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Abstract— Consensus representation learning is one of the most
popular approaches in the field of multi-view clustering. How-
ever, most of the existing methods cannot learn discriminative
representations with a clustering-friendly structure since these
methods ignore the separation among clusters and the compact-
ness within each cluster. To tackle this issue, we propose a new
deep multi-view clustering network with a dual contrastive mech-
anism to learn clustering-friendly representations. Specifically,
our method employs dual contrasting losses: a dynamic cluster
diffusion loss to maximize the distance between different clusters
and a reliable neighbor-guided positive alignment loss to enhance
compactness within each cluster. Our approach includes several
key components: view-specific encoders to extract high-level
features from each view, and an adaptive feature fusion strategy
to obtain consensus representations across multiple views. The
dynamic cluster diffusion module ensures inter-cluster separation
by maximizing distances between different clusters in the consen-
sus feature space. Simultaneously, the reliable neighbor-guided
positive alignment module improves within-cluster compactness
through a pseudo-label and nearest neighbor structure-driven
contrastive loss. Experimental results on several datasets show
that our method can acquire clustering-friendly representations
with both good properties of inter-cluster separation and within-
cluster compactness, and outperforms the existing state-of-the-art
approaches in clustering performance. Our source code is avail-
able at https://github.com/tweety1028/DCMVC.

Index Terms— Multi-view clustering, deep clustering, repre-
sentation learning, contrastive learning.

I. INTRODUCTION

CLUSTERING is a classic task in unsupervised learning
and serves the purpose of categorizing samples into

different clusters without the aid of label information. Clus-
tering plays a crucial role in various real-world applications
such as data mining [1], [2], [3], [4], image segmenta-
tion [5], [6], and machine learning [7], [8], [9], [10], [11].
With advancements in data acquisition and storage, massive
data collected in real-world scenarios often involve infor-
mation gathered from various perspectives or sensor types,
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commonly termed multi-view data or multi-modal data [12].
Labeling an extensive volume of multi-view data is an
exceedingly time-consuming and labor-intensive undertaking.
Consequently, multi-view clustering (MVC) has emerged as a
hot topic in research and applications.

Traditional MVC methods include kernel-based [13], [14],
[15], subspace learning [16], [17], [18], [19], and graph-based
approaches [20], [21], [22]. Kernel-based methods employ ker-
nel techniques to handle the data with nonlinear relationships,
which commonly map samples into a higher-dimensional
space to facilitate linear clustering operations in that space.
Subspace learning methods generally transform data into a
low-dimensional subspace and try to capture shared subspace
information across various views. Graph-based methods seek
to learn a consensus graph or several view-specific graphs that
reflect the intrinsic similarity relationships among samples and
then calculate the clustering results according to the graph
partition theory. Although traditional MVC methods have
shown impressive effectiveness and generally have meaningful
learning models, the poor feature extraction ability limits their
performance. In addition, many traditional MVC methods,
especially graph-based methods, generally have high compu-
tational complexities, thereby restricting their applicability in
certain scenarios.

Given the powerful capabilities of deep learning in non-
linear transformations and high-dimensional data processing,
researchers have proposed a succession of deep MVC meth-
ods [23], [24], [25], [26], [27]. The existing deep MVC
methods can be simply categorized into two types: non-
contrastive [28], [29], [30] and contrastive-based [24], [31],
[32] approaches. Non-contrastive methods tend to extract
shared information from different views, fostering stronger
consistency in sample representations through holistic learn-
ing. Contrastive-based methods, by introducing contrastive
loss or frameworks, encourage samples of positive pairs to be
closer in the embedding space and push samples of negative
pairs farther away. This emphasizes the discriminative degree
of the learned representation in the embedding space.

Although notable advancements have been made by cur-
rent MVC methods over the past decade, their performance
is still limited owing to the following issues: Some meth-
ods excessively emphasize shared information from different
views. They overlook the necessity of enlarging the dif-
ferences between samples in different clusters and bringing
samples in the same cluster closer together. Because of these
issues, these methods cannot achieve optimal discriminative
representations with a clustering-friendly structure. Although
existing contrastive-based methods generally outperform non-
contrastive methods, they still have limitations. Specifically,
they often overlook the importance of maintaining inter-cluster
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Fig. 1. A representative example showcasing our motivation.

separation and within-cluster compactness. Moreover, these
methods generally introduce false-negative pairs, which neg-
atively impact clustering performance. For example, they
typically consider representations of different views of the
same sample as positive pairs, while treating all other rep-
resentations as negative pairs, which is overly arbitrary since
this treatment ignores the within-cluster relationship.

To address the aforementioned issues, we propose a new
Dual Contrastive learning-based deep Multi-View Clustering
network (DCMVC) in this paper. Our motivation is derived
from the insights illustrated in Fig. 1. As illustrated in
Fig. 1a, data points in raw feature space are difficult to
categorize. By introducing contrastive learning, the distribution
of data points will exhibit clear discriminative characteristics,
as shown in Fig. 1b. However, different clusters cannot be
completely separated and are still coupled with each other to
some extent. Simultaneously, samples in the same cluster are
dispersed, indicating relatively low compactness. To solve this
issue, in our work, as shown in Fig. 1c, we try to design
a new contrastive learning module that can simultaneously
push different clusters away and pull samples in the same
cluster together, resulting in well-separated inter-cluster and
compacted within-cluster structure as shown in Fig. 1d.

Based on the above motivation, we design the DCMVC
network by integrating four major modules as shown in
Fig. 2: view-specific autoencoders, adaptive feature fusion
module, dynamic cluster diffusion module, and reliable
neighbor-guided positive alignment module. View-specific
autoencoders extract sufficient high-level features from each
view. The adaptive feature fusion module is introduced to
harness the complementary information from multiple views
and produce the consensus representation to obtain a unique
clustering result for data. To push different clusters far away,
a dynamic cluster diffusion module is added, which treats

different clusters as negative pairs and introduces a cluster
center-based contrastive loss. To learn more reliable and
compacted representations in each cluster, we further intro-
duce the reliable neighbor-guided positive alignment module,
which aims at eliminating the negative influence caused by
false-negative pairs and learning a high discriminative repre-
sentation with the clustering-friendly structure to enhance the
performance. Compared with the existing works, our work has
the following contributions:

• We propose an end-to-end deep multi-view cluster-
ing method, termed DCMVC, which introduces the
dual contrastive mechanism to learn the discriminative
representation with clustering-friendly structure like well-
separated clusters and compacted within-cluster.

• We propose a dynamic cluster diffusion module, which
introduces a new cluster-level contrastive loss to align
the clusters’ representation of all views and enlarge the
inter-cluster distribution, thereby forming well-separated
clusters.

• We propose a new reliable neighbor-guided positive align-
ment module and design an instance-level contrastive
loss. It enables the network to obtain a more dis-
criminative representation with compacted within-cluster
structure and separated inter-cluster structure by suffi-
ciently considering the intrinsic nearest neighbor structure
information to guide the network training and eliminate
the negative influence of false-negative pairs.

II. RELATED WORK

In the realm of representation learning-based MVC fam-
ily [33], the existing methods predominantly fall into two cate-
gories: shallow representation learning-based method and deep
representation learning-based method. This section briefly
reviews some representative works of shallow representation
learning-based methods and deep representation learning-
based methods. In addition, we also introduce contrastive
learning, which is widely exploited in many unsupervised
learning works.

A. Contrastive Learning

Contrastive learning is an unsupervised learning method,
which performs instance-wise discrimination using the nor-
malized cross-entropy as information (InfoNCE) loss [34],
[35], [36]. It begins by constructing positive and negative
pairs for each instance, followed by maximizing the similar-
ities among positive pairs and minimizing those among the
negatives in a latent feature subspace. In the construction
of pairs, researchers have developed various methods. For
instance, [37] proposes to augment the data and construct
positive and negative pairs in the mini-batches. The augmented
instances of the same sample constitute positive pairs, while
all other pairings form negative pairs. So far, researchers have
put forth various contrastive learning methods that work effec-
tively without the requirement of negative pairs. For example,
in [38], the loss on negative pairs is replaced by maximizing
the similarity between the predictions of an autoencoder and
a target network.
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Fig. 2. The overall framework of the proposed DCMVC within an Expectation-Maximization framework. The framework includes: (a) View-specific
Autoencoders and Adaptive Feature Fusion Module, which extracts high-level features and fuses them into consensus representations (with loss Lrec);
(b) Dynamic Cluster Diffusion Module, enhancing inter-cluster separation by maximizing the distance between clusters (with loss Ldcd); (c) Reliable
Neighbor-guided Positive Alignment Module, improving within-cluster compactness using a pseudo-label and nearest neighbor structure-driven contrastive
learning (with loss Lrngpa); (d) Clustering-friendly Structure, ensuring well-separated and compact clusters.

Owing to the remarkable success of contrastive learning
in the unsupervised domain, researchers have introduced
it to the clustering field and proposed a variety of con-
trastive learning based deep clustering methods [39], [40],
[41]. For example, [39] establishes positive and negative
pairs through data augmentation. Simultaneously, it optimizes
the instance- and cluster-level contrastive loss to maximize
the similarity of positive pairs and minimize the similar-
ity of negative pairs. Reference [40] introduces prototype
scattering loss and positive sampling alignment module to
address the class collision issue. However, these methods
are all single-view clustering methods and cannot han-
dle multi-view clustering tasks. Reference [41] presents a
superpixel graph contrastive clustering model for hyper-
spectral image clustering. By leveraging contrastive learning
with semantic-invariant augmentations, it enhances super-
pixel representation and significantly improves clustering
accuracy.

B. Shallow Representation Learning-Based Method

The shallow learning-based MVC methods can be further
classified into two main groups: multi-view subspace cluster-
ing and multi-view graph clustering [33]. Generally speaking,
multi-view subspace clustering methods learn a unified sub-
space representation from specific subspaces of all views. For
example, [42] designs an innovative angular-based regulariza-
tion term to achieve multiple views data association consensus.
Reference [19] introduces an innovative tensor low-rank repre-
sentation method specifically designed for spectral clustering
in multi-view settings. This approach effectively captures
and integrates inter- and intra-view relationships within a
unified framework. Different from multi-view subspace clus-
tering, multi-view graph clustering methods try to construct
view-specific graphs for each view and then obtain a shared
graph through regularization terms. For instance, [21] learns
individual view graphs through an iterative cross-diffusion

process and derives the final unified clustering graph by aver-
aging these refined view-related graphs. Reference [43] helps
the learning of each view graph matrix and the coherent graph
matrix in a mutually reinforcing manner, and automatically
weights each view graph matrix to produce the coherent graph
matrix.

Although shallow representation learning-based MVC meth-
ods have demonstrated promising results, they are difficult
to capture complex hierarchical representations present in
high-dimensional data. In addition, owing to the limitations
of shallow methods on feature extraction, these methods
may be ineffective in dealing with the data with nonlinear
relationships.

C. Deep Representation Learning-Based Method

Considering the significant advancements of deep learning
in unsupervised domains, many researchers devoted them-
selves to deep representation learning-based MVC. These
studies can be simply grouped into two categories: non-
contrastive and contrastive-based approaches. Non-contrastive
methods typically directly optimize objective loss related
to clustering tasks during training, aiming to explore con-
sistency and complementary information of the multi-view
data [44], [45]. For instance, driven by the observation that
multi-view data possesses a shared latent embedding, [28]
proposes the learning of a generative latent representation
that adheres to a mixture of Gaussian distributions. Refer-
ence [29] disentangles the view-common and view-peculiar
representations by controlling the mutual information to mine
common discrete cluster information. Reference [46] enforces
a diagonal constraint on the consensus representation obtained
through multiple autoencoders with a self-expression learn-
ing scheme. Although non-contrastive methods have obtained
notable achievements, they generally cannot obtain suffi-
ciently discriminative representations with clustering-friendly
structure.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 14,2025 at 02:46:05 UTC from IEEE Xplore.  Restrictions apply. 



4756 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE I
DETAILS INFORMATION OF NOTATIONS

In recent years, as a hot topic in unsupervised learning,
contrastive learning is also introduced to the deep multi-view
clustering fields. For example, [47] proposes a view-wise
contrastive learning method to address the challenging issue of
the learned representation with only fewer separable clusters.
It treats views of the same sample as positive pairs and views
of different samples as negative pairs. Reference [32] intro-
duces feature-level alignment-oriented, commonality-oriented,
and cluster-level consistency-oriented contrastive learning
modules to compare representations at different feature-level
and cluster-level. Reference [48] improves cluster assignment
accuracy by constraining the clustering allocations across
multiple views. The method can capture consistent semantic
label information of multiple views. These contrastive-based
MVC methods generally obtain better performance than the
previous methods without contrastive learning. However, the
existing contrastive learning-based methods still suffer from
the issue of false-negative pairs, resulting in unreliable clus-
tering performance.

III. THE PROPOSED METHOD

Task Statement: Let X = {Xv
∈ RN×dv }

V
v=1 be a multi-

view dataset, where V stands for the total number of views,
N denotes the number of samples. d1, d2, . . . , and dV denote
the feature dimensions of the corresponding views. The target
of MVC is to precisely group these N samples into K disjoint
clusters. The Table I provides detailed information about the
variables used in our model, including their descriptions and
dimensions.

For the above MVC task, we propose a new deep MVC
network, called DCMVC. As stated in the introduction and
shown in Fig. 2, the proposed network is composed of four
major modules. In this section, we will present the four
modules, overall objective loss, and training strategy in detail.

A. View-Specific Autoencoders and Adaptive Feature Fusion
Module

For unsupervised MVC tasks, it is crucial to extract the
discriminative features from the original multi-view data with
diverse feature dimensions and learn the consensus represen-
tation shared by all views to obtain a unique clustering result.
In view of the good property of deep neural networks like
autoencoder in unsupervised feature extraction and considering
the diverse view types with different feature dimensions,
we introduce several view-specific autoencoders, in which
the encoder modules can extract the deep-level features of
all views and the decoder modules enable the extracted
view-specific features to preserve more information of their
original data of all views, respectively. Specifically, let f v

and gv be the encoder and decoder for the v-th view. θv and
φv represent the parameters of the encoder and the decoder
of the v-th view. The latent informative representation of the
i-th sample extracted by the encoder of the v-th view can be
formulated as:

zv
i = f v(xv

i , θ
v), (1)

where zv
i ∈ Rd is the extracted representation of xv

i . d denotes
the dimension of the latent representation. Taking the v-th view
as an example, the decoder process can be formulated as:

x̂v
i = gv(zv

i , φ
v) = gv( f v(xv

i , θ
v), φv), (2)

where x̂v
i denotes the reconstructed data of the v-th view

decoder for the i-th sample.
Similar to the conventional autoencoder, the reconstruction

loss is introduced for all views to compel their autoencoders
to capture the informative deep-level features and reduce the
information loss. The reconstruction loss of all views can be
formulated as follows:

Lrec =

V∑
v=1

N∑
i=1

∥∥∥xv
i − x̂v

i

∥∥∥2

2
. (3)

For an input sample with multiple views, these view-specific
encoders will generate several view-specific latent represen-
tations with many complementary information. To obtain a
consensus and good clustering result, two popular techniques
will be adopted to obtain a consensus latent representation:
concatenation and fusion. Inspired by the motivation that
the fusion approach can simultaneously consider consistency
and complementarity of multi-view data [49], we choose the
fusion approach to obtain the consensus latent representation.
Specifically, considering that different views may contain
varying amounts of information, we introduce an adaptive
representation fusion strategy as follows:

zi =

V∑
v=1

wv zv
i =

V∑
v=1

eav∑V
l=1 eal

zv
i . (4)

where zi denotes the consensus representation of the i-th sam-
ple. The weight wv is adaptively determined by the trainable
parameter av for each view. These parameters are used in a
softmax function to calculate the normalized weights: wv =∑V

v=1
eav∑V
l=1 eal

. w1, . . . ,wV can be regarded as the normalized
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weights to these view-specific representations, which satisfy
wv > 0 and

∑V
v=1 wv = 1.

The introduction of these learnable weights enables a com-
prehensive and adaptive adjustment of each view’s influence
on the consensus feature space and the clustering result.
This guarantees that the model can dynamically explore the
distinct characteristics of multi-view data, providing a more
comprehensive and adaptive representation.

B. Dynamic Cluster Diffusion Module

For unsupervised clustering tasks, it is expected to obtain
distinct and well-separated clusters. To this end, inspired
by the remarkable success of contrastive learning [40],
we introduce a new dynamic cluster diffusion module (DCD),
which seeks to simultaneously emphasize cluster cohesion
across multiple views and promote inter-cluster separation in
the latent representation space. Specifically, assuming that the
multi-view dataset consists of K categories/clusters or the
data is expected to be grouped into K clusters, µi and µv

i
denote the representation of the i-th cluster in the consensus
representation space and the v-th view-specific representation
space, respectively. We design the following cluster-driven
contrastive loss, inspired by the decoupled contrastive learning
approach outlined in [50]:

Ldcd =
1
K

V∑
v=1

K∑
k=1

− log
exp

(
s(µk ,µ

v
k)

τC

)
exp

(
s(µk ,µ

v
k)

τC

)
+

K∑
j=1
j ̸=k

exp
(

s
(
µk ,µ j

)
τC

)

≈
1
K

V∑
v=1

K∑
k=1

−
s
(
µk, µ

v
k
)

τC︸ ︷︷ ︸
cluster cohesion

+
1
K

V∑
v=1

K∑
k=1

log
K∑

j=1
j ̸=k

exp

(
s
(
µk, µ j

)
τC

)
︸ ︷︷ ︸

cluster separation

, (5)

where τC serves as the temperature parameter. s (·, ·) denotes
the similarity function, which is defined as s(µk, µ j ) =

µT
k µ j

∥µk∥∥µ j ∥
. The similarity function measures the cosine sim-

ilarity between clusters’ representations. The temperature
parameter controls the sharpness of the distribution. The loss
function Ldcd enforces cluster cohesion (pulls positive pairs
closer) and separation (pushes negative pairs apart). In our
method, for a mini-batch B of the multi-view data, clusters’
representations µk and µv

k are updated as follows:

µk =

∑
zi ∈B p(k|zi )zi∥∥∥∑zi ∈B p(k|zi )zi

∥∥∥
2

, (6)

µv
k =

∑
zv

i ∈B p(k|zi )zv
i∥∥∥∑zv

i ∈B p(k|zi )zv
i

∥∥∥
2

. (7)

Fig. 3. Illustration of the proposed key techniques in DCMVC.

where p(k|zi ) represents the hard assignment of the i-th
sample belonging to the k-th cluster. During training, obtain-
ing accurate p(k|zi ) is crucial for optimizing the proposed
model. Hence, we adopt an Expectation-Maximization (EM)
framework that alternately utilizes K -means clustering at every
epoch in the E-step. Subsequently, in the M-step, we minimize
the objective loss to optimize the model. This process will be
detailed later.

Concretely, as shown in Eq. (5), the cluster-driven con-
trastive loss can be roughly decomposed into two major com-
ponents: cluster cohesion and cluster separation. As shown in
Fig. 3a, on one hand, the cluster cohesion aims to align the
clusters across multiple views, which can promote the consis-
tency across multiple views. On the other hand, minimizing
the cluster separation term encourages different clusters to be
pushed away in the latent feature space, which yields distinct
and well-separated cluster structure.

C. Reliable Neighbor-Guided Positive Alignment Module

As previously highlighted, negative pairs play a pivotal role
in contrastive-based MVC methods, facilitating the acquisition
of discriminative representations. However, the conventional
contrastive learning approaches only treat multiple views of
the same sample as positive pairs while regarding all of
the other views as negative pairs no matter whether these
views belong to the same class. This is obviously unreason-
able because it goes against the expectation of within-cluster
compactness. To solve this issue and obtain a compacted
structure for the within-cluster data as shown in Fig. 3b,
we propose a reliable neighbor-guided positive alignment
(RNGPA) module. Different from the existing contrastive
learning methods, RNGPA constructs the positive and negative
pairs by sufficiently taking into account the nearest neighbor
and pseudo-clustering-label information.

Intuitively, samples that are close to each other in the origi-
nal feature space are more likely to belong to the same cluster.
This neighbor information has been validated to be useful in
enhancing the clustering performance [24]. Therefore, we will
introduce the neighbor information of all views to guide the
model training. For the v-th view, the nearest-neighbor graph
Gv is constructed as follows:

Gv
i, j =

{
1 (xv

i ∈ ϕ(xv
j )) or (xv

j ∈ ϕ(xv
i ))

0 otherwise,
(8)

where ϕ(xv
i ) denotes the nearest instance set to xv

i .
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After obtaining the nearest neighbors for each sample,
a straightforward way is to consider all neighbors of a sample
as positive pairs. However, such an intuitive approach may
introduce noisy information because some selected nearest
neighbors may not genuinely belong to the same cluster as the
reference sample. To avoid the negative influence of incorrect
neighbor pair information, we rely on the hard assignment
of clusters obtained in the previous subsection to ensure
the reliability of those positive pairs. Specifically, in our
model, a positive pair is constructed only when two samples
are nearest neighbors and are assigned to the same cluster.
Conversely, a negative pair is constructed when two samples
are neither nearest neighbors nor come from the same cluster.

According to the above analysis, we first perform K -means
on the consensus representation Z to obtain an indicator matrix
Y ∈ RN×N to indicate whether two samples are assigned to
the same cluster. If the i-th and j-th samples are assigned to
the same cluster, Y i, j = 1; otherwise, Y i, j = 0. Then, taking a
mini-batch data B with M samples as an example, to mitigate
the issue of false-negative pairs, we propose to construct the
reliable positive pairs set Pv

i and negative pairs set N v
i as

follows:

Pv
i = { j | Gv

i, j = 1, Y i, j = 1, ∀ j ∈ [1, M]}, (9)

N v
i = { j | Gv

i, j = 0, Y i, j = 0, ∀ j ∈ [1, M]}. (10)

Based on the constructed reliable positive and negative
pairs, we design the following contrastive loss for the RNGPA
module (11), as shown at the bottom of the next page,
where τI serves as the temperature parameter. s (·, ·) is also
a similarity function and calculated as s(zi , z j ) =

zT
i z j

∥zk∥∥z j ∥
.

From Eq. (11), we can find that the constrastive loss of the
RNGPA module can also be divided into two key components:
instance cohesion and instance separation. The numerator
represents the similarity between an instance and its positive
pairs, encouraging closer representations. The denominator
includes similarities with negative pairs, aiding in distinguish-
ing instances. As shown in Fig. 3b, the instance cohesion term
focuses on aligning positive pairs related to the consensus
representation and view-specific representation. The instance
separation term is designed to push the negative pairs of the
consensus representation and the view-specific representation
away.

D. Two-Stage Training Paradigm and Overall Objective Loss

We train our unsupervised deep multi-view clustering net-
work in warm-up and fine-tuning stages. In the warm-up stage,
we focus on training the view-specific autoencoders. In the
fine-tuning stage, we aim to optimize the global network with
the initialized parameters of these trained deep autoencoders.

1) Warm-up Training Stage: For our proposed network,
each view is equipped with a view-specific autoencoder. Using
randomly initialized parameters for these deep autoencoders
may lead the model to converge to local optima during
training. Therefore, we first train these deep autoencoders to
obtain better parameters

{
θv
}V
v=1 and {φv

}
V
v=1 to expedite

the convergence of the model towards the optimal solution.
Specifically, in the warm-up stage, the overall objective loss

Algorithm 1 Training Algorithm

is to minimize the reconstruction loss Eq. (3) between the
original sample xv

i and its reconstructed counterpart x̂v
i as

follows:

Lwu = Lrec. (12)

2) Fine-Tuning Stage: In the fine-tuning stage, we exploit
EM optimization strategy to train the network.

E-step: The purpose of this step is to estimate p(k|zi )

for the proposed DCD and RNGPA modules. Specifically,
we perform the K -means algorithm on the obtained consensus
representation to obtain a unique clustering result of the multi-
view data.

M-step: In this step, we take into account the losses of all
modules and optimize the following overall objective loss:

Lft = Lrec + αLdcd + βLrngpa, (13)

where α and β are two hyper-parameters that control the
balance among the three loss components.

The training procedure of the proposed method is outlined
in Algorithm 1. The final clustering results are obtained by
performing K -means clustering on the consensus representa-
tion Z produced by the adaptive feature fusion module.

IV. EXPERIMENTS

A. Datasets

The experiments are performed on the following publicly
available datasets. Their detailed information is provided in
Table II.

• SentencesNYU v2 (RGB-D): RGB-D [51] includes indoor
scene images with descriptions. We use a ResNet-50
network pre-trained on ImageNet dataset to extract the
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TABLE II
DESCRIPTIONS OF THE UTILIZED BENCHMARK DATASETS

features from images as the first view. The second view
is generated by a doc2vec model pre-trained on the
Wikipedia dataset from the embedded image descriptions.

• Cora: Cora [52] comprises 2,708 documents categorized
into seven classes. Four kinds of features are selected as
four views, i.e., content, inbound, outbound, and cites.

• Columbia Consumer Video (CCV): The video dataset
CCV [53] containing 6,773 samples distributed across
20 classes, offers manually crafted Bag-of-Words repre-
sentations as three views, such as STIP, SIFT, and MFCC.

• Hdigit: Hdigit [33] is derived from the MNIST and USPS
handwritten digits datasets, comprising 10,000 samples
and two distinct views.

• ALOI: ALOI [54] is a subset of ALOI-1k, where color
similarity, Haralick, HSV, and RGB features are extracted
from each image as its four view representations.

• Digit-Product: Similar to Hdigit, Digit-Product [29]
sourced from both the MNIST and Fashion Handwritten
digits datasets, encompasses 30,000 samples and two
views.

B. Compared Methods and Evaluation Measures

We compare DCMVC against the following traditional and
deep multi-view clustering methods.

• K -means: K -means [55], a classic clustering method,
partitions data by minimizing distances between points
and cluster centroids.

• BMVC: Binary Multi-View Clustering (BMVC) [56]
incorporates two essential elements: the acquisition of a

compacted collaborative discrete representation and the
learning of a binary clustering structure.

• LMVSC: Large-scale Multi-View Subspace Clustering
(LMVSC) constructs a smaller graph for each view
between raw data points and anchors, followed by an
integration mechanism to merge these graphs.

• FPMVS-CAG: Fast Parameter-free Multi-view Subspace
Clustering with Consensus Anchor Guidance (FPMVS-
CAG) [57] integrates anchor selection and subsequent
subspace graph construction into a unified optimization
process.

• EAMC: End-to-end Adversarial-attention network for
Multi-modal Clustering (EAMC) [58] leverages adver-
sarial learning to align latent feature distributions and
employs attention mechanisms to quantify the importance
of modalities.

• SiMVC: Simple Multi-view Clustering (SiMVC) [47]
exhibits competitive or superior performance by pri-
oritizing informative views through a learned linear
combination mechanism.

• DSMVC: Deep Safe Multi-view Clustering (DSMVC)
[59] automatically selects informative features, mitigating
the risk of performance degradation caused by increasing
views, and ensuring improved clustering performance in
diverse scenarios.

• ProPos: Prototype scattering and Positive sampling
(ProPos) [40] maximizes distances between prototypes
to enhance representation uniformity and aligns aug-
mented views with sampled neighbors for within-cluster
compactness.

• CoMVC: Contrastive Multi-view Clustering (CoMVC)
[47] combines SiMVC with a selective contrastive align-
ment module. It can effectively leverage alignment
advantages and maintain the prioritization of informative
views.

• MFLVC: Multi-level feature learning for contrastive
multi-view clustering (MFLVC) [31] effectively balances
the reconstruction of view-private information and the
learning of common semantics.

Lrngpa =
1
M

V∑
v=1

M∑
i=1

− log
exp

( ∑
j∈Pv

i

s
(

zi , zv
j

)
τI

)
∑

j∈N v
i

exp

 s
(

zi , zv
j

)
τI

+
∑

j∈N v
i

exp

 s
(

zv
i , zv

j

)
τI



=
1
M

V∑
v=1

M∑
i=1

−

∑
j∈Pv

i

s
(

zi , zv
j

)
τI︸ ︷︷ ︸

instance cohesion

+
1
M

V∑
v=1

M∑
i=1

log

∑
j∈N v

i

exp

 s
(

zi , zv
j

)
τI

+

∑
j∈N v

i

exp

 s
(

zv
i , zv

j

)
τI


︸ ︷︷ ︸

instance separation

, (11)

Authorized licensed use limited to: Tsinghua University. Downloaded on March 14,2025 at 02:46:05 UTC from IEEE Xplore.  Restrictions apply. 



4760 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE III
CLUSTERING RESULTS ON RGB-D, CORA, AND CCV DATASETS

• GCFAgg: Global and Cross-view Feature Aggregation
(GCFAgg) [60] aligns consensus and view-specific repre-
sentations through a structure-guided contrastive learning
module.

K -means, as a single-view clustering method, its input is the
concatenated features of all views. Among the other methods,
BMVC, LMVSC, and FPMVS-CAG belong to shallow rep-
resentation learning-based methods, while EAMC, DSMVC,
SiMVC, CoMVC, MFLVC, and GCFAgg are deep represen-
tation learning-based methods. Since ProPos is a single-view
clustering method, we treat the second view in the multi-view
datasets as an augmentation of the first view, applying the same
network architecture and training strategy as our method.

The selected quantitative metrics include unsupervised clus-
tering accuracy (ACC) [61], normalized mutual information
(NMI) [62], Purity (PUR) [63], adjusted rand index (ARI)
[64], and F-score [65]. For these evaluation metrics, higher
values indicate better performance.

C. Implementation Details

Since all views are represented by vector-based feature
type in the above datasets, we adopt the fully connected
(Fc) layers with general settings as the main layers in
the proposed deep network. Specifically, for each view,
we simply set the architecture of the encoder network as:
Input−Fc500−Fc500−Fc2000−Fc256. The decoder has mirrored
architecture as its corresponding encoder for each view. More-
over, the subsequent configurations are consistent across all
experimental datasets. ReLU [66] serves as the activation
function, and Adam [67] is selected as the optimizer with
a default learning rate of 0.0001. The mini-batch size is
256. In the warm-up stage, all view-specific autoencoders are
trained for 200 epochs. In the fine-tuning stage, the network is
trained with 100 epochs on each dataset, and the temperature
parameters τC and τI are fixed at 0.5. For datasets with fewer
than 10,000 samples, we construct the nearest neighbor graph
across the entire dataset in each view, selecting the number
of nearest neighbors from the set {3, 5, 7, 10}. To enhance
the computational efficiency on the datasets with more than
10,000 samples, we construct the nearest neighbor graph
on the mini-batch data and select the number of nearest
neighbors from the set {2, 3, 4, 5}. Additionally, for the two

hyper-parameters α and β, their values are chosen from
{1, 0.1, 0.01, 0.001, 0.0001, 0.00001}.

The experiments of DCMVC are conducted on an Ubuntu
22.04 platform. The hardware configuration includes an
NVIDIA 3090 graphics processing unit (GPU), an Intel
i7-11700 CPU, and 32 GB of RAM. To ensure an equitable
comparison, the reported experimental results of the compared
methods are obtained by implementing the open-source codes
with corresponding suggested settings.

D. Experimental Results

The experimental results are outlined in Tables III, IV, and
Fig. 4. The optimal and suboptimal results are highlighted in
bold and underlined, respectively. It is noticeable that:

• In most cases, our DCMVC consistently outperforms
other models in terms of quantitative metrics across all
datasets. Simultaneously, DCMVC obtains a substantial
performance improvement over the compared methods on
RGB-D, CCV, Cora, and ALOI datasets. Compared to the
suboptimal results in terms of ACC, it achieves enhance-
ments of about 5.18%, 19.38%, 6.27%, and 17.69%,
respectively. Compared with the other methods, the better
performance of DCMVC indicates its superior capability
in capturing and utilizing complementary information
from different views.

• In general, single-view clustering (i.e., K -means) exhibits
inferior performance compared to multi-view methods.
However, many compared MVC methods show limited
performance, particularly on RGB-D and Cora datasets.
For example, EAMC, SiMVC, and DSMVC perform
worse than K -means methods on these datasets. This
situation can be attributed to the fact that many MVC
methods fail to extract discriminative representations
from multiple views, thereby compromising the cluster-
ing performance. This observation suggests that simply
having multiple views is not sufficient; the key lies in
effectively integrating and utilizing the multi-view infor-
mation. Our method employs dual contrast mechanisms,
enabling the extraction of discriminative features from
multiple views.

• DCMVC outperforms those contrastive-based methods,
e.g., CoMVC, MFLVC, and GCFAgg. This demonstrates
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TABLE IV
CLUSTERING RESULTS ON HDIGIT, ALOI, AND DIGIT-PRODUCT DATASETS

Fig. 4. F-score performance across all datasets.

that the dual contrast mechanism introduced in our
method is beneficial to obtain more discriminative rep-
resentations. In addition, a dynamic cluster diffusion
module can produce distinct and well-separated clusters.
At the instance-level, the reliable neighbor-guided posi-
tive alignment module can alleviate the negative impact
of false-negative pairs and enhance the within-cluster
compactness by introducing both the nearest neigh-
bor information and pseudo-labels. By integrating these
meaningful modules into a global optimization network,
a discriminative representation with a clustering-friendly
structure can be learned, and thus a better clustering per-
formance is obtained. Compared to ProPos, our method
effectively handles multi-view data, leading to superior
performance across all the multi-view datasets. This
comprehensive approach ensures that our method not
only leverages the strengths of multiple views but also
effectively addresses the issue of false-negative pairs,
leading to more robust and reliable clustering outcomes.

E. Ablation Study

In this section, we conduct detailed ablation studies to gain
deeper insights into the designed submodules for multi-view
clustering. The ablation results are shown in Table V.

1) Effect of Warm-up Stage: We compare the cluster-
ing performance of DCMVC with its counterpart without
the warm-up stage, referred to as DCMVC w/o warm-up.

As shown in Table V, DCMVC w/o warm-up performs worse
than DCMVC in terms of all evaluation metrics across three
datasets. In particular, compared to DCMVC, the performance
of DCMVC w/o warm-up declines by 11% and 8.93% in
terms of ACC and PUR on the CCV dataset, respectively. This
underscores the vital role of the warm-up stage in initializing
parameters.

2) Effect of Adaptive Feature Fusion: To assess the effec-
tiveness of the adaptive feature fusion approach introduced in
our network, we conduct experiments to compare DCMVC
and its degraded network that uses a simple average fusion,
referred to as DCMVC w/o AFF. In other words, for DCMVC
w/o AFF, we assign equal weights to each view. As depicted in
Table V, the clustering performance of DCMVC slightly out-
performs that of DCMVC w/o AFF. From these results, it can
be observed that compared to average fusion, adaptive feature
fusion enables the model to acquire more comprehensive and
adaptive representations.

3) Effect of DCD and RNGPA: Similarly, we conduct
experiments to evaluate the effectiveness of DCD and RNGPA
modules by comparing the proposed method and its degraded
networks without either one of the two modules, termed
DCMVC w/o DCD) and DCMVC w/o RNGPA. From the
experimental results shown in Table V, it can be noted that
the absence of either DCD or RNGPA leads to a decrease in
clustering performance. For example, on the ALOI dataset, the
absence of DCD results in a 5.25% decrease in ACC. On the
CCV dataset, the performance of DCMVC w/o RNGPA is
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TABLE V
ABLATION STUDY FOCUSING ON THE KEY COMPONENTS

Fig. 5. Visualization of features in RGB-D for the dual contrastive learning process. The same color indicates features belonging to the same class.

Fig. 6. Visualization of features in CCV for the dual contrastive learning process. The same color indicates features belonging to the same class.

Fig. 7. The ACC values of DCMVC with different α and β combinations
on two representative datasets.

about 15.38% lower than DCMVC in terms of ACC, which
demonstrates that RNGPA module can effectively enhance the
clustering performance of the designed network. Moreover,
we can find that the best performance can be obtained by
combining DCD and RNGPA modules simultaneously. This is
mainly because the tight within-cluster compactness achieved
by RNGPA can further ensure the effectiveness of DCD in
pulling the cluster centers of different clusters together.

F. Model Analysis Based on Visualization

1) Visualization Analysis: To validate that our method can
obtain the discriminative representation with a clustering-
friendly structure, we conduct experiments on RGB-D and

Fig. 8. The NMI values of DCMVC with different α and β combinations
on two representative datasets.

CCV datasets and use the t-SNE [68] method to visualize
the learned consensus representations at some training steps.
As depicted in Figs. 5 and 6, with the iterative training epoch
increases, the clustering structure of the learned consensus
representations gets clearer and clearer, where the distance
interval between different clusters is getting larger and larger,
and the distribution of data within clusters is becoming
increasingly compacted.

2) Hyper-Parameter Analysis: We conduct experiments on
two representative datasets, namely the Cora and ALOI
datasets, to explore the sensitivity of hyper-parameters α,
β, and the number of nearest neighbor samples γ . When
performing sensitivity experiments for a single parameter, all
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Fig. 9. The ACC and NMI values across various γ settings on two
representative datasets.

other parameters are fixed at their optimal values. Figs. 7, 8
and 9 show the clustering performance of the DCMVC method
across various combinations of α, β, and γ in terms of ACC
and NMI. As seen in Figs. 7 and 8, the clustering performance
of the DCMVC method on the Cora dataset exhibits significant
fluctuations with varying combinations of α and β. In contrast,
the clustering results on the ALOI dataset appear relatively
stable. Observing Fig. 9, it becomes apparent that the clus-
tering performance experiences a slight influence with respect
to the number of nearest neighbor samples γ . In summary,
our method exhibits remarkable robustness to hyper-parameter
selections, maintaining consistent good performance across
diverse settings.

V. CONCLUSION

In this paper, we proposed a new Dual Contrastive mech-
anism based deep Multi-View Clustering network (DCMVC).
Compared with the existing MVC methods, DCMVC can learn
clustering-friendly discriminative representations, in which
different clusters are well-separated in the latent representation
space and the data in the same cluster are distributed com-
pactly. To fully consider the specific information of all distinct
views, DCMVC introduces several view-specific auencoders to
extract the view-specific features. Then, DCMVC introduces
an adaptive representation fusion layer to learn the consensus
representation. To ensure the clustering-friendly structure for
the consensus representation, such as well-separated clusters
and within-cluster compactness, two contrastive learning mod-
ules, i.e., DCD and RNGPA, are integrated into the network.
DCD module seeks to maximize inter-cluster distance by
increasing the separation between clusters’ representations in
the consensus feature space. RNGPA module introduces a new
reliable contrastive loss, which can improve the within-cluster
compactness by fully exploring the pseudo-labels and nearest
neighbor information to eliminate false-negative pairs. Exper-
imental results demonstrate the capability of our method to
learn discriminative representations and show that our method
significantly surpasses current state-of-the-art methods in the
multi-view clustering tasks.

In future work, we plan to extend our framework to
address cross-modal matching and retrieval tasks. Another
crucial direction is to develop more effective strategies
for constructing positive and negative sample pairs to
enhance contrastive learning. Furthermore, we will investi-
gate improved clustering-friendly structures that better balance
inter-cluster separation and within-cluster compactness. These
efforts will contribute to the robustness and generalizability of
our DCMVC framework in various applications.
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