
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Neural Architecture Search Based on Bipartite
Graphs for Text Classification

Xueming Yan , Member, IEEE, Han Huang , Senior Member, IEEE, Yaochu Jin , Fellow, IEEE,
Zilong Wang , and Zhifeng Hao , Senior Member, IEEE

Abstract— Neural architecture search (NAS) is crucial for text
representation in natural language processing (NLP); however,
much less work on NAS for text classification has been proposed
compared with NAS for computer vision. Similar to NAS for
vision tasks, most existing work rely on a manually designed
search space defined by a directed acyclic graph (DAG), resulting
in limited generalization capability and high computational
complexity. In text classification, the topological order of the
NAS operators is essential for enhancing generalization, which
cannot be accurately represented by a DAG. To address this
issue, we propose a bipartite graph-based NAS (BGNAS) for
text classification, which converts a DAG into a dual graph
and then into a bipartite graph. This transformation makes
it possible to accurately capture the topological order using
multi-bigraph matching. In addition, we formulate NAS as
a problem of identifying the lower bound of a submodular
function, theoretically ensuring that optimal architectures in a
bipartite graph-based search space can be identified using fewer
search operators. Reduction of the search space is achieved by
eliminating ineffective associated matching rules among search
operators with a pruning strategy. As a result, the bipartite
graph-based search space becomes more compact and less
dependent on complex contextual semantics of text data. Exper-
imental results on public benchmark problems demonstrate that
BGNAS achieves better performance than the state-of-the-art
NAS algorithms and is computationally more efficient. We also
demonstrate that the bipartite graph search space can more
effectively capture contextual semantics, thereby enhancing the
generalization capability.
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I. INTRODUCTION

NEURAL architecture search (NAS) has demonstrated
remarkable success in a variety of real-world applica-

tions, including computer vision [1], speech recognition [2],
and natural language processing (NLP) [3]. The promising per-
formance of NAS has been thoroughly documented due to its
ability to discover highly efficient and effective neural network
architectures [1], [4]. As a bilevel optimization problem, the
mathematical formulation of NAS [5] can be defined with the
weights wA of the potential neural architecture A as follows:

min
A∈�

Lval(w
∗, A) (1)

s.t. w∗
= arg min

wA

Ltrain(wA, A) (2)

where Lval in (1) and Ltrain in (2) represent the training
and validation losses, which are determined by both the
architecture A and the weights w of the neural network,
respectively. w∗ represents the weights corresponding to the
optimal architecture on the training set. The primary objective
of NAS is to enhance the performance of neural networks by
identifying an optimal neural architecture that is well-suited
to specific tasks.

In principle, NAS can also be considered a black-box
optimization problem [6], [7], due to the lack of explicit
knowledge about the relationship between the objectives and
neural network architectures. Furthermore, NAS typically
involves exploring a high-dimensional search space, especially
when conducting the search using simplistic methods such
as grid search or random search [8], [9]. Therefore, various
search strategies are proposed for navigating through the large
search space more efficiently to find the optimal neural net-
work architecture, including gradient-based methods [4], [10],
reinforcement learning (RL) [11], [12], and evolutionary algo-
rithms (EAs) [13], [14]. However, the computational demands
of exploring the search strategies across the entire search
space become prohibitive as the network size and complex-
ity increase [15]. Therefore, some existing NAS approaches
concentrate on the manual design of a constrained search
space to mitigate dimensionality and alleviate computational
complexity [16].

The design of NAS for search space is crucial in finding
the best architectures on specific tasks [17], [18]. Several
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researchers [19], [20] have explored the design of differ-
ent search spaces of NAS to improve search efficiency and
performance, resulting in two main design approaches, namely,
micro search and macro search. The micro search focuses
on the design of individual building blocks or cells within a
neural network architecture, while the macro search deals with
the higher level architectural choices that define the overall
structure of a neural network. The choice between macro
search and micro search depends on specific features and
characteristics of the related task [21].

More recently, it has been found that the NAS-based
approaches have also demonstrated superiority in dealing with
text classification [22], [23]. For example, Wang et al. [12]
demonstrate that effective design of the macro search space
for text representation can significantly enhance the efficiency
and generalization. Nevertheless, most current work on the
search space of NAS almost entirely depends on the incorpo-
ration of human prior knowledge for text representation, so it
is necessary to explore the subset of possible architectures
from the search space for lower computing resources and
time consumption [24], [25]. Therefore, some attempts are
made [20], [26], [27] to devise strategies for streamlining
the search space in efficient NAS. These strategies often
involve discarding unpromising candidate operators to improve
the overall efficiency of the search process [28]. However,
the current shrinking approaches are often intricately linked
with the search algorithm, as noted by Hu et al. [29]. This
tight coupling poses a challenge in isolating a smaller set
of effective candidate operators tailed to a given task. One
reason is that these approaches neglect the order of candidate
operators and the combination of different candidate operators,
which is crucial for the performance of text representation.

In this study, we propose a bipartite graph-based NAS
(BGNAS) approach for text classification. Unlike the directed
acyclic graph (DAG) used in many existing NAS approaches,
the bipartite graph used in BGNAS represents each operator
as a node, and the sequential relationships between the opera-
tors are represented using edges. Consequently, the proposed
approach can efficiently explore the topological orders of the
candidate operators for text classification. To ensure that NAS
can theoretically find the optimal network architecture in the
reduced bipartite graph-based search space, we view NAS as
the problem of establishing a lower bound for a submodu-
lar function. Subsequently, we proceed to approximate this
submodular function using the matching rules associated with
the bipartite graph-based search space. It is worth noting that
the reduction of the bipartite graph-based search space is
adaptively evolved based on a set of learned bipartite graph
matching associated rules.

The main contributions of this article are summarized below.
1) We propose a bipartite graph representation of the NAS

search space. In contrast to the existing NAS approaches
using a DAG, the bipartite graph representation can
effectively capture the topological order in the candi-
date operators, which is beneficial for more effectively
exploring the optimal architecture for text tasks.

2) We adopt an EA to search for optimal neural archi-
tectures in the reduced research space, whereas an
approximated submodular function is introduced for an

RL algorithm to gradually reduce the scale of bipartite
graph-based search space.

3) Comprehensive experiments on public text classification
datasets show that BGNAS consistently outperforms the
state-of-the-art with lower computational costs. In addi-
tion, we show that the found architecture in the bipartite
graph-based search space can be transferred to various
text classification tasks.

The rest of this article is organized as follows. Section II
briefly introduces the related work. Section III describes the
bipartite graph representation of the search space, followed by
a detailed presentation of the proposed BGNAS in Section IV.
The experimental settings and results are given in Section V.
Finally, Section VI concludes this article.

II. RELATED WORK

In this section, we first present a brief review of text
representation and an introduction to main NAS approaches,
followed by an account of NAS for text representation.

A. Text Representation
Text representation plays a crucial role in NLP tasks,

such as text classification [30] and natural language infer-
ence [31]. A range of text representation approaches [22] have
been developed to learn the meaningful and context-aware
representations of textual data. In an earlier study, the bag-
of-words (BoW) model [32] is used for text representation,
which represents a document as a collection of words or
terms and their frequencies in the document. On the basis of
BoW [32], Mikolov et al. [33] introduce the Word2Vec model
to popularize the use of distributed word embeddings for text
data, and Pennington et al. [34] present the GloVe model for
text representation, which leverages global word co-occurrence
statistics to learn word embeddings.

Besides, these are a series of neural network architectures
used for text representation, aiming to capture semantic,
syntactic, and contextual information present in textual data
for NLP tasks. For example, the effective use of word order
modeling with convolutional neural networks (CNNs) [35] and
recurrent neural networks (RNNs) [36] has achieved compet-
itive results in sentiment analysis and document classification
tasks. Graph neural networks (GNNs) [37] can also enhance
the representation of text data by incorporating external
knowledge sources, such as knowledge graphs. Bidirectional
encoder representations from transformers (BERT) [38] is
introduced as a contextualized word embedding model, using
a transformer architecture [39] and delivering state-of-the-
art performance in text representation. black Although these
models have made significant progress, manually designing
and tuning neural architectures remains labor-intensive and
time-consuming, especially when NLP tasks become more
complex and demand more flexible architectures to capture
the subtle nuances of text [3], [28].

B. Neural Architecture Search
The emergence of NAS has created a new opportunity for

customized architecture design in the AutoML domain, the
aim of which is to search for optimal network architectures
for specific tasks.
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Recent work on NAS algorithms can be roughly cat-
egorized into three groups, gradient-based [4], [40], [41],
EA-base [9], [14], and RL-based [12], [42], [43]. Gradient-
based algorithms treat the architecture search problem as
an optimization problem and use gradient-based optimization
methods to find architectures, such as a differentiable architec-
ture search (DARTS) [4], [44]. Several DARTS variants [10],
[40], [41] address this problem by pruning operators on every
edge except for the one with the largest architectural weight.
Besides, Feng et al. [45] propose a differentiable search
strategy based on the beneficial components to automatically
search for adversarially robust lightweight neural architec-
tures, maintaining the model size while deriving beneficial
components and ensuring adversarial robustness. EA-based
approaches [9], [14] rely mainly on stochastic search operators
such as crossover and mutation and evolve a population of
diverse architectures. For example, Lu et al. [9] introduce an
automatic search strategy with a genetic algorithm for the
optimal network architecture. However, EA-based methods
usually require a large amount of computation cost for per-
formance evaluations. Therefore, Wu et al. [28] use efficient
Cartesian genetic programming with a crossover operator,
a lightweight age mechanism, and two adaptive mutation
operators to facilitate NAS with fewer evaluations. RL-based
NAS approaches [2], [12] use an agent to guide different can-
didate architecture generation by optimizing a reward function.
For example, a weight-sharing strategy between submodels is
proposed in ENAS [42] to reduce the search time using a
long short-term memory (LSTM) controller to select various
subgraphs from the search space. These approaches need a
huge number of attempts to get a positive reward for updating
neural architectures, making them computationally expensive
during training [46]. Although various search algorithms are
used to improve search efficiency, NAS may obtain a neural
architecture that overfits both training and validation data,
especially when the search space is huge [47].

Therefore, human expertise is frequently necessary to define
a search space that achieves a well-balanced tradeoff between
exploration and exploitation for diverse applications [12].
There are two types of search space widely used for NAS,
namely, the micro search space and the macro search space [5].
The macro search space is usually used for building the
topological structure of a neural architecture, whereas the
micro search space details the candidate operators between
nodes (or cells) inside a neural network. Typically, the macro
search space is represented by a supernet (direct acyclic graph)
which is evolved automatically. In contrast, the micro search
space is often referred to as a cell structure that is optimized
by specific tasks. Due to huge computational resources and
search costs, the existing NAS algorithms use either macro
or micro search space instead of both of them at the same
time [19]. In particular, previous research on NAS algorithms
prefers the micro search space as it works well on different
image-related tasks [48]. For example, several strategies to
reduce the scale of search space in NAS for image-related
tasks have recently been proposed, including accuracy-based
approaches [26], [49], [50], magnitude-based approaches [51],
and angle-based approaches [20]. However, these strategies for

micro search space cannot be directly applied to macro search
space, and it has been shown that the macro search space is
better than the micro search space for text-related tasks [14].

Therefore, search space reduction in NAS for text classi-
fication tasks is still in its infancy. One pivotal issue is how
to optimize the utilization of the search space representation
for text-related tasks. Due to the importance of the order and
combination of candidate operators, searching on DAG search
space may be inefficient due to the lack of context of text
representation.

C. NAS for Text Presentation

NAS has gained significant attention in both text and
computer vision domains, yet the underlying requirements
and challenges of these tasks differ significantly [9]. In com-
puter vision, NAS focuses on optimizing architectures to
capture spatial features and local patterns, leveraging the
structural regularity of images [47]. In contrast, NAS for
text representation must tackle with the sequential nature
of language, where contextual dependencies and semantic
information play a crucial role [12]. Unlike tasks in com-
puter vision, NAS needs to handle sequence data in text
representation, which requires to capture more effectively
the contextual dependency and semantic information [52] to
improve NAS performance. For example, Fan et al. [53]
present a hierarchical representation learning approach using
NAS to capture the semantic and syntactic structures of
source and target languages. Zoph et al. [11] reported an NAS
with RL that effectively captures discriminative features in
text classification. Chen et al. [54] propose a heterogeneous
representation learning algorithm based on NAS to aggregate
neighboring information and reduce unnecessary search for
zero-shot multilabel text classification. However, most existing
NASs for text representation face challenges in achieving high
search efficiency due to the extremely large search space
involved [55]. Therefore, this work is essentially motivated to
design an effective and efficient NAS for text representation.
To this end, we introduce a bipartite graph representation of the
search space to deal with text-related tasks, which can also be
a plug-in to improve the performance of any NAS algorithms.

III. BIPARTITE GRAPH REPRESENTATION

In this section, we describe the search space represented by
a bipartite graph. First, we introduce the NAS search space
for text representation. Subsequently, we provide details on
transforming the DAG search space into a bipartite graph
presentation. Finally, we propose associated matching rules
for a bipartite graph-based search space.

A. Search Space of NAS for Text Representation

Most previous work on NAS primarily uses a macro search
space for text representation in NLP tasks, which is typically
defined by a general DAG. The DAG search space for text
representation is constructed following the approach in [12].
As shown in Fig. 1 (bottom left), each node in the search space
represents a layer in the neural network, and the total number
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Fig. 1. Bipartite graph presentation for DAG search space. On the bottom
left, the search space is depicted using a DAG, where o1, o2, o3, o4, and
o5 represent different candidate operators. On the bottom right, we transform
the DAG into a dual graph, focusing on contextual edge operators rather
than relationships between nodes in the DAG. On the top, a bipartite graph
represents the dual graph, where the sequential relationship of operators
is indicated by the edges in the bipartite graph. The directed bold lines,
marked with different colors, form a series of bipartite matching. The bipartite
matching ({⟨o1, o4⟩, ⟨o4, o2⟩}) with the blue color corresponding to a path
({⟨n0, n1⟩, ⟨n1, n2⟩, ⟨n2, n3⟩}) in the DAG, denoted by bold lines.

of nodes, denoted as N , is chosen based on factors such as the
complexity of the networks to be designed and the available
computational resources, such as GPU memory.

In a DAG search space, layers (nodes) are defined in a
topological order, enabling the sampling of a child network
architecture by traversing the layers according to this topolog-
ical order. For each layer ni , we initially choose a unique input
layer from the preceding layers n0, n1, . . . , ni−1. Subsequently,
we make multiple choices from the previous layers to establish
skip connections, which are summed up as the output of layer
ni . Layer n0 represents the original input layer, and layer ni

must select its input from the preceding five layers. Since
the operator on each node does not modify the dimension
of the input data, we can freely add more layers as long as
the input dimension remains unchanged. To limit the search
space, a common practice is to set a fixed value for N , such
as N = 25, as demonstrated in [12].

Each edge ⟨i, j⟩ from node i to node j indicates that node i
serves as an input or skip connection to node j , where an edge
⟨i, j⟩ exists if i < j . The corresponding operator ok on the
edge belongs to the set of candidate operators O, typically
determined by manual expertise and prior knowledge. The
candidate operators consist of a total of eight options, grouped
into four categories: 1-D convolution with filter sizes of 1,
3, 5, and 7; max pooling; average pooling; gated recurrent
units (GRUs); and multihead self-attention with the number of
attention heads being set to 8. The probabilities of selecting
these options are determined using the softmax function.

B. Bipartite Graph Representation

To capture the context of edge operators in the DAG
search space, our focus transitions from the candidate operator

between nodes to the available options of context candidate
operators. We transform the DAG into the dual graph first,
which is further converted into a bipartite graph, where the
topological order and combination of operators can be clearly
illustrated in the bipartite graph representation. Each path in
the original DAG can be regarded as a bigraph matching.

Definition 1 (Dual Graph): Dual graph G∗
= (V ∗, E∗) is

a graph created based on the original DAG G = (V, E), with
the roles of nodes and edges exchanged, where we introduce
a corresponding vertex ve in the dual graph G∗ for each edge
e in the original graph G where e ∈ E . In addition, an edge is
introduced to connect all the vertices corresponding to edges
e adjacent to v in the dual graph G∗ for each vertex v in the
original graph G where v ∈ V .

Definition 2 (Bipartite Graph): A bipartite graph, denoted
as Ĝ = (O1,O2, E), is a special graph representation of the
search space in which vertices are divided into two indepen-
dent candidate operator sets, O1 and O2 (O1,O2 ⊆ O), i.e.,
every edge connects a vertex in O1 to one in O2. Vertex sets
O1 and O2 are usually called the parts of the bipartite graph.

Definition 3 (Bigraph Matching): In a bipartite graph Ĝ,
a bigraph matching is a set of edges chosen in such a way
that no two edges share a common endpoint.

Definition 4 (Reduced-Scale Bipartite Graph-Based Search
Space): A reduced-scale bipartite graph-based search space
involves representing potential neural network architectures
using a bipartite graph, where there are the reduced-scale
search operators to efficiently explore and identify optimal
architectures.

As depicted in Fig. 1, the bottom left shows the original
search space DAG, which includes four architectural nodes
and five candidate edge operator options (o1, o2, o3, o4, and
o5), marked with different colors on each edge. On the bottom
right, the dual graph of the original DAG is provided. At the
top, a bipartite graph Ĝ presents the context of the operators
in the dual graph. The directed edges in the bipartite graph
represent the sequential relationship of operators, and the
combination of different candidate operators can be defined
with bigraph matching in a reduced-scale bipartite graph-based
search space, where there are only four operators (o1, o2, o3m
and o4). The set of sequential edges {⟨o1, o4⟩, ⟨o4, o2⟩} marked
with the blue color forms a bigraph matching, corresponding
to a path {⟨n0, n1⟩, ⟨n1, n2⟩, ⟨n2, n3⟩} marked with bold lines
in the original DAG. In other words, operator o5 does not form
an effective contextual combination with other operators in the
bipartite graph representation, and thus it is considered redun-
dant. Removing o5 can not only simplify the search space of
NAS but also facilitate the effective exploration and utilization
of the potential advantages offered by other operators.

The transformation of the NAS search space represented by
DAG into that by bipartite graph aims to effectively identify
and remove redundant operators. The transformation initially
involves obtaining the dual graph of the DAG search space,
which is essentially a spatial mapping issue. Using the bipartite
graph representation for the DAG search space, the same
candidate operators are distributed across two separate sets.
All kinds of combinations of operators can be represented
by a series of bigraph matching in a bipartite graph without
redundant operators, which has the potential to offer a more
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Fig. 2. Example of three associated matching rules from the dual graph of
DAG, where the rules are associated with bigraph matching in the bipartite
graph shown in Fig. 1.

effective text representation and enhance the efficiency of
the NAS search process. The reason is that it emphasizes
the matching and sequential relationships between operators,
making the proposed BGNAS more intuitive and effective
for exploring potential network architectures with the reduced
bipartite graph search space compared with the traditional
DAG search space.

C. Associated Matching Rules for Bipartite Graph-Based
Search Space

In the proposed BGNAS, we assume that the associated
matching rules in bigraph matching are adapted to identify
the most effective candidate operators for text representation,
where the associated matching rules influence how the bigraph
matching is formed.‘

Theorem 1: If the search space facilitates multimatching
ensembles in a bipartite graph, the optimal architecture exists
within the reduced search space generated from the associated
matching rules.

Proof of Theorem 1: Given that the DAG search space
supports multiple paths’ ensemble for representing text
sequences [12], incorporating multimatching ensembles in a
bipartite graph is achievable. The bipartite graph-based search
space is represented using a series of bipartite matching
ensembles. These ensembles are guided by the associated
matching rules that have the corresponding mappings in the
original DAG search space. As illustrated in Fig. 2, three
associated matching rules with different colors are derived
from the dual graph of the DAG. These rule sets, denoted as
{⟨o1, o4⟩, ⟨o4, o2⟩}, {⟨o3, o2⟩}, and {⟨o1, o3⟩}, are associated
with bigraph matching in the bipartite graph representation
of the DAG, as presented at the top of Fig. 1. It is worth
noting that o5 has no sequential relationship with the other
four operators (o1, o2, o3, and o4). Therefore, there is a high
probability that the associated matching involving o5 does not
exist in the bipartite graph search space.

Based on the generated associated matching rules in [56],
we consider the reduction of the bipartite graph-based search
space as finding the equivalence subset O′ of the candidate
operator set O

arg max
O′⊆O

f (MO′) = Acc(A∗)

s.t. c(O′) ≤ 2 (3)

where the function f (.) : 2O −→ R is defined as the accuracy
of the optimal architecture A∗ found through NAS search, and

the constraint function c(O′) = |O′
| is used to compute the

cost of NAS search. 2 represents the cost constraint value,
which can be used to limit the scale of the reduced bipartite
graph-based search space. The bipartite graph-based search
space related to the operator subset O′ is MO′ .

Let the operator subset O′ correspond to a reduced bipartite
graph search space generated based on the associated matching
rules. It follows that given any operator subset O1 ⊆ O′,
we have f (MO1) ≤ f (MO′). This means that the performance
in bipartite graph search space MO1 will not exceed the per-
formance in bipartite graph search space MO′ that is generated
based on the associated matching rules. However, adding the
candidate operators to a bipartite graph-based search space
MO1 does not guarantee a higher accuracy for the optimal
architecture, because we cannot guarantee that the function
f (.) is submodular. That is, for ∀O1 ⊆ O2 ⊆ O, ok /∈ O2, it is
not necessarily true that f (MO1 ∪{ok})− f (MO1) > f (MO2 ∪

{ok}) − f (MO2). To select the proper subset O′ to obtain the
optimal architecture in (3), we define the submodular ratio
α f to measure how close function f (.) is to a submodular
function [57], which is calculated as follows:

α f =
f (MO1 ∪ {ok}) − f (MO1)

f (MO2 ∪ {ok}) − f (MO2)
(4)

where α f ∈ (0, 1]. α f = 1 indicates that function f (.) is
submodular. When f (·) is not submodular, a lower bound
estimation for α f is relied upon, which is computed using
approximated algorithms [58], [59]. In BGNAS, we use an
EA to estimate the lower bound α f of the submodular func-
tion f (.), which provides a conservative estimate of NAS
performance. By means of bipartite graph-based search space
reduction (Section IV-D) in EAs, the properties of the sub-
modular function can be effectively explored and evaluated,
thereby identifying its lower bound, α f , as defined in (4).
This process improves search efficiency and ensures that an
acceptable optimal architecture can be identified.

The use of the submodular function is due to its property
of marginal diminishing returns [60]. This helps us more
effectively select and add edges in the search process of
BGNAS, thereby identifying the optimal neural architecture
more quickly. In the proposed BGNAS, marginal diminishing
returns in bipartite graph matching refer to the fact that as
you gradually add more edges (connections) to the bipartite
graph-based search space, the additional gain (the improve-
ment in accuracy) from each new edge decreases. If the
function f (.) is estimated to closely resemble a submodular
function, a reduced-scale bipartite graph-based search space
containing the optimal network architecture can be identified.
Thus, we complete the proof of Theorem 1.

Therefore, Theorem 1 confirms that the reduced-scale
bipartite graph-based search space still contains the optimal
architecture that can be found by NAS. Based on Theorem 1,
the proposed BGNAS adopts an EA to identify a reduced
bipartite graph-based search space by locating an approxi-
mated lower bound α f . Considering the associated matching
rules with multimatching ensembles in a bipartite graph,
BGNAS aims to explore comparatively relevant architectures
for text classification.
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IV. NAS BASED ON BIPARTITE GRAPHS

As discussed above, the bipartite graph representation
enables the realization of a neural network architecture through
a multimatching relationship within the bipartite graph. Differ-
ent multimatching relationships between candidate operators
will result in a series of neural networks with diverse neural
architectures. In this study, the candidate operators and their
implementation order are represented in a bipartite graph to
obtain optimal neural architectures. In BGNAS, each individ-
ual can be viewed as a bipartite graph-based search space,
and the association rule sets in the bipartite graph guide the
reduction of the bipartite graph search space for each individ-
ual. Moreover, we do not directly evaluate the performance
of bipartite graph-based search space; instead, we use an
RL-based NAS algorithm to search optimal neural architec-
tures for text classification. Consequently, BGNAS can avoid
redundant training in the complete bipartite graph-based search
space, thereby effectively reducing the high computational
costs usually required by traditional NAS approaches in text
classification.

A. Overall Framework

The pseudocode of BGNAS is presented in Algorithm 1,
which primarily comprises three components, namely, mul-
timatching encoding of neural architecture (lines 1 and 2),
RL-based NAS (lines 7–24) with an approximated submodular
function, and bipartite graph-based search space reduction
based on associated matching rules (line 28). It begins with
an individual (a neural architecture) from population P in the
bipartite graph representation (line 2), and new individuals are
generated through bitwise mutation (line 6). The variables ui

and qi are used to explore the reduced-scale bipartite graph-
based search space. The bipartite graph-based search space can
be reduced within iter generations, which in turn enhances
the search efficiency while minimizing computational costs.
In particular, the associated matching rules can be mined, and
infrequent matches in the bipartite graph-based search space
are pruned for the current individuals, requiring continuous
updates. The associated matching rules for each generation can
offer a certain level of interpretability regarding the context of
operators in text representation. The value of the maximum
number of matching edges, denoted by 2, can be updated,
and the bipartite graph-based search space can be reduced as
specified in Algorithm 2. More details about Algorithm 2 can
be illustrated in Section IV-D.

The overall framework of BGNAS is illustrated in Fig. 3.
It is worth noting that the architecture of the proposed BGNAS
is distinct from that of most existing NAS methods for text
classification. We primarily use an EA to reduce the bipartite
graph-based search space iteratively, not as the search strategy
in our BGNAS. By applying EAs, we can effectively identify
and eliminate architectures that underperform or lack compet-
itiveness. In BGNAS, we use a bipartite graph to represent the
search space, which enables effective acquisition of context for
candidate operators used in text representation. This proposed
BGNAS not only reduces the bipartite graph-based search

Algorithm 1 Proposed BGNAS
Input: Bipartite graph-based search space UO, iteration times

T , and rule iteration interval Interval.
Output: The optimal architecture A∗

1: Initialize the population P with an multimatching individ-
ual from the bipartite graph-based search space.

2: Initialize the bipartite graph-based search spaces u0, q0 =

0|UO |, respectively.
3: t = 0, Num Pop = 1, temp = 0; 2 = |UO|.
4: while t < T do
5: Choose the individual Mb(pi )(1 ≤ i ≤ Num Pop)

from P uniformly at random.
6: Generate a new individual M̂b(pi ) using bitwise muta-

tion to Mb(pi ).
7: if |M̂b(pi )| < 2 then
8: l = |M̂b(pi )|

9: if bin(l) = ∅ then
10: P = P ∪ {M̂b(pi )}

11: ul = ql = M̂b(pi )

12: else
13: if g(M̂b(pi )) ≤ g(ul) then
14: ul = M̂b(pi )

15: Num Pop = Num Pop + 1
16: end if
17: if f (M̂b(pi )) ≤ f (ql) then
18: ql = M̂b(pi )

19: Num Pop = Num Pop + 1
20: end if
21: P = (P − bin(l)) ∪ {ul} ∪ {ql}

22: Applying the RL-based search algorithm [42]
to search the optimal architecture A∗ based
on P . / ∗ SectionI V − C ∗ /

23: end if
24: end if
25: t = t + 1, temp = temp + 1
26: if temp = Interval then
27: temp = 0
28: Reduction of the bipartite graph-based search

space for each individual according to
Algorithm 2. / ∗ SectionI V − D ∗ /

29: Update the maximum number of the matching
edges 2 for the current population P .

30: end if
31: end while

space to mitigate computation costs but also allows us to focus
on more promising network architectures.

B. Multimatching Encoding of Neural Architectures

We assess the performance of neural architectures for text
classification through a multimatching encoding approach
within the bipartite graph representation of search space.
To this end, bipartite matching is used to substitute a sequence
of path ensembles in which each edge, connecting preceding
and succeeding sequences in a bipartite graph, is treated
as a unit. The context of operators is maintained through
the combination of these units in a bipartite graph-based
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Fig. 3. Overall framework of the proposed BGNAS includes multimatching encoding of the neural architecture, RL-based NAS, and bipartite graph-based
search space reduction. Each individual in the population represents a bipartite graph-based search space, and g(.) is the approximated submodular function
for performance search in RL-based NAS.

search space. We define that Sets UO and UO′ represent
the units of operator pairs (edges) in the complete and
reduced bipartite graph-based search space, respectively. The
multimatching encoding in the bipartite graph for each indi-
vidual is represented by a binary vector Mb = [bm(UO′ , 1),
bm(UO′ , 2), . . . , bm(UO′ , k), . . . , bm(UO′ , |UO|)], of length
|UO|. Each element bm(UO′ , k) indicates the inclusion or
exclusion of the kth unit in the reduced search space.
bm(UO′ , k) = 1 indicates the unit belongs to UO′ , and
bm(UO′ , k) = 0 means that the unit does not belong to UO′ .

The proposed multimatching encoding scheme represents
the search space as a bipartite graph. In Fig. 4, two paths
from a neural architecture within a DAG search space (left) are
represented as two bipartite matchings in the bipartite graph.
The bottom right shows the bipartite matchings, while the top
right details the bipartite graph representation. Unlike the
path-based encoding used for DAG search spaces [12], the
multimatching encoding emphasizes matching relationships
within the bipartite graph. This focus on the flexible com-
binations of different operator pairs is particularly crucial for
text-related tasks, primarily because it effectively addresses
complex dependencies among operators and boosts the capture
of contextual information.

Most importantly, by leveraging the connectivity properties
of bipartite graphs, it is possible to remove operators from
the operation space that are less relevant to the task, thereby
reducing the complexity of the structural search. Fig. 4 pro-
vides an illustrative example of the multimatching encoding
process. There are four nodes (n1, n2, n3, and n4) and five
candidate operators (o1, o2, o3, o4, and o5) in the original
DAG search space. With four operators (o1, o2, o3, and o4)
in the reduced bipartite graph-based search space, there are
A2

4 + 4 = 16 kinds of units in set UO′ , where UO′ ⊆ UO.
Meanwhile, in set UO with five operators (o1, o2, o3, o4, and
o5), there are A2

5 +5 = 25 kinds of units. The reduction in the
number of candidate operators leads to a decrease in matching
relationships within the bipartite graph-based search space.

This allows us to directly concatenate multiple binary
vectors for aggregation. This proposed approach enables the

Fig. 4. Example of multimatching encoding, where {o1, o4, o2} and {o3, o2}
represent two bigraph matching in a neural architecture. The neural archi-
tecture in the DAG search space (DAG) can be represented in the bipartite
graph, and the proposed BGNAS leverages multimatching for the context of
operators with the bipartite graph representation.

decoding of multipaths in the DAG search space into the
corresponding bipartite matchings. Notably, the units in the
bipartite matching have variable lengths, providing flexibility
to capture combinations of operator units. This variability
enhances the ability of the NAS algorithm to generalize from
diverse architectures.

C. RL-Based NAS With the Approximated Submodular
Function

In this work, we assess the performance of candidate archi-
tectures from the bipartite graph-based search space within
the population. Each individual with bipartite graph repre-
sentation, denoted as Mb(pi ), represents a general bipartite
graph search space. We use the RL-based search algorithm
for weight sharing NAS [42] to evaluate the individual’s
fitness. Within the framework of a bipartite graph-based search
space, we leverage a single LSTM to sample child neural
architectures. Subsequently, these child architectures undergo
training on the training set and evaluation on the validation set.
Simultaneously, the child neural architectures share a common
set of parameters within the ongoing bipartite graph search
space, facilitating an accelerated evaluation procedure. Once
the performance of the child neural architectures is assessed,
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the accuracy feedback is incorporated into the LSTM layer.
Consequently, the parameters of the entire bipartite graph
search space undergo updating through RL.

In particular, we introduce an approximated submodular
function g(·) to estimate a lower bound for α f in the reduced
bipartite graph search space as described in (4). The perfor-
mance of an individual Mb(pi ) ∈ UO′ in the population is
defined as follows:

g(Mb(pi )) = f (Mb(pi ))

/(
1 − exp

(
−α f c(UO′)

2

))
. (5)

In (5), 2 is the maximum number of matching edges for the
current associated matching rules, and the initial value is set
to n − 1, where n is the number of the candidate operators
in the complete bipartite graph-based search space. Similar to
c(.) in (3), c(.) is leveraged to compute the cost of NAS on the
bipartite graph search space. For the initial reduced bipartite
graph-based search space, |UO′ | = 0, we set g(·) = f (·) out-
lined in (3), where f (.) is the accuracy of individual Mb(pi ).
According to the theoretical analysis in [58], the proposed
BGNAS gives an upper bound of 2en2(n + 1) iterations when
a lower bound α f is applied to the approximated submodular
function. In this case, BGNAS can find a reduced bipartite
graph-based search space UO′ ⊆ UO with

f (Mb(pi )) ≥

(α f

2

)
(1 − e−α f ) · f (Mb(p∗)) (6)

where Mb(p∗) ∈ UO′ is the optimal solution for the current
generation, and f (Mb(pi )) is defined in (3). In particular, the
lower bound α f and 2 can be estimated by mining the asso-
ciated matching rule with the bipartite graph representation,
as illustrated in Section IV-D.

During the performance search process, we randomly select
an individual Mb(pi ) from population P and use bitwise
mutation to generate a new multimatching vector M ′

b(pi )

in the bipartite graph representation. The proposed BGNAS
maintains the solutions in population P , and the new solu-
tion M ′

b(pi ) will only be compared with the solutions in
bin(|M ′

b(pi )|), which can be formulated as follows:

bin(|M ′

b(pi )|) = {Mb(p j ) ∈ P||Mb(p j )| = |M ′

b(pi )|, i ̸= j}.

(7)

Moreover, only if individual M ′

b(pi ) has a number of matching
edges (after removing duplicated operator units) smaller than
the constraint 2 of the current generation, it can be added to
the population P . If the population P does not have an indi-
vidual of the same matching edges as the individual M ′

b(pi ),
individual M ′

b(p j ) will be directly added to population P .

D. Bipartite Graph-Based Search Space Reduction

By analyzing potential preceding and succeeding match-
ing relationships among these individuals, we use a pruning
strategy [56] in each generation to explore the associated
rules between candidate operators, thereby reducing infre-
quent matching in the bipartite graph-based search space.
Algorithm 2 demonstrates the procedure of reducing the
bipartite graph-based search space based on associated match-
ing rules. In Algorithm 2, the associated rule in a bipartite

Algorithm 2 Procedure of Reducing the Bipartite
Graph-Based Search Space Based on Associated Matching
Rules
Input: Population P , constraint cost 2, candidate itemset C1, and

support threshold Supmin.
Output: The maximum number of matching edges 2.

1: Generate frequent 1-itemsets L1, by eliminating the 1-itemsets
from the C1 whose support level is less than Supmin.

2: Calculate the maximum length Maxlen of the bigraph matchings
from all individuals.

3: Ck = ∅, Lk = ∅, UO′ = UO, k ∈ (1, |C1| − 1].
4: for (k = 1; Lk ̸= ∅; k + +) do
5: The itemsets in Lk are listed from left to right in ascending

order based on the sequence number of the operators.
6: Perform a self-join on Lk with L1 to derive the candidate

itemsets Ck+1.
7: Prune the infrequent itemsets from Ck+1 if the support level

of itemsets are less than the support threshold Supmin,
and generate the frequent itemsets Lk+1

8: for each individual in population P do
9: increment count of candidates in Ck+1 that are contained

in the individual.
10: end for
11: Lk+1 = candidates in Ck+1, where the support level of

candidates are greater than or equal to Supmin.
12: end for
13: Obtain the infrequent rules set I R =

⋃Maxlen
k=1 {Ck − Lk}.

14: Reduce the scale of the bipartite graph-based search space
by removing the corresponding bigraph matching for each
individual based on the infrequent rules set I R.

15: Obtain the associated edge rules set F R =
⋃Maxlen

k=2 Lk .
16: Calculate the maximum number of matching edges 2 = F R

with the associated edge rules.

graph indicates a specific multimatching relationship, where
any subset of the set of operator units is denoted as an
itemset. An associated matching rule is considered supported
if the percentage of items in all individuals of P exceeds
a support threshold Supmin. A set of items containing k
matching edges (items) is referred to as a k-itemset. During
the generation process of k-itemsets, we perform a self-joined
operator on the items in the current k-itemset to obtain
the k + 1-itemset. Notably, infrequent itemsets are pruned
from the candidate itemsets. This exploration results in the
generation of infrequent rules set IR =

⋃Maxlen
k=1 {Ck − Lk},

as well as the associated edge rules set AR =
⋃Maxlen

k=2 Lk for
matching in the bipartite graph. With the above procedure,
we can reduce the scale of bipartite graph-based search space
by removing the related bigraph matchings whenever there
exists any subset of the infrequent rules set IR. Moreover,
we calculate the maximum number of matching edges with an
overlapping strategy to update the constraint 2 =

∑|C1|−1
i=2 |Lk |

based on the associated edge rules AR in (6). The lower bound
α f = mink(|Ck − Lk |/|Ck |) is updated and estimated as the
submodular ratio in (6).

Fig. 5 provides an illustrative example with ten individuals
and five candidate operators. It demonstrates the proce-
dure of generating associate rules for reducing the bipartite
graph-based search space. The minimum support threshold
Supmin is set to 2. As presented in the table on the top left
of Fig. 5, each row corresponds to an individual, illustrating
the multimatching encoding representation. At first, all the
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Fig. 5. Illustrative example of the generated associated matching rules in the bipartite graph-based search space. (Top) The process of generating frequent
i-itemsets L i , i = 1, 2, 3, 4, is illustrated based on the population P with ten individuals and five candidate operators. (Bottom right) Potential association
rules with multilevel items, where the red box highlights the corresponding pruned association infrequent matching rules. (Bottom left) The update of the
population with the individuals that reduce the scale of the bipartite graph-based search space.

individuals are scanned through to identify, for each 1-itemset,
the corresponding list of individuals and to calculate the
number of individuals for each operator in the candidate
first-level itemset C1. Next, eliminating all 1-itemsets with
a support level less than 2, such as o5, results in L1 =

{o1, o2, o3, o4}. Second, self-joining the items to L1 generates
candidate 2-itemsets through an overlapping strategy. The sup-
port of candidate second-level itemsets C2 is calculated, and all
2-itemsets with a support level less than 2 are eliminated. This
process results in L2 = {o1, o2, o2, o3, o3, o4, o4, o1, o4, o4}.
Similarly, frequent k-itemsets (k = 2, 3) are generated by
combining Lk−1 with L1, using an overlapping strategy to
count the support of k-candidate itemsets. After the intersec-
tion, the k-level itemsets in Ck are pruned if their support
level is less than 2. Therefore, frequent 3-itemsets L3 =

{o1, o2, o3, o2, o3, o4, o4, o4, o1} and frequent 4-itemsets L4 =

{o1, o2, o3, o4} are obtained. Finally, the pruning strategy ter-
minates when the 4-itemset L4 is null, and the individuals in
the current generation are updated in the bottom left of Fig. 5.
The pruned association infrequent matching rules in a certain
level of itemsets are highlighted in the red box in the bottom
right of Fig. 5.

When an itemset (whether first level, second level, or higher
level) is no longer frequent, all bigraph matchings containing
this itemset need to be excluded from the corresponding
bipartite graph search space. In Fig. 5, as {o5} has already
been excluded from first-level itemset C1, a bigraph matching
{o4, o5} containing {o5} as a subset also needs to be removed
from the corresponding bipartite graph search space Mb(p5).
Similarly, as {o1, o4} has been removed from the second-level
itemset C2, and {o1, o4} appears as a true subset in a bipartite
graph matching {o1, o4} of the corresponding bipartite graph
search space Mb(p2), therefore the bipartite graph matching
{o1, o4} also needs to be removed. Deleting infrequent rules
enables the reduction of the bipartite graph-based search space,
and the scale of bipartite graph-based search space can be
effectively reduced, thereby saving substantial computation
costs in the proposed BGNAS.

V. EXPERIMENTAL RESULTS

In this section, we begin by empirically conducting basic
experiments to validate the performance of BGNAS on the
SST dataset. We also explore the transferability of the derived
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TABLE I
STATISTICS OF EIGHT TEXT CLASSIFICATION DATASETS

architectures to text classification tasks on additional bench-
mark datasets. Subsequently, we delve into comprehensive
experiments designed to analyze the effectiveness and effi-
ciency of the extended bipartite graph-based search space.

A. Datasets and Experimental Setting

In this study, we use eight publicly available datasets widely
used for text classification to evaluate the BGNAS, including
include SST [61], SST-B,1 AG,2 DBP [62], YELP-B [63],
YELP [63], YAHOO, and AMZ-B [64]. The datasets cover
diverse domains, encompassing sentiment analysis, Wikipedia
article categorization, news categorization, and topic clas-
sification. Notably, these datasets also exhibit diversity in
text domains, data distribution, and languages. For example,
AG and Yahoo cover the news and Q&A domains, YELP
and AMZ-B contain different types of user reviews, and SST
and SST-B focus on sentiment classification. In addition, the
YELP-B dataset has a serious class imbalance issue, with
positive reviews accounting for nearly 80% of the data, while
DBP and AMZ-B involve multiple languages. These variations
in different datasets ensure that our BGNAS is thoroughly
evaluated under diverse conditions.

BGNAS is comprehensively evaluated across diverse text
classification scenarios. We perform NAS and assess the
derived architectures on eight public datasets, as summarized
in Table I. To address the absence of validation samples in
some datasets, as set in [12], we randomly select 5% of the
training samples for the required validation set in the NAS.

In the proposed BGNAS, individuals are represented using
a form of multimatching encoding, and the maximum num-
ber of generations for the evolutionary bipartite graph-based
search space is set to 50. The iteration interval for bipartite
graph-based search space reduction is set to 10, and the
support threshold for associated matching rules is set to 2.
In each iteration, the number of search epochs for RL-based
NAS is set to 10. To evaluate the bipartite graph-based search
space for each individual, we adopt the training settings used
in [12]. Specifically, we configure the batch size as 128, set
the maximum input length to 64, and define the hidden unit
dimension for each layer as 32. Incorporating dropout (with a
ratio of 0.5) in the embedding layers, final output layers, and
self-attention layers, we use the Adam optimizer with an initial
learning rate of 0.1. The learning rate gradually decays to
zero following a cosine annealing schedule, with the length of

1https://nlp.stanford.edu/sentiment/code.html
2http://groups.di.unipi.it/gulli/AG_corpus_of_news_articles.html

each cosine cycle set to the generation number. Following the
population evolution, we use the architecture with the highest
accuracy as the text representation.

Moreover, we evaluate our architecture against state-
of-the-art networks designed by human experts, including
FastText [65], 29-CNN [66], bidirectional LSTM (Bi-LSTM)-
Max [67], and a 24-LAYERS TRANSFORMER [39]. We also
compare the proposed approach with the DAG search
spaces defined in ENAS [42], along with other NAS algo-
rithms, including ONE-SHOT [68], RANDOM SEARCH [69],
DARTS [4], and ECGP [28]. In addition, we compare three
NAS algorithms with improved DAG search spaces for text
representation: TextNAS [12], AutoAttend [14], and DNA-
MHE [3].

B. Comparative Results

1) Results on SST: In this section, we verify the effective-
ness of the proposed BGNAS for text classification tasks. The
evaluation results and comparisons with other state-of-the-art
neural networks, including both manually designed and NAS-
based, on the SST dataset are summarized in Table II. In the
compared NAS algorithms, ONE-SHOT [68] and Random
Search [69] use a random search strategy. DARTS [4] and
DNA-MHE [3] use gradient-based search methods. AutoAt-
tend [14] and ECGP [28] use EA-based search methods.
ENAS [42] and TextNAS [12], along with our proposed
BGNAS, adopt an RL-based search method.

From Table II, we observe that the neural architecture
searched by BGNAS achieves competitive performances com-
pared with the manually designed networks, while also
requiring fewer parameters. In addition, BGNAS outperforms
neural architectures found by other NAS algorithms obtain-
ing the best results in terms of accuracy and parameters.
BGNAS demonstrates an encouraging improvement over ran-
dom search-based and gradient-based NAS methods in terms
of accuracy and search cost. Compared with population-based
NAS methods, BGNAS achieves significantly better perfor-
mance than AutoAttend. Although ECGP incurs lower search
costs than BGNAS, it ends up with substantially more param-
eters (132.0 versus 130.1 M) and relatively lower accuracy
(47.00% versus 53.74%) than BGNAS. It should be noted
that our BGNAS is the most efficient NAS method among
RL-based methods. The accuracy of BGNAS has improved
by 2.09% from ENAS and 1.13% from TextNAS on the SST
dataset, respectively. This illustrates the superiority of the
bipartite graph-based search space for text classification.

2) Transferability Analyses: In this section, we validate the
generality of the proposed BGNAS in other text classification
tasks. Table III lists the experimental results on seven datasets
and shows comparison of them with other state-of-the-art NAS
methods and the manually designed networks. We illustrate
the average text classification accuracy over five independent
runs in Table III, with the best value in each section shown
in bold. During the transfer of the derived architecture from
SST to seven other text classification datasets, our BGNAS
consistently outperforms the existing top NAS results and
manually designed models. These results highlight that even
when initially searched on smaller datasets like SST, the
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TABLE II
COMPARISON WITH OTHER STATE-OF-ART METHODS ON THE SST DATASET

TABLE III
AVERAGE TEXT CLASSIFICATION ACCURACY ON SEVEN DATASETS

bipartite graph-based search space representation, with the
learning of the topological order of operators, retains the
ability to generalize effectively to similar text classification
tasks. It is worth noting that in the comparison of BGNAS with
manual models, the BGNAS network achieves competitive
performance, with an accuracy improvement of over 2.1% in
the best case. BGNAS outperforms the existing state-of-the-art
NAS results on the DBP and YAHOO datasets, involving text
classification with a larger number of categories than the SST
datasets. It can be concluded that our BGNAS, derived from
SST, is indeed transferable to a more complicated text classifi-
cation task while maintaining its superiority. Interestingly, our
transferred BGNAS performs slightly better than DNA-MHE,
which searches for multilingual texts on the AMA-B dataset.
The experimental results in Table III further demonstrate
that the proposed method enables the transformation of the
topological order of operators into complex bipartite graph
architectures. In particular, the use of bipartite graph-based
search space proves effective for solving multilingual text
classification tasks.

C. Effect of Bipartite Graph Representation

In this section, we further verify the effectiveness of the
bipartite graph representation for text classification. Since
the proposed BGNAS can obtain the most effective oper-
ators based on the associated matching rules from the

bipartite graph-based search space, we extend the existing
candidate operators [12] and use five categories of com-
monly used candidate operators for the text sequences as
follows.

1) Convolution Layers: Four kinds of 1-D convolution
layers with filter sizes 1, 3, 5, and 7, respectively, are
defined as candidate operators. As in [12], we keep the
dimension of output equal to the input.

2) Recurrent Layers: Two kinds of recurrent layers, namely,
Bi-LSTM and GRU, are used as candidate operators
in the implementation. Bi-LSTM and GRU have the
advantage of capturing long-term dependencies in text
representation.

3) Pooling Layer: The maximum and average pooling
layers with a filter window are used, respectively. The
multiple-choice filter size, such as 1, 3, and 5, can be
used in any maximum and average pooling operators.

4) Multihead Self-Attention Layers: There are three kinds
of multihead self-attention layers with the number of
attention heads set as 8, 16, and 32, respectively.

5) Auxiliary Layers: Two auxiliary layers are leveraged
in this work, including the zero operator and identity
operator. Zero operator refers to a specific operator that
has zero parameters and produces zero-valued outputs.
The identity operator passes the input directly to the
output without any transformation, commonly used in
skip connections or residual connections.
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TABLE IV
AVERAGE ACCURACY PERFORMANCE OF DIFFERENT SEARCH ALGORITHMS WITHOUT OR WITH BIPARTITE

GRAPH-BASED SEARCH SPACE ON ALL DATASETS

In summary, the candidate operator set O consists of 17 kinds
of candidate operators in total for text representation, so the
initial number of operator nodes in bipartite graph-based
search space is 17.

Table IV shows the average classification accuracy perfor-
mance of different NAS algorithms with or without bipartite
graph-based search space on all datasets. The best average
classification accuracy over five independent runs is high-
lighted in bold on the different datasets. Similarly, we first
conduct NAS and evaluate its performance on the SST
dataset. Subsequently, we transfer the searched architectures
to seven other text classification datasets. From Table IV,
we directly perform experiments using bipartite graph-based
search space with four state-of-the-art NAS algorithms,
including RANDOM SEARCH [69], DNA-MHE [3], AutoAt-
tend [14], and TextNAS [12]. We also consider a variant
named BGNAS_DAG, where we use a DAG to represent
the search space, and the candidate operators are further
constrained by the proposed BGNAS framework. To further
validate the effectiveness of the bipartite graph-based search
space, especially when combined with other NAS approaches,
the DAG search space is replaced with the proposed bipartite
graph-based search space for the four NAS search algorithms,
referred to as RANDOM SEARCH + BS, DNA-MHE + BS,
AutoAttend + BS, and TextNAS + BS, respectively.

Based on the results of the four comparative experiments
in Table IV, it is evident that the proposed BGNAS can
search for the architecture with the best average accuracy
on all datasets using the evolutionary bipartite graph search
space, outperforming SEARCH + BS, DNA-MHE + BS,
AutoAttend + BS, and TextNAS + BS. In particular, the four
kinds of NAS algorithms consistently find better architectures
from the bipartite graph-based search space than from the
original DAG search space for text classification on the SST
datasets. When the architecture derived from SST is applied
to seven text classification datasets, the efficacy of the evolu-
tionary bipartite graph search space persists in enhancing the
performance of NAS algorithms. For instance, excluding the
proposed BGNAS, TextNAS + BS demonstrates the highest
accuracy on the SST-B, AG, YELP-B, and YELP datasets,
while DNA-MHE + BS excels on the DBP, YAHOO, and
AMZ-B datasets. Furthermore, it appears that our BGNAS
can effectively exploit the topological order of candidate

TABLE V
COMPARISON OF THE BEST ACCURACY WITH OTHER

STATE-OF-ART METHODS ON SST

operators based on associated matching rules, as evidenced
by an absolute advantage in the comparative experiments with
BGNAS_DAG.

To verify whether different NAS methods still exhibit
generalization in the expanded bipartite graph-based search
space, we provide a detailed comparison of the performance of
RANDOM SEARCH, DNA-MHE, AutoAttend, and TextNAS
on the SST dataset with or without the bipartite graph-based
search space in Table V. These results are based on the best
accuracy value for a series of NAS approaches over five
independent runs. In Table V, we observe that the parameters
of weight sharing in the bipartite graph can be significantly
decreased. More interestingly, enhancing the performance
of various NAS search algorithms with lower search costs
remains beneficial.

Moreover, we present a visualization of the searched archi-
tecture found by the proposed BGNAS in Fig. S1. It can be
observed that a series of associated rules can be discovered in
the bipartite graph search space. In addition, we provide exam-
ples of frequent matchings during the NAS search process in
Table S1, where the number of operators ranges from 2 to 9.
It is worth noting that the autodesign principles are generally
aligned with human experience for text representation.

D. Effectiveness Validation of Approximated Submodular
Function

Fig. 6 illustrates the accuracy changes on the standard and
extended bipartite graph-based search space over 50 iterations
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Fig. 6. Accuracy changes on the SST dataset for four NAS search
methods (random, gradient-based, population-based, and RL-based) between
the standard bipartite graph-based search space and the extended bipartite
graph-based search space, which are observed over 50 iterations. In particular,
we evaluate RANDOM SEARCH + BS, DNA-MHE + BS, AutoAttend +

BS, and the proposed BGNAS with or without the approximated submodular
function g(.).

for RANDOM SEARCH + BS, DNA-MHE + BS, AutoAt-
tend + BS, and BGNAS, respectively. In this comparison, four
NAS methods (random, gradient-based, population-based, and
RL-based search) are specifically evaluated with or without
the approximated submodular function g(.). This work reports
that the experimental results of different NAS algorithms
on the extended BS search space [without considering the
approximated submodular function g(.)] cannot be as good
as those with a standard DAG search space, except for our
proposed BGNAS. Due to the need to consider the topological
structure and a larger number of candidate operators up to
billions, it is more challenging to optimize an extended BS
search space for text classification. In particular, compared
with other algorithms studied in this work, our algorithm
demonstrates a more stable trend and achieves the highest
accuracy. This can be attributed to our typical goal of identi-
fying a reduced number of operators that are ideally suited for
the text classification task from the expanded bipartite graph
search space.

E. Parameter Sensitivity Analysis

This section aims to conduct experiments to analyze the
parameter sensitivity of the proposed BGNAS. The support
threshold Supmin for associated matching rules and the rule
iteration interval Interval for reducing the bipartite graph-based
search space are user-defined hyperparameters. Fig. 7 shows
comparison of text classification accuracy on the SST dataset
obtained by BGNAS under different hyperparameter combina-
tions of Supmin and Interval. We set Supmin from 1 to 5 with
a step size of 1, while Interval is set from 5 to 25 with a step
size of 5. As can be seen from Fig. 7, the proposed BGNAS
performs the best when Supmin = 2 and Interval = 10.
First, the setting of Supmin has a significant influence on the
results of BGNAS, and BGNAS can obtain relatively good
performance when Supmin is equal to 2 or 3. Second, the
proposed BGNAS can achieve relatively good performance

Fig. 7. Influence analysis of hyperparameters (Supmin and Interval) on
BGNAS by the accuracy values.

when the iteration interval is set to 10, and it is not necessary
to set Interval to 5, as this results in a slightly lower accuracy
but with higher computational cost. Therefore, the current
parameter settings for BGNAS are effective.

VI. CONCLUSION

In this article, we have presented a BGNAS algorithm
for text classification, where the bipartite graph-based search
space can effectively describe the topological order of candi-
date operators for text representation. Moreover, we use an EA
to gradually reduce the scale of bipartite graph-based search
space, with the introduction of the approximated submodular
function for an RL search algorithm in NAS. The reduced
bipartite graph-based search space is more succinct, efficiently
simplifying the computational complexity of BGNAS. The
effectiveness of BGNAS is evaluated on eight public datasets
in both traditional DAG search space and bipartite graph-based
search space. Furthermore, it has been shown that the proposed
bipartite graph search space effectively represents a set of can-
didate operators for capturing the complex contextual seman-
tics of text data, thereby enhancing generalization capability.

Although BGNAS can obtain effective and efficient neural
architectures for text classification, there is still much room
for improvement. To achieve better performance on other text-
related tasks, BGNAS should be further developed to capture
the complex contextual semantics of text data with lower
computational cost. In addition, to enhance the generalization
capability of the bipartite graph-based search space, BGNAS
should explore its application in real-world text-related tasks.
In the future, BGNAS can potentially be integrated with graph
neural networks to refine their structure for multimodal tasks
or specific domains.
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