-wise alignment group [10], [22], [23] and a
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(a) Clipart (1st source
domain)

(b) Real world (target (c) Sketch (2nd source
domain) domain)

Fig. 1. Car images in different domains. Car features of the real-world image
can be assembled from car features in Clipart and Sketch domains.

domain-wise alignment group [24], [25], [26]. Despite these
advancements, most existing MSUDA methods face three pri-
mary problems. Firstly, they treat multiple source domains as
equal [10], [24], [27], disregarding the varying contributions
that each source domain may provide to the adaptation task.
Such misconduct can lead to negative transfer [28] when some
source domains diverge significantly from others. Secondly,
domain-wise alignment methods [25], [26], [29] do not explore
the domain alignment at the category or pixel levels, which
may result in suboptimal performance. Thirdly, prior works
on category-wise domain alignment [30], [31] omit the reli-
ability of the pseudo-labels, causing misclassification. Recent
works on category-wise domain alignment [10], [23] suggest
that the model classification suffers from the inclusion of noisy
pseudo-labeled target samples [28]. These approaches focus
on extracting knowledge from high-confidence pseudo-labeled
target samples, omitting the low-confidence ones. This results
in suboptimal utilization of the training data.

Based on the three problems identified, we can draw the
following two points. Firstly, it is essential to model the target
domain as a weighted combination of multiple source domains
in a combinatorial manner. The target category features can be
represented as the combination of the corresponding multiple
source category features. For example, as shown in Fig. 1, the
feature (e.g., “windshield,” “automobile lamp,” and “wheel”
features) of the real-world “car” image can be assembled from
the feature (e.g., the “wheel” feature) of the clipart “car” im-
age and the feature (e.g., “windshield” and “automobile lamp”
features) of the sketch “car” image. We deem that the target do-
main features can benefit from the complementary information
of the source domains, with each source domain contributing
unique aspects to the overall target representation. Therefore,
a highly effective prototype combination mechanism (i.e., a
feature-fusion scheme) is necessary for such modeling. Sec-
ondly, category-wise and domain-wise domain alignment meth-
ods can be employed in conjunction with one another. On the one
hand, category-wise alignment methods delve more deeply into
category semantic information than domain-wise alignment.
However, their efficacy is contingent upon the availability of
target pseudo-labels. On the other hand, domain-wise alignment
methods are unable to alleviate the intra-class differences among
all domains, but their adaptation capacity is not contingent upon
the target pseudo-labels. Therefore, it is necessary to design a
method to resolve the diverse confidence pseudo-labeled target
samples through the synergistic effect between category-wise
alignment and domain-wise alignment.

In light of the above two points, we propose a prototype com-
bination method for multi-source domain adaptation (PCMDA),
which adaptively combines the source category-discriminative
features so as to achieve the alignment between a target domain
and multiple source domains. Firstly, a prototype combination
mechanism governs the weight distribution to ensure the proto-
type combinations (i.e., the weighted combinations of the source
prototypes) closely match their corresponding target prototypes.
Through dynamic weight allocation, the model prioritizes the
source prototypes that resemble the corresponding target proto-
type, thus extracting more discriminative features that enhance
the domain adaptation. Secondly, the domain adaptation process
comprises both category-wise and domain-wise alignments. At
the category level, we adopt a contrastive prototype adaptation
framework (i.e., a category-wise alignment framework). In this
framework, each high-confidence pseudo-labeled target embed-
ding is aligned with its corresponding prototype combination,
while each source feature embedding is aligned with its cor-
responding target prototype. At the domain level, a prototype
combination regularization (i.e., a domain-wise alignment met-
ric) is designed to achieve the distribution alignment between
the low-quality pseudo-labeled target samples and the prototype
combinations. In the following sections, we will discuss related
work and the PCMDA method and assess the effectiveness of
PCMDA from both theoretical and experimental perspectives.

The main contributions of this paper are summarized as
follows:

® We propose a prototype combination method for multi-

source unsupervised domain adaptation (PCMDA) that
models the target domain as a weighted combination of
the source domains in a combinatorial manner. A proto-
type combination mechanism is designed for PCMDA to
combine the source semantic information that is beneficial
for cross-domain image classification. Due to the prototype
combination mechanism, the PCMDA model can discrim-
inate and combine source prototypes that are similar to the
target prototype at the class level, realizing more effective
domain adaptation compared to the existing method.

® QOur PCMDA model can adaptively learn the interdepen-

dencies among the category-discriminative features of dif-
ferent domains through a prototype combination mecha-
nism. Additionally, a prototype combination regulariza-
tion is introduced to the PCMDA model for the distri-
bution alignment of the low-quality pseudo-labeled target
samples, which further reduces the domain shift between
source and target domains. Compared to the existing class-
alignment methods, the PCMDA model can learn knowl-
edge from the low-quality pseudo-labeled target samples
due to the prototype combination regularization. Therefore,
the PCMDA model achieves competitive performance on
Digits-5, PACS, and Office_caltech_10 with average accu-
racies of 93.2%, 89.3%, and 97.4%, respectively.

II. RELATED WORK

This section reviews related work in three aspects: single-
source unsupervised domain adaptation, multi-source unsuper-
vised domain adaptation, and instance-wise contrastive learning.
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A. Single-Source Unsupervised Domain Adaptation (SUDA)

Recently, the field of SUDA has experienced a plethora
of remarkable advancements. Existing SUDA methods can be
divided into three categories. One is instance-based work [32],
[33], which assigns high weights to the source samples that
closely resemble the target domain samples and low weights
to source samples that are very different from the target domain
samples. The patch-mix transformer (PMTrans) [33] is a repre-
sentative instance-based approach. Its model divides the images
of all domains into several small blocks and recombines them to
create new images, realizing domain adaptation. Another branch
of SUDA is adversarial-based work [17], [18], [34], in which
a discriminator network is trained to align the source domain
with the target domain. The conditional adversarial domain
adaptation (CDAN) [17], [35] framework provides a principled
approach thatleverages conditional adversarial networks to learn
decoupled and transferable representations. The third category
is feature-based work [19], [36], [37], whose core idea is to
achieve the feature distributional alignment between the source
and target domains in a common feature space. An example of
a feature-based approach is structurally regularized deep clus-
tering (SRDC) [37], which combines clustering and classifier
learning to achieve unsupervised domain adaptation.

To achieve a fine-grained alignment, some existing
works [30], [31] focus on category-wise distributional align-
ment. Nonetheless, these works cannot solve the MSUDA
problem. To address this problem, we designed a prototype
combination mechanism to combine the category-discriminative
semantic information from multiple source domains.

B. Multi-Source Unsupervised Domain Adaptation (MSUDA)

SUDA methods mainly focus on transferring valuable knowl-
edge from one source domain to a target domain. However, it is
worth noting that available labeled data may come from multiple
source domains. Therefore, multi-source unsupervised domain
adaptation (MSUDA) was proposed to extend domain adaptation
techniques to multi-source scenarios. Early efforts [38], [39]
provide fundamental theoretical research for the hypothesis that
the target distribution could be represented as a weighted combi-
nation of several source distributions. Furthermore, significant
efforts [38], [40] have been allocated to theoretical research on
the generalized boundary of MSUDA. Recently, Xu et al. [41]
combined the source-specific perplexity scores to denote the
possibilities of target samples. Similarly, Peng et al. [25] propose
a multi-classifier approach to dynamically match the feature
distribution moment for each source-target domain pair. Besides,
the mutual learning-based alignment network (MLAN) [29] is
designed based on model distillation, which promotes domain
alignment by learning from each other through joint alignment
branches and separate alignment branches. Wang et al. [10]
leverage category prototypes from each source domain to con-
struct a knowledge graph, aiming to maintain the invariance of
inter-class relationships for domain alignment.

Building upon the theoretical guarantee of weighted domain
combination [38], [39], manual weighted combination schemes
have been widely adopted in recent efforts [24], [25], [27],
[29]. Nevertheless, such combination schemes can neither adapt

to each source domain with the model training nor combine
multiple source domains accurately. In contrast, our PCMDA
model can achieve dynamic weight allocation for each prototype
through our prototype combination mechanism.

C. Instance-Wise Contrastive Learning

Contrastive learning [42], [43] is an unsupervised learning
method used for representation learning. Its objective is to learn
data representations such that similar instances are brought
closer together in the latent representation space while dissimilar
instances are pushed farther apart. Numerous contrastive losses
have been designed to guide the model in learning contrastive
representations. One is triplet loss [44], which is designed to
minimize the distance between an anchor sample and a positive
example while maximizing the distance between the anchor
sample and a negative example. It is commonly employed
in tasks with roughly equal sample proportions, such as face
recognition and fine-grained classification tasks. In most cases,
the number of negative examples is larger than that of positive
ones, which leads to the information noise contrastive estima-
tion (InfoNCE) loss [43] becoming mainstream in contrastive
learning. Building upon the InfoNCE loss, Zhang et al. [30]
introduced a prototype noise contrastive estimation (ProtoNCE)
loss, which serves as a generalized version of the InfoNCE loss.

Based on the work of [30], [43], [45], we adopt a contrastive
prototype adaptation framework to achieve alignment between
the source and target domains at the category level. In this
framework, the source feature embeddings are facilitated to
match their corresponding target prototypes, while the target
feature embeddings are facilitated to match their corresponding
prototype combinations.

III. PROTOTYPE COMBINATION FOR MULTI-SOURCE
UNSUPERVISED DOMAIN ADAPTATION

This section introduces our PCMDA method. First, we for-
mulate the MSUDA problem. Second, we present the overall
scheme of PCMDA. Third, we introduce how to estimate proto-
types for each category in all domains. Fourth, we introduce our
prototype combination mechanism to investigate how to com-
bine the category-discriminative semantic information. Fifth,
we describe the key components of our learning objectives:
contrastive prototype adaptation, prototype combination regu-
larization, and classification constraints. Finally, we provide the
error-bound analysis of PCMDA.

A. Problem Definition

In the MSUDA setting, it is assumed that the train-
ing data have been collected from multiple different do-
mains, with each domain exhibiting a distinct distribution.
Let Dy ={Dli =1,2,...,N} denote a collection of N
different labeled source domains. The source domain Dg; =
{(Xs(g)ﬂg))\j =1,2,...,m} contains mg; samples where
ygz) € {1,2,..., K} (K is the number of categories) is the cor-
responding ground-truth labels. Meanwhile, the target domain
Dy = {X(TJ) |7 =1,2,...,my} contains my samples without
available labels. It is worth noting that the target domain has
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The architecture of our method PCMDA. PCMDA comprises three stages: (i) The source and target prototypes are estimated to represent the category

features in all domains by a randomly sampled mini-batch B. (ii) The PCMDA model adaptively assigns the weights to the source prototypes and then derives the
source prototype combinations for each category. (iii) Through £,,, each high-confidence pseudo-labeled target feature embedding is aligned to its corresponding
prototype combination, while each source feature embedding is aligned to its corresponding target prototype. Meanwhile, the prototype combination regularization
enhances the distributional alignment between the prototype combinations and low-confidence pseudo-labeled target samples.

no labels to support the model training. Additionally, we esti-
mate a prototype for each category in all domains. The source
prototypes are denoted as C, = {ui’:))h =1,2,...,N;k =
1,2,..., K} while the target prototypes are denoted as Cy =
{uP |k =1,2,... K}.

The core topic of MSUDA is how to transfer knowledge from
multiple source domains to a target domain. It is challenging
due to the distributional difference among all domains and the
lack of target labels [46]. Conventional SUDA methods cannot
tackle the multiple source domain issue. To address this issue,
we propose a prototype combination method for multi-source
domain adaptation (PCMDA) to model the target domain as a
weighted combination of the source domains in a combinatorial
manner.

B. Overall Scheme

As illustrated in Fig. 2, PCMDA comprises three stages:
prototype estimation, prototype combination, and learning ob-
jectives.

In Stage 1 (Section III-C), the PCMDA model generates
feature prototypes for each category in all domains. Specifically,
estimations of the embedding mean are used for prototype esti-
mation. To mitigate the problem of estimation bias, we introduce
an exponential moving average scheme to promote smoother
updates of the prototypes. Such a scheme has been widely used
in [10], [30], [43].

In Stage 2 (Section III-D), each target prototype is modeled as
a weighted combination of the corresponding source prototypes.
There exists a problem of finding the optimal weights for the
weighted combination of source prototypes, which can be trans-
formed into a problem of finding an optimal solution for the lin-
ear equation system. Inspired by pseudo-inverse matrix theory,
we design a prototype combination mechanism to calculate the

unique set of weights such that the Euclidean distance between
the source prototype combination and the corresponding target
prototype is minimal. According to the weights, the optimal
prototype combinations can be obtained.

In Stage 3 (Section III-E), a contrastive prototype adaptation
framework and a prototype combination regularization are de-
signed for category-wise and domain-wise alignments, respec-
tively. Through the contrastive prototype adaptation framework,
the source feature embeddings are facilitated to match their
corresponding target prototypes. Simultaneously, the target fea-
ture embeddings of high-quality pseudo-labels are promoted to
match their corresponding prototype combinations. Since the
pseudo-labels of some target samples are of low quality, the
contrastive prototype adaptation framework cannot be applied
to these samples. As a supplement to the framework, prototype
combination regularization is employed to achieve the distri-
butional alignment between these samples and all prototype
combinations.

C. Prototype Estimation

To describe the category features, the PCMDA model learns
the prototype of each category in all domains by a randomly
sampled mini-batch. Specifically, for each iteration, a randomly
sampled mini-batch B = {ﬁsl ,Dso,....Dyn, ﬁT} is mapped
to the low-dimensional embedding space by a feature extractor
f (). To convey the high-level description, the source estimated
prototype ﬁi’:) is defined as the mean of all embeddings belong-
ing to the k-th category in Dg:

(k) _

st

i (1)

> (X,

57, ‘X 6D(’w)
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where Dgf) is the set of the samples belonging to the k-th
category in Dy, and f (+) stands for the feature extractor that
maps images to feature embedding vectors.

Since the target labels are unavailable, we adopt a pseudo-
labeling strategy proposed by [22] to generate pseudo-labels for
each target sample. Following the pseudo-labeling strategy, Dr
can be divided into ﬁq—l and ﬁq—g, where the samples of .DTl
are of high-confidence pseudo-labels, while the samples of Dn
are of low-confidence pseudo-labels. The samples of 1571 are
utilized to estimate target prototypes. Since the pseudo-labels
of D4 are unavailable, a prototype combination regularization
is designed to learn the domain-invariance of the samples of
Dro. The prototype combination regularization is detailed in
Section III-E1. Therefore, the target estimated prototype u(k)
is defined as the mean of all embeddings belonging to the k- th
category in ﬁﬂ:

7:LT = A(k)\ Z f XT (2)

where D%) is the set of all samples belonging to the k-th
category in ﬁq—l.

However, such a prototype estimation belongs to the random
mini-batch sampling estimation, which introduces estimation
bias into the model. To reduce the estimation bias, an exponential
moving average scheme is introduced to estimate the prototypes.
In this way, the prototypes evolve more continuously than the
estimated prototypes. Specifically, in each iteration, we update
the prototypes as follows.

WM e g™ a-pa®, i=12,....N @3
WP pul + (1 - pyalP, (4)

where 3 is amomentum coefficient that is fixed as 0.7in all exper-
iments. Similar schemes have been broadly used in [10], [30],
[43] to stabilize the learning process by promoting smoother
updates of variables.

D. Prototype Combination

To combine the category-discriminative source semantic in-
formation, we design a prototype combination mechanism to
govern the prototype weight distribution. The details of the
prototype combination mechanism are as follows.

Given N prototypes p'*) = [u; (k) u(’;), ul® )] belonging
to the k-th category, one from each source domam we postulate

that there exists a group of weights w®) = [g1, go,...,gn]T

such that w(*) = argﬂ;r}Lian(k) ce —uM||2. 1t is worth men-
tioning that all protgteypes and embeddings are column vectors,
that w(*) is the optimal weight column vector of the source
prototypes belonging to the k-th category, and that uglg ) is
the target prototype belonging to the k-th category. The core
problem is how to find w) based on p(k) e R4xN (i.e.,dand N
represent the dimension of feature embedding and the number of

source domains, respectively.) and u(k) It is worth noting that d

is greater than NV, that p( ) is amatrix, and that both w*) and u(k)

are column vectors. Therefore, the optimal weight assignment
to each source prototype can be transformed into the problem of
finding an approximate solution for a linear equation system.

Theorem 1.(Optimal weights of prototype combination): For
pF) € RN and ugc) € R¢ where d > N, the set of optimal
weights can be represented as

((P*)T (™))~ (p*) T ulP) 5)

(k)2
a1

w®) —

such that w®) = arg min|[p®*) - ¢ — u
ecRN
Proof: We construct a function h(e) = |[p*) - e — uT ||2
When the function h(e) reaches a minimum value, h'(e) (the
derivative of h(e) with respect to e) equals zero. To get the
minimum point, the following equation must be satisfied.

dh(e) _
Tde

Upon simplifying the (6), we can derive the following equa-
tion.

2(p*NT (™ e — uF) = 0. ©)

(p®) pMe = (P uff). ™)

Since d > N, r(p*)) = r((p(k))Tp(k)) N where 7(-) is the
matrix rank function. ((p(* ) Tp(k)) is a square matrix of
full rank, so ((p®))Tp(*))~1 exists. It’s worth noting that
((p"NTptN=1(p*NT is the pseudo-inverse matrix of p(*).
Upon multiplying both sides of (7) by ((p*))Tp*))~1 simulta-
neously, we obtain the following equation.

_ — k
(")) ™) p®e = (M) Tp™) ! (*) Tl

®)

Therefore, the minimum point of /(e) can be obtained according
to (9).

e = ((p™)Tp®) " (p*)Tulf). ©)

According to Theorem 1, the source prototype combinations
can be obtained by the appropriate weights:

=W @ . pEN

={p 1)'w(l),p(2)~w(2),...7p(K)'w(K)}, (10

where b(¥) is the prototype combination that is the weighted
combination of source prototypes belonging to the k-th category.

E. Learning Objectives

In this part, two learning objectives are constructed for model
training. The first objective is to train the PCMDA model to
achieve domain adaptation at the category and domain levels,
respectively. The second objective is to enhance the feature
discriminability of the PCMDA model. To pursue these learning
objectives, the PCMDA model is optimized by three types of
losses, including a contrastive loss £, (f), a prototype combi-
nation regularization loss L., (M, Droi f ), and a classification
loss Los(C, f).

1) Contrastive Prototype Adaptation: To enhance category-
wise alignment, a contrastive prototype adaptation framework
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is designed for high-confidence pseudo-labeled target samples.
The details of the framework are as follows.

With the available labels, the source feature embeddings are
facilitated to match their corresponding target prototypes as
closely as possible. Simultaneously, the feature embeddings
of DTl are facilitated to match their corresponding prototype
combinations as closely as possible. Additionally, we enhance
the compactness of category features by forcing the feature
embeddings to match their corresponding prototypes, which
drives the model to extract more discriminative features among
different categories. Last but not least, the target prototypes are
facilitated to match their corresponding prototype combinations
as closely as possible. Under the guidance of these ideas, we
design a contrastive loss £, (f, C') which comprises a compact-
ness 1088 Leom (f), an alignment loss L4;;(f) and a prototype
alignment loss £, (M, Cr):

‘Cu(f) :ﬁcom(f)+£alz(f)+£pa(M7CT) (11)

Leom(f) is designed to facilitate the feature compact-
ness, as defined in (12). It comprises a source compact-
ness loss El(ﬁs,M;f) (13) and a target compactness loss
L1 (1571, Cr; f) (14). The source feature embeddings are facil-
itated to match their corresponding source prototype combina-
tions via the source compactness loss £1 (D, M; f), while the
target feature embeddings of DTI are facilitated to match their
corresponding target prototypes via the target compactness loss
L1(Dr1,Crs f).

Leom(f) = L1(Ds, M; f) + L2(D71,Cr3 /). (12)
Ly(Dy, M; )= ZZ (k) ST mPO® X5 M).
k=1i=1 |X .eD®
13)
S
X .
Li(Dr1,Crif) = = > — 0] S PP | XY Cr).
=1 1D71 | reD®)
14
where i)i’;) is the set of all samples belonging to the

k-th category in Dy, Dy={Dy,Ds,....,Din}, M=
(M p@ b)Y, Cr = {u(T1 ,uTQ), o 7u(TK)}, and lA)f(rkl)
is the set of target samples belonging to the k-th category in
Dy+. The probability P(v|x; Q) that an image sample x belongs
to the same category as the prototype v (v € ) is derived from
a contrastive loss [43]:

exp(< f(@)" v > /7)
Yneq exp(< f(X)T h > /1)’
where < -,- > is the cosine similarity function, and 7 is a
temperature parameter.

Lq1:(f)is designed to enhance the category feature alignment.
It comprises a source-target alignment loss ,Cg(f)S7 Cr; f) and
a target-source alignment loss Lg(f)ﬂ, M; f). Each source
feature embedding is facilitated to match its corresponding target
prototypes via Eg(ﬁs, Cr; f) (16), while each feature embed-
ding of ﬁfrl is facilitated to match its corresponding prototype

Poz;Q) = (15)

combination via £2(l§71, M; f) (7).

Lo(Ds, Crs f) ZZ (k S P | X Cr),
k=1i=1 Ds7. | (k)
XseD
(16)
1
LoDy, Mi f) = =) =5 D POV X1 M),
k=1 Tl|XT€f’<Tli)
a7

Laii(f) = L2(Ds, Cr; f) + Lo(Dr1, M f).

Besides pursuing feature alignment, we seek to enhance the
alignment between the target prototypes and their corresponding
prototype combinations.

(18)

(BINT 1(k)
exrp(< (U ,b > /T

k .
Kk:l Zszl exp(< (u(T))TJ)(h) > /7)
19)

2) Prototype Combination Regularization: Existing
category-wise alignment methods suffer from the noisy
pseudo-label overfitting problem [9]. Since the samples in ﬁm
are of low-quality pseudo-labels, these samples would result
in negative transfer to the contrastive prototype adaptation
framework (i.e., category-wise alignment framework). Inspired
by the maximum mean discrepancy [47], we design a
prototype combination regularization (i.e., a domain-wise
alignment method.) to estimate the distributional discrepancy
between these samples and all prototype combinations. Our
prototype combination regularization loss Ly.cq(M, Dyo: f) is
reformulated as:

2

E gb(b(k)) _

re M7D ; =
Lreg 72 f) bR e M

E  o(f(X7))

X7€D72

(20)

where ¢(-) is the gaussian kernel function.

3) Classification Constraints: To formulate supervision sig-
nals, we design two classification losses over the standard
cross-entropy loss. One is a source feature classification loss
Lsou(Dg: C, f). Another is the prototype classification loss
EQDTO(C7 f)

Due to the source ground-truth labels, the samples of ﬁs are
evaluated as follows:
1N
NZ]E(Xqusi)GDsiJ(C(f(X“"j’)’ }/Si)’

i=1

‘Csou(f)s; C, f) =

21)

where J (-, -) is the cross-entropy loss function, f(-) is the feature
extractor, and C'(-) is the classifier.

Both the prototypes and the prototype combinations are la-
beled by their corresponding categories, which leads to the
prototype classification loss £, (C, f):

LSS e m+ L3 e m

i=1k=1

procf

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on June 04,2025 at 11:50:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: PROTOTYPE COMBINATION FOR MULTI-SOURCE UNSUPERVISED DOMAIN ADAPTATION

K
1
= (k)
+ KZJ(C(b ), k). (22)
k=1
To enhance the feature discriminability of the PCMDA model,
the total classification loss function is defined as:

‘Ccls(cv f) = Esou(Ds; C7 f) + £;L)ro((jv f) (23)

As mentioned above, the overall optimization objectives for the
feature extractor f and the classifier C' are as follows.

min Lio(C, f) + aLyeg (M, Dros ) +9Lu(f), (24
min Le(C, f), (25)

where « and «y are trade-off parameters.
To describe the working principle of our method, we summa-
rize the training process of PCMDA in Algorithm 1.

F. Error Bound Analysis

We present a theoretical analysis of the classic generalization
bound. Let H be a hypothesis space. According to the assumption
in Theorem 2 proved in [38], Vi € H, the expected error of DT
is bounded as:

1 A
ET(h) < Es(h) + §dHAH(D57 DT) + o, (26)

where er(h) denotes true risk on the target domain, eg(h)

denotes true risk on the source domains, D, = {Dm|z =

1,2,...,N}, HAH is the symmetric difference operator,

dyaw(-,-) is the HAH-divergence, and o is the shared cross-

domain error. It is worth noting that o = ;Ilel?l_ll Cs(hygs) +
1

¢r(h, g1), where gy is a domain-specific real labeling function,
and (y is the discrepancy between two labeling functions w.r.t.
X € {T,s}. By minimizing the standard cross-entropy loss
(21), the PCMDA model learns the supervised knowledge from
source data. Therefore, e,(h) is restricted. dyay (D, Dr) is
constrained by our contrastive prototype adaptation and proto-
type combination regularization. Inspired by [9], [38], we have
the shared cross-domain error:

o=min (s(h,gs)+ (r(h,g7)

her
< Lne]% Cs(ha gs) + CT(ha gs) + CT(gSa gT)
< Lnel,ﬂ Cs(hv gs) + CT(ha gs) + CT(gsa gT)
+ ¢r (97, 97)5 (27)
where ¢r is a pseudo-labeling function for Dy, and gy is

C(f()-

Similar to €4 (h), the approximation of / to g is facilitated by
minimizing the standard cross-entropy loss. This ensures that
Cs(h,gs) and (r(h,gs) (i.e., the discrepancy between h and
gs) are reduced as much as possible. A key insight into the
PCMDA model design is enabling g7 to closely resemble g1
by effectively learning target-domain knowledge. To achieve
this, we integrate the prototype classification loss (as defined
in (22)) and a pseudo-labeling strategy [22], which together
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Algorithm 1: PCMDA Solving Algorithm.

1

2
3
4
5

10
11

12

13
14

15

16
17

18

19
20

21

22

23
24

Input: N different labeled source domains
Dy = {(XP .y D)i=1,2.....mu}li =
1,2,..., N}, the target domain
D'T = {X7(2)|J = 1,2,‘.‘,7717'},
mini-batch-size |B|, the momentum coefficient
[ and the number of category K.
Output: well-trained feature extractors f*,
well-trained classifiers C*.
Randomly sample %tl mini-batches.
Initialize the weights of f and C.
while the algorithm is not converged do
for each mini-batch do
Feed the mini-batch samples to f. \\obtain
feature embeddings
Feed the feature embeddings to C'. \\obtain
classification probabilities
Assign pseudo-labels to the target samples
according to classification probabilities.
Divide ﬁT into DTl and ng.
\\Prototype estimation.
for each k € {1,2,---, K} do
Generate source estimated prototype ﬂilf)
and target estimated prototype ﬂg’f )
according to (1) and (2).
u® o gu gy i=1,2,... N
u® g 4+ (1- ﬁ)ﬂ(k) \ \update
T T T
prototypes

end

Cr= {ug})7u$), . .,u%{()} \\target
prototypes

pk) = [ui’f),ui’;),...,ugx k=1,2,....K
\\source prototypes

\\Prototype combination.

W = (M) (M) pP) T k=
1,2,..., K\\weight calculation

M = {p@ - p® @)y
w)}\ \calculate prototype combinations

\\Construct the learning objectives.

Calculate the compactness 1088 Lcom (f)
according to (12).

Calculate the alignment loss Lg;;(f) according
to (18).

Calculate the prototype alignment loss
Lyq(M,Cr) according to (19).

ﬁu(f) = Ecom(f) + Eali(f) + £pa(M7 (CT)

Calculate the prototype combination
regularization loss L,.q(M, Do f)
according to (20).

Calculate the classification losses L.s(C, f)
according to (23).

Update f and C according to (24) and (25).

end
end

T f
C*+ C
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enable the PCMDA model to leverage both semi-supervised
and high-confidence pseudo-labeled target data. When the pro-
totype classification loss (22) is minimized, the approximation
of C’(ugC )) to the real label k is achieved. Additionally, the
pseudo-labeling strategy selects high-quality pseudo-labeled
target samples, which are then utilized for prototype estimation
and contrastive prototype adaptation. Therefore, {7 (g7, §7) can
be restrained.

In the PCMDA model, the generalization risk (7 (gs, §7) is
bounded by the following weighted risk:

k k) ~(k)
7(9s,97) <ZZ€( Yer(gll g,

i=1k=1

(28)

(k)

where g,,” isthe labehng function of all samples belonging to the

k-th category in D, 9gr k) is the labeling function of all samples

belonging to the k-th category in Dy, and ev(;k)

~(k
CT(gs@ 79’5’))

(r (ggl)7 ggc )) is the discrepancy metric between D(

is the weight of

) and
Dgc ), where Dgg ) is the set of all samples belonging to the

k-th category in D7. The key to constraining CT(QS) , gﬁ )

facilitate the alignment between Dgf) and D,(rk ) To establish this
alignment, we design a dual-alignment strategy that integrates
contrastive prototype adaptation and prototype combination
regularization (as defined as (20)). The contrastive prototype
adaptation framework aligns source feature embeddings with
their corresponding target prototypes according to (16), while
high-confidence pseudo-labeled target feature embeddings are
aligned with their corresponding prototype combinations ac-
cording to (17). This ensures that category-specific semantic
information is effectively transferred across domains. Addi-
tionally, the prototype combination regularization aligns the
distribution of prototype combinations with the low-confidence
pseudo-labeled target samples (i.e., samples in f)TQ). This
regularization step enhances the model’s ability to address
domain-level discrepancies by leveraging all available target
samples, regardless of pseudo-label quality. These mechanisms
enable the PCMDA model to dynamically balance category-
level alignment and domain-wide consistency, reducing discrep-
ancies and facilitating more robust domain adaptation. There-
fore, CT(QW )ijglf)) can be constrained.

Foreach k € {1,2, - -, K'}, the PCMDA model can dynam-
ically assign weights to the source prototypes by our proto-

type combination mechanism such that w*) = arg min||p(*)
ecRN

e— ug)\|2, SO w("') (w® € RN) can be rewritten as w*) =

arg min EezCT(gm ) g,

le1,e2,en]ERNi=
model can optnnlze the following objective over the weight array
W = |ex:| K x v to obtain a tight bound.

)isto

Therefore, the PCMDA

min

k) Ak
(r(9s,97) < .. RKWZZBMCT (9, 5.

i=1k=1

(29)

The upper bounds will be reduced in their entirety. This
theoretical result demonstrates that our method is effective.

IV. EXPERIMENTS

In this section, we evaluated our method and compared it
with other state-of-the-art domain adaptation methods on three
datasets: Digits-5, PACS [48], and Office_caltech_10 [49]. Be-
sides, we are interested in the effectiveness of the main model
components, for which we conducted related experiments for
validation. Finally, we construct further visualization experi-
ments to substantiate the theses as we claim.

A. Datasets

1) Digits-5 is a set of handwritten digit images sampled
from five domains: MNIST (mt) [50], MNIST-M (mm) [51],
USPS (up) [52], SynthDigits (syn) [51], and SVHN (sv) [53].
Following the setting in [41], a random sample of 25,000 images
was selected for training, 6,000 images for validation, and
9,000 images for testing on Digits-5. All samples are images
of numbers ranging from 0 to 9.

2) PACS [48] is composed of four different datasets, each
representing a different visual domain: Photo (P), Art Painting
(A), Cartoon (C), and Sketch (S). It contains 9,944 images,
including 1,792 real photos, 2,048 art paintings, 2,344 cartoon
images, and 2,760 sketches. Each image is labeled with one of
seven animal categories.

3) Office_caltech_10[49] is acommonly used domain adapta-
tion dataset that consists of four domains: Amazon (A), Webcam
(W), DSLR (D), and Caltech (C). It contains 9,000 images, with
2,533 images from Amazon, 795 images from Webcam, 498
images from DSLR, and 4,174 images from Caltech. Each image
is labeled with one of ten categories.

B. Experimental Settings

All experiments were implemented on the PyTorch plat-
form [54] and deployed on the same device. For a fair com-
parison, the same data pre-processing routines and the same
model architecture were adopted in all experiments conducted
on the same dataset. Specifically, the 3 conv-2 fc network [10],
[25], the ResNet18 network, and the ResNet101 network are
employed as the feature extractors f(-) on Digits-5, PACS [48],
and Office_caltech_10 [49], respectively. The weights of the
3 conv-2 fc network are randomly initialized before training.
Both the ResNetl8 network and the ResNet101 network are
pre-trained on ImageNet. For all experiments, the classification
models are conducted with two fully connected layers, in which
the dimension of feature embedding is d — K (d is the feature
embedding dimension and K is the number of categories). The
number of training epochs Max_epoch is set to 100 to ensure
that the algorithm has converged [10], [25]. The temperature
parameter 7 and the trade-off parameter -y are both set as 1.0.
To reduce noisy activations at the early stages of training, « is
gradually transitioned from O to 1 according to a progressive
schedule [19]: & = 15557 arasepoemy — 1+ Where t indi-
cates the model training up to the ¢-th epoch. All experiments
are repeated five times under the identical configuration. Similar
schemes have been broadly used in [25], [55], [56] to avoid
accidental errors.
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TABLE I
CLASSIFICATION ACCURACY (MEAN=+ STD%) ON DIGITS-5 DATASET

Standards Models — mt — mm — syn — sv — up Avg
Source Only 97.240.6  59.1+ 0.6  84.6£0.8  77.7x0.7  84.7x1.0  80.8

DAN [57] 96.3+0.5 63.8+0.7 85.4+0.8 62.5+0.7  94.2+09  80.4

Single Best CORAL [61] 97.2+0.8 62.5+0.7 82.8+0.7 64.4+0.7  93.5+0.8  80.1
DANN [19] 97.6+0.8 71.3+0.6 85.4+0.8 63.5+0.8  92.3+09  82.0

ADDA [59] 97.9+0.8 71.6+0.5 86.5+0.6 75.5+0.5  92.8+0.7  84.8

Source Only 90.2+0.8 63.4+0.8 82.4+0.7 62.9+09  88.8+0.8 775

DAN [57] 97.5+0.6 67.9+0.8 86.9+0.5 67.840.6  93.5+0.8  82.7

Source Combined DANN [19] 97.9+0.7 70.8+0.8 87.4+0.9 68.5+0.5  93.5+0.8  83.6
JAN [58] 97.2+0.7 65.9+0.7 86.6+0.6 75.3+0.7  95.4+0.8  84.1

MCD [60] 96.2+0.8 72.5+0.7 87.5+0.7 78.9+0.8  95.3+0.7  86.1

MDAN [27] 98.0+0.9 69.5+0.3 87.4+0.5 69.2+0.6  92.4+0.7  83.3

DCTN [41] 96.2+0.8 70.5+1.2 86.8+0.8 77.6£0.4  92.8+0.3  84.8

DRT [56] 99.3+0.1 81.0+0.3 93.8+0.3 77.6+0.4  98.4+0.1 91.8

M3SDA [25] 98.4+0.7 72.8+1.1 89.6+0.6 81.3£09  96.1+0.8  87.7

Multi-Source Ltc-MSDA [10]  99.0+0.4 85.6+0.8 93.0+0.5 83.2+#0.6  98.3+04 918
CMSS [55] 99.0+0.1 75.3+0.6 93.7+0.2 88.4+0.5 97.7+0.1  90.8

MLAN [29] 98.6+0.0 86.3+£0.3 93.0+0.3 82.840.1 97.5+#02  91.6

PCMDA (ours) 99.1£0.1 91.4+0.2 94.2+0.2 82.4+0.2  98.840.2  93.2

The best results are annotated in bold font.

C. Compared Method

We compared our PCMDA model with the following three
comparative standards:
e Single Best: The best results of the single-source unsuper-

0l i 50 3og 0" |

vised domain adaptation algorithm are reported among all c N0 i ’ ﬂgﬂ; s
domains. - ,L‘. J& Lt

® Source Combine: All the source domain data are integrated
into a large-scale source domain. We report the result of
single-source unsupervised domain adaptation algorithms
on this dataset.

® Multi-Source: The multi-source unsupervised domain
adaptation algorithms transfer the knowledge of multiple
sources to a target domain.

Fig. 3. Some multiple-digit images on SVHN.

TABLE II
CLASSIFICATION ACCURACY (MEAN=+ STD%) ON PACS DATASET

Models — A — C — P — S Avg

We compare our method with the following competitors, i.e., i}t{)]gi; O;y ;g-iliig-z ;g-éig-g g%‘l‘tg.g ?3‘3*5@ ;gz
1%0. .00, 4%0. .0+0. .

DAN [57], JAN [58], DANN [19], ADDA [59], MCD [60], DOTN [41]  $47207 367:06 956:08 7810 847
CORAL [61], MEDA [62], Meta-MCD [45], DRT [56], MsDDA [26] 86.740.6  86.2£0.7  93.9+0.7  77.6£09  86.1
M3SDA[25]  89.3x0.4  89.9+1.0 97.3x03 76.7+29 883

Ltce-MSDA [10], M?SDA [25], DCIN [41], CMSS [55], Meta-MCD [45]  87.440.7 86209  97.1x0.5 78308 872
MDAN [27], MDDA [26], and MLAN [29]. PCMDA (ours)  89.3+ 0.1  88.9+0.2  97.0+0.2  82.1x0.5 89.3

The best results are annotated in bold font.

D. Result

1) Experiments on Digits-five: As shown in Table I, we
compared our proposed method PCMDA with other methods
on Digits-five. Source Only was used as the baseline, represent-
ing the model trained with only the source data. The results
show that our PCMDA method achieves the highest average
accuracy of 93.2% and outperforms the state-of-the-art method
DRT [56] by 1.4%. Our approach achieves an average accuracy
gain of 19.9% over the baseline. Especially on the hard-to-
transfer “— mm” task [56], our approach obtains a remarkable
performance improvement of 5.1% compared to MLAN [29].
These results demonstrate the efficacy of the PCMDA model.
This success can be attributed to our approach, which adeptly
combines category-discriminative semantic information that is
beneficial for cross-domain image classification. Meanwhile, it
can be observed that our PCMDA is not optimal on the “— sv”
task. This is due to the fact that a significant proportion of
the image samples on SVHN comprise multiple digits (e.g.,
samples in Fig. 3). It is difficult to allocate pseudo-labels to
these samples through [22] (i.e., a pseudo-labeling strategy

based on classification probabilities). This severely limits the
capacity of our prototype combination mechanism to combine
category-discriminative semantic information.

2) Experiments on PACS: The results of various methods on
PACS are presented in Table II. From the Table II, it can be
observed that PCMDA achieves an 89.3% average accuracy, out-
performing the best competitor M3S D A[25] by 1.0%. In partic-
ular, our method achieves a performance gain of 3.8% compared
to the Meta-MCD [45] method on the “— S” classification task.
PCMDA achieves the highest average accuracy in three of the
four transfer tasks. Our approach does not obtain the highest
average accuracy on the “— P” task, which is mainly ascribed
to performance saturation. It is worth noting that the Source
Only model achieved a performance exceeding 92.0% on the
“— P” task. The performance gap among PCMDA, M3SDA
and Meta-MCD is below 0.3% when they are evaluated on the
“— P” task. Our PCMDA method remains the best method
among the competitors, consistently verifying the efficacy of
our PCMDA model.
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TABLE III TABLE IV
CLASSIFICATION ACCURACY (MEAN=+ STD%) ON OFFICE_CALTECH_10 ABLATION ANALYSIS OF THE PROTOTYPE COMBINATION REGULARIZATION
DATASET Loss AND CONTRASTIVE LOSSES ON DIGITS-5
Models - W — D — C — A Avg Ly Lreg —mt — mm — syn — sv — up Avg
Source Only 99.0 98.3 87.8 86.1 92.8 98.3 65.3 83.5 71.3 96.7  83.0
MEDA [62] 99.3 99.2 91.4 929 95.7 99.1 89.1 93.0 80.7 98.5  92.0
DCTN [41] 99.4 99.0 90.2 92.7 95.3 v 98.4 66.2 85.4 74.0 953 839
JAN [58] 99.4 99.4 91.2 91.8 95.5 v v 99.1 91.4 94.2 82.4 98.8 932
M3SDA [25] 99.4 99.2 91.5 94.1 96.1
MCD [60] 99.5 99.1 91.5 92.1 95.6
PCMDA (ours)  99.5:0.2 100.0+0.0 94.6+0.0 95.4+0.1 97.4 TABLE V

The best results are annotated in bold font.

3) Experiments on Olffice_caltech_10: The results on Of-
fice_caltech_10 are reported in Table III. On Office_caltech_10,
our method remains the best performer, which obtains a
1.3% performance gain compared to M3SDA. The result of
three datasets demonstrates the stability and generalizability
of PCMDA. Remarkably, on the “— D” task, our approach
achieved a 100.0% accuracy, which is the peak performance.
However, our PCMDA does not obtain significant superior-
ity on this dataset, which can be attributed to two primary
factors. Firstly, all domain adaptation models show saturated
performance on the “— D” and the “— W tasks, where the
Source-only model’s performance exceeds 98%. Such a phe-
nomenon indicates that there is little scope for improvement
through domain adaptation. Secondly, the Webcam domain, the
DSLR domain, and the Caltech domain are extremely similar, so
the domain shift among these domains is tiny. The high similarity
of these source domains restrains the superiority brought by the
combination of category features on the “— A” task.

Additionally, we conducted statistical significance analysis
experiments on the three datasets to prove the improvement
that we claimed. We compare our PCMDA algorithm with two
methods, i.e., DRT [56] (i.e., the best competitor of Digits-5)
and M3SDA [25] (i.e., the best competitor of PACS and Of-
fice_caltech_10). To ensure the reliability and statistical signifi-
cance of the results, we repeat the experiments thirty times [63]
under the identical configuration. The paired t-test [64] is
adopted to compare the performance differences of different
models on the same dataset. We formulate two hypotheses:
the null hypothesis Hj (i.e., there is no significant difference
between the models.) and the alternative hypothesis H; (i.e.,
there is a significant difference between the models.). As shown
in Table VI, all p-values of average accuracies are less than
the significance level (i.e., 0.05), indicating that H, should
be rejected and that the performance difference is statistically
significant. These results substantiate the improvement that we
claimed.

E. Ablation Study

To further verify the effectiveness of domain alignment losses
(i.e., Lyeg and L,,), the ablation experiments are implemented
on Digits-5. Table IV shows the model’s performance under
four configurations on Digits-5. Under L constraint alone, the
model achieves an accuracy of 83.0%. With L., and L, .4, the
model only achieves an accuracy of 83.9% because numerous
high-quality pseudo-labeled target samples are not utilized for

ABLATION ANALYSIS OF CLASSIFICATION LOSSES ON DIGITS-5

Lsow Lpro —mt — mm — syn — sv — up Avg
v 99.1 91.0 938 789 983 922
v 98.7 84.6 935 669 982 884
v v 99.1 91.4 94.2 824 988 932
TABLE VI
STATISTICAL SIGNIFICANCE ANALYSIS OF AVERAGE ACCURACIES FOR PCMDA
ON THREE DATASETS
Dataset Competitor Test Statistic P-valuel
Digits-5 DRT [56] 167 8.63 x 10~ %
PACS M3SDA [25] 23.1 9.43 x 10~2°
Office_caltech_10 M?3SDA [25] 529 1.30 x 10720

TABLE VII
COMPARISON FOR DIFFERENT DISTANCE METRICS ON DIGITS-5

Models —mt — mm — syn — sv — up Avg
PCMDA-O 97.3 82.0 87.4 782 853  86.0
PCMDA-M 98.1 81.7 90.6 83.5 96.7  90.1

PCMDA 99.1 91.4 94.2 82.4 98.8 93.2

modeling training. After considering the £, term, an 9.0%
performance improvement is achieved. It demonstrates that £,,
is beneficial to the categorical features learning. Furthermore,
after simultaneously adding £, and £, .4, the complete PCMDA
model achieves the highest average accuracy of 93.2%.

Additionally, we conduct component analysis of classification
losses. The results are presented in Table V. Without £,,., con-
straint, the model achieved a 92.2% average accuracy. Without
L 50, constraint, the average accuracy of the model has dropped
dramatically because the model has yet to learn the supervised
knowledge from source samples. After adding the L., the
complete PCMDA achieved a 1.0% performance improvement.
The results demonstrate that supervised learning of prototypes
facilitates the feature discriminability of the model while si-
multaneously reducing the influence of noisy data. The ablation
result shows that each component of PCMDA is positive for
performance improvement.

FE. Distance Comparison

In this study, we explore the impact of different distance met-
rics (i.e., < -,- > in (15)) on constructing category probability
distributions. To investigate this, we design two configurations:
PCMDA-O and PCMDA-M. PCMDA-O represents the model
where category probability distributions are constructed using
the Euclidean distance, while PCMDA-M employs the Manhat-
tan distance for the same purpose. From the results presented in
Table VII, it is evident that the cosine similarity function con-
sistently outperforms both Euclidean and Manhattan distances.
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Fig. 4.

G. Influence of Hyperparameters

In this experiment, we evaluate the sensitivity of PCMDA to
the temperature parameter 7 (i.e., 7 in (13), (14), (16), and (17).)
and the trade-off parameter y (i.e., v in (24).). In the contrasting
losses, 7 determines the degree of the model attention paid to
negative samples. If the temperature parameter 7 is set high,
the logit distribution becomes smoother, and the contrastive
loss treats all samples equally, leading to the model learning
without prioritizing. Conversely, when 7 is small, the losses
become more sensitive to differences between positive samples
and negative samples, resulting in poor generalization to unseen
data. Therefore, it is necessary to find a suitable parameter 7.
As illustrated in Fig. 4(a), different 7 values are selected for
the PCMDA model on Digits-5. The best average performance
is achieved when 7 is around 1.0. In addition, our PCMDA
achieves competitive results robustly when the parameter 7 is
varied in the interval [0.25, 2.25]. On Digits-5, we evaluate the
sensitivity of vy that balances the objectives for L,,, L,¢4, and
L1s. As shown in Fig. 4(b), the best average performance is
achieved when 7y is around 1.0. The performance of PCMDA
is significantly diminished when y is set to 0, which indicates
that there is no category-wise domain alignment (£,, constraint).
Additionally, PCMDA is not sensitive to v when the parameter
~ is varied in the interval [0, 2.0], which further verifies the
stability of PCMDA.

H. Quantitative Analysis for Intra-Class Differences

In this part, we conduct a quantitative analysis of the impact of
intra-class differences on algorithm performance. We evaluate
the PCMDA algorithm under a new configuration PCMDA-
equal, which stands for the model optimized according to
wk) = %1, where 1 € RY. This indicates that PCMDA-equal
treats multiple source domains as equal. As demonstrated in
Tables VIII, IX, and X, the results highlight the efficacy of
our prototype combination mechanism. Due to the intra-class
differences, the transfer abilities of source domains are var-
ied. Our prototype combination mechanism effectively assigns
optimal weights to source prototypes, ensuring that the resulting

000 025 050 075 100 125 150 175 2.00

(b) v

Sensitivity of hyperparameters experiments of 7 and ~y. (All results are evaluated on Digits-5).

TABLE VIII
QUANTITATIVELY ANALYSIS ON DIGITS-5

Models — mt — mm — syn — sv — up Avg

PCMDA-equal 98.9 89.0 92.9 778 982 914

PCMDA 99.1 914 94.2 824 988 932
TABLE IX

QUANTITATIVELY ANALYSIS ON OFFICE_CALTECH_10

Models - A —-C =P =5 Ay

PCMDA-equal 99.4 100.0 91.3 93.6  96.1

PCMDA 99.5 100.0 94.6 954 974
TABLE X

QUANTITATIVELY ANALYSIS ON PACS

Models —-W 5D —SC — A Avg
PCMDA-equal 87.5 88.1 96.4 80.3 88.1
PCMDA 89.3 88.9 97.0 82.1 89.3

prototype combinations closely align with their corresponding
target prototypes. By leveraging this alignment, the PCMDA
model is able to extract and utilize more target-relevant knowl-
edge compared to the PCMDA-equal model. Consequently,
the PCMDA model consistently outperforms PCMDA-equal,
demonstrating its superior capacity to adapt to diverse domain
shifts.

1. Effect of the Prototype Combination Regularization

We further investigate the effect of the prototype combina-
tion regularization in the PCMDA model. To conduct a com-
prehensive investigation, we design a prototype combination
regularization loss L4 (M, Dr: 1) (30) to validate whether the
prototype combination regularization is applicable to all target
samples.

£reg(M7 DT; f) = E qj)(b(k)) -

b(k) e M

(30)

In this experiment, we evaluate the prototype combination
regularization under two configurations on Digits-5. Target-All
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TABLE XI
EFFECT OF THE PROTOTYPE COMBINATION REGULARIZATION ON DIGITS-5 syn mm
Models —mt — mm —syn — sv — up Avg é} H
Target-All 987 91.0 942 782 970 OI8
Target-Low 98.4 66.2 854 740 953 839
PCMDA 99.1 91.4 942 824 988 932 0.05
stands for the model optimized by (25) and (31), which enhances 001

the distributional alignment between the prototype combina-
tions and all target samples. Target-Low stands for the model
optimized by (25) and (32), which enhances the distributional
alignment between the prototype combinations and the low-
confidence pseudo-labeled target samples.

min Loty (C, f) + aLyey(M, Dr: f). 31)

m}n ['cls (Cv f) + a»creg(M» ﬁTZ; f) (32)

Target-Low is trained with low-confidence pseudo-labeled target
samples rather than all target samples. Therefore, we design
Target-All to evaluate the effect of the prototype combination
regularization. Target-All selects the source semantic informa-
tion that is beneficial for cross-domain image classification
through our prototype combination mechanism. It then aligns the
distribution between the prototype combinations and all target
samples by prototype combination regularization. As shown
in Table XI, Target-All and Target-Low achieve 91.8% and
83.9% average accuracies, respectively. Compared to the meth-
ods shown in Table I, Target-All obtains an average accuracy that
is surpassed only by our PCMDA. This result demonstrates that
the prototype combination regularization can effectively reduce
the domain shift between source and target domains. However,
in Table XI, it can be observed that PCMDA outperforms the
Target-All model across all transfer tasks on Digits-5. This is
due to the fact that the prototype combination regularization
(i.e., domain-wise alignment approach) is unable to alleviate
the intra-class differences among all domains, which results
in the misclassification of some target samples at the decision
boundary. As demonstrated in Tables XI and IV, the prototype
combination regularization approach can further reduce the do-
main shift and enhance classification accuracy across all transfer
tasks on Digits-5.

J. Visualization

1) Visualization of Feature Combination: In this experiment,
we investigate whether PCMDA is capable of selecting and
combining category features that are beneficial for cross-domain
image classification. We randomly sampled 1000 training sam-
ples per domain on Digits-5, 8§ training samples (i.e., the num-
ber of “mug” samples in DSLR domain) per domain on Of-
fice_caltech_10, and 80 training samples (i.e., the number of
“house” samples in SKETCH domain) per domain on PACS.
Through our prototype combination mechanism, we can obtain
the weights of source prototypes. It’s worth noting that 8 and

80 are obtained by n = K}|Dgf)|, where

min
i€{1,2,...,N},ke{1,2,...,

(a) Prototype weight distribution on the “— mm” task in

Digits-5
class W D c A
- o HB
-0.32 0.41 0.87
headphones @ ﬁ (d\ ‘
0.21 -0.13 1.26

(b) Prototype weight distribution on the “— A” task in Of-
fice_caltech_10

class C P S
elephant : é’ ’
e allsS
0.73
house ’ ﬂw_-‘
0.37 0.67 0.31 '

(c) Prototype weight distribution on the “— A” task in PACS

Fig.5.  Visualization of prototype weight distribution. All weights are obtained
at inference time using the PCMDA model that has been trained for two epochs.

|D£f) | is the number of the samples belonging to the k-th cate-
gory in Dy;. To facilitate comprehension, we provide illustrative
examples, as shown in Fig. 5.

We visualize samples belonging to some fixed categories and
the weights of their corresponding prototypes. In Fig. 5, we find
that the feature similarity discovered by PCMDA is different
for different transfer tasks. As shown in Fig. 5(a), the PCMDA
model allocates the high weight to the source prototype whose
corresponding samples are of similar handwriting styles to the
target samples belonging to the same category. For instance,
the samples belonging to the 0O-th category in MNIST, USPS,
and MNIST-M are analogous to the irregular “0” shape, while
the samples belonging to the 0-th category in SynthDigits and
SVHN are analogous to the regular “0” shape. One would think
that the PCMDA model simply selects similar background fea-
tures instead of category-discriminative features. In contrast, the
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Fig. 6.

PCMDA model prioritizes the selection of the source structural
features (i.e., category-discriminative features) that are similar
to the target structural features. On the transfer task of 4-th
category, the PCMDA model prioritizes the selection of the
irregular “4” shape features (e.g., the 4-th category features of
MNIST), rather than the similar background features (e.g., the
background features of SynthDigits and the background features
of SVHN).

Similarly, on Office_caltech_10 and PACS, the PCMDA
model prioritizes the selection of source domain structural fea-
tures that closely resemble those of the target domain. As illus-
trated in Fig. 5(b) and (c), the PCMDA model emphasizes the
“mug” prototype of the Caltech domain on Office_caltech_10
and the “elephant” prototype of the Sketch domain on PACS,
demonstrating its ability to dynamically identify and lever-
age domain-specific semantic features that contribute to ef-
fective cross-domain alignment. Compared to [25], [27], [29],
PCMDA can automatically select and combine the category-
discriminative features rather than relying on simple weight
induction.

2) Visualization of the Similarity Matrix: Fig. 6 shows the
heatmap of the similarity matrix between 10 prototype com-
binations and 10 target prototypes from on the “— mm” of
Digits-5 under two configurations (Source Only and PCMDA).
In Fig. 6, we can observe that each prototype combination is
very similar to the corresponding target prototype under both
configurations. However, as shown in Fig. 6(a), a significant
degree of similarity persists between prototype combinations
and target prototypes belonging to disparate categories under the
Source Only configuration. This similarity ultimately results in
the misclassification of the target samples at the decision bound-
ary. Asillustrated in Fig. 6(b), in PCMDA, the similarity between
prototype combinations and the target prototypes belonging to
different categories is close to zero. This result demonstrates
that the decision boundaries of the PCMDA model are more
discernible than those of Source Only, thus indicating that the
PCMDA model exhibits superior generalization capabilities on
the target data.

3) Visualization of Feature Distributions: In this part, we
visualize the feature distributions on the “— mm” task of

0.8

0.6

Auejwis

0.4

uoljeuiquod adAjojoid

0.2

0 2 4 6 8
Target prototype

(b) PCMDA

Visualization of the similarity matrix between the prototype combination and the target prototype. (The results are evaluated on the “— mm” task.).

(b) PCMDA

Fig. 7. Feature distributions of source domain (“blue”) and target domain
(“red”). (The results are evaluated on the “— mm” task.).

Digits-5 by t-SNE [65]. As shown in Fig. 7, the scatter plot of
PCMDA indicates that the source and target feature embeddings
have more overlapping regions compared to the scatter plot of
Source Only. This suggests that the source and target feature
distributions are better aligned in the PCMDA model than in the
Source Only model. This phenomenon is consistent with our
experimental results on the “— mm” task.
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V. CONCLUSION

This paper proposes a prototype combination method for
the multi-source unsupervised domain adaptation problem
(PCMDA). In the proposed method, a prototype combina-
tion mechanism is designed to model the target domain as a
weighted combination of multiple source domains at the cate-
gory level. Since the quality of target pseudo-labels is varied,
a contrastive prototype adaptation framework and a prototype
combination regularization are designed for diverse confidence
pseudo-labeled target samples. The synergistic effect between
the contrastive prototype adaptation framework and the proto-
type combination regularization leads to a progressive reduction
in the discrepancy between the source and target domains, thus
enhancing the capabilities of the PCMDA model in the target do-
main inference. Additionally, we provide theoretical guarantees
for our prototype combination mechanism. We conducted ex-
tensive experiments on three benchmarks, i.e., Digits-5, PACS,
and Office_caltech_10, on which our method PCMDA achieves
93.2%, 89.3%, and 97.4% average accuracies, respectively.
These results demonstrate that PCMDA is capable of selecting
and combining the category features that are beneficial for cross-
domain image classification. In addition, analytical experiments
demonstrate that our prototype combination regularization for
low-confidence pseudo-labeled target samples can further re-
duce the domain shift and enhance classification accuracy.

Though the effectiveness of PCMDA has been demonstrated,
there are two notable limitations that cannot be overlooked.
First, the PCMDA method relies on the assumption that target
category features can be accurately represented through a linear
combination of prototypes. This assumption may break down
in scenarios where the domain shift exhibits highly non-linear
or complex characteristics. Second, using linear weighting con-
strains the model’s representational capacity, as it cannot capture
interactions or higher-order relationships between source do-
mains that could be advantageous for adaptation. In future work,
we aim to address these limitations by exploring alternative
cross-domain combination strategies, including non-linear and
pixel-level approaches. For non-linear combination schemes,
we plan to design algorithms capable of modeling intricate
interactions between source and target domains in a non-linear
manner, thereby enhancing the adaptability to complex do-
main shifts. For pixel-level combination schemes, our goal is
to develop methods that align the distributions of source and
target domains at a finer granularity, such as the pixel level,
to capture structural and contextual details better. These ad-
vancements hold the potential to further improve the robustness
and flexibility of PCMDA in challenging domain adaptation
scenarios.
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