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Abstract—Image matting is a fundamental computer vision
task. It is a large-scale optimization problem involving the
selection of pixel pairs from pixel-pair sets of an image. Less
prior, such as the trimaps of images, is required for evolutionary
algorithms (EAs) to solve the image matting problem compared to
deep learning-based methods. However, it is challenging for EAs
to solve the image matting problem efficiently due to the large size
of the decision set. This paper proposes a framework to guide EAs
to search in a microscale subset of the decision set. The subset
is estimated by collecting best-so-far solutions during EAs solve
similar subproblems. Experimental results demonstrated that by
integrating the proposed framework, EAs require fewer FEs to
achieve competitive results compared to their original versions.
Additionally, the results also indicate that the proposed strategy
enhance the performance of EAs in terms of mean squared error
and connectivity metrics compared to other EAs-based methods
in most cases. The contribution of our work is to make EAs
efficient algorithms to solving the image matting problem in
scenarios with weak prior.

Index Terms—Image Matting, microscale-searching, large-
scale optimization.

I. INTRODUCTION

IMAGE matting is a fundamental task for computer vision,
playing a critical role in film editing [1], preprocessing for

remote sensing [2] and video postprocessing [3]. It involves
generating an alpha matte for an image, where the alpha
values, ranging from 0 to 1, represent the opacity of foreground
objects. This task can be modeled as a large-scale combina-
torial optimization problem, which is about selecting pixel
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pairs for user-specified pixels. Several types of evolutionary
algorithms (EAs), including differential evolution [4], particle
swarm evolution [5], [6], multi-objective evolution [7], and
competitive swarm optimization [8] have been utilized to solve
the image matting problem.

Deep learning-based methods, which utilize deep models
like deep neural networks, have recently become the dominant
approach to solving image matting [9], [10], while EAs have
demonstrated the potential to generate high-quality alpha mat-
tes [4], [7], [11]. Prior is crucial for both EAs-based methods
and deep learning-based methods. Most deep learning-based
methods use a large amount of finely annotated alpha mattes
and trimaps. A finely annotated alpha matte includes labeling
foreground pixels with an alpha value of 1, background pixels
with an alpha value of 0, and pixels with alpha values between
0 and 1. In contrast, EAs-based methods primarily rely on
trimaps as prior. In trimap, users only need to coarsely label
unknown pixels for which alpha values need to be predicted,
as well as known foreground and background pixels as shown
in Fig. 1. Compared to finely annotated alpha mattes, the prior
in trimaps is weaker. Finely annotated alpha mattes are vital
for enhancing the generalization performance of deep models.
In the most popular public dataset [12], the number of pixels
with alpha values between 0 and 1 is at least on the order of
103. However, it is both time-consuming and labor-intensive to
obtain such detailed annotations. Therefore, it is necessary to
design efficient EAs-based methods to predict accurate alpha
mattes when only weak prior like trimaps is available.

(a) Image (b) Annotated Alpha
Matte

(c) Trimap

Fig. 1. Comparison between an annotated alpha matte and a trimap. In
both trimap and alpha matte, black pixels denote the background, and white
pixels indicate the foreground. In the trimap, gray pixels are user-specified
and represent represent pixels where the alpha values are to be predicted. In
the alpha matte, pixels with alpha values ranging from 0 to 1 are distributed
near the foreground boundaries

Optimization-based methods can be categorized into
propagation-based [13]–[15], sampling-based [16]–[18], and
EAs-based methods [6], [7], [11]. All these approaches re-
quire only weak prior to predict alpha mattes. Propagation-
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based methods model the image matting problem as a linear
system, considering relations between local [13] or non-local
pixels [14], [15]. These methods aim to solve the problem
in closed-form to obtain accurate alpha mattes, assuming a
linear relationship between pixel colors or features. However,
the accuracy of obtained alpha mattes may decrease when this
linear relationship is not met, which is common in natural
images.

Different from the propagation-based methods, the
sampling-based methods focus on finding optimal pixel pairs
to compute accurate alpha mattes for unknown pixels. These
methods typically select a subset of pixel pairs that are
expected to contain optimal pixel pairs for one or multiple
unknown pixels. The subset selection process can be modeled
as a single objective problem, such as a sparse subset selection
problem [17]. A small number of pixel sets of foreground
and background are selected by measuring the KL-divergence
between the feature vectors of the unknown and known pixel
sets. The subset selection process can be also modeled as a
multi-objective optimization problem [7], [18] to alleviate the
influence of the conflict among different sampling criteria.
Brute-force methods are employed to determine the best pixel
pair in the subset [17], [18] because the size of the subsets is
small. Additionally, a region-based random walk algorithm
is proposed to solve the image matting problem when all
known foreground and background pixels on the boundary
of the unknown region are included in the subset [16].
Furthermore, the subset of pixel pairs can serve as the basis
for establishing surrogate models for the evaluation of pixel
pairs [19]. However, the main limitation of sampling-based
methods is the rapid decline in the the accuracy of alpha
mattes when the pixel pairs in the subset have large difference
from optimal pixel pairs [18].

In EAs-based methods, the image matting problem is mod-
eled as a large-scale optimization problem about selecting
optimal pixel pairs for unknown pixels. The dimensionality of
the problem is twice the number of unknown pixels which are
decided by trimaps. As indicated in the CEC’2010 competition
on large-scale global optimization [20], the dimensionality
of a large-scale optimization problem is more than 103. For
instance, the number of unknown pixels of a 480×800 image
in the benchmark dataset [12] is approximately 104. Therefore,
the image matting problem is a large-scale optimization prob-
lem. Cooperation co-evolutionary framework is used to solve
the problem [4], [7], [8] as it has been proven to be effective in
solving solve large-scale optimization problems [21]–[23]. The
problem is decomposed into multiple subproblems under the
framework. The existing EAs-based methods concentrate on
the allocation of fitness evaluations (FEs) among subproblems
to improve the efficiency of EAs. The allocation is mainly
guided by the similarity among subproblems [4], [8], [11].
The convergence speed of EAs is also measured to control
the allocation of FEs [5]. Nevertheless, the enhancement in the
efficiency of EAs through the allocation of FEs is constrained
because some solutions found for subproblems have limited
contribution to the search for the optimal solution of the whole
problem.

During the process of optimizing the image matting prob-

lem, some solutions are evaluated repetitively across different
subproblems. Let V denote the set that comprises solutions
repetitively evaluated for multiple subproblems. Solutions in
V are evaluated repetitively by EAs for different subproblems,
but their contribution to the optimization of the whole problem
are probably the same or close due to the prevalence of
solutions with the same fitness value for similar subproblems
[7]. The accumulation of repetitive FEs escalates if the num-
ber of similar subproblems are large. The increase in these
repetitive FEs diminishes the probability of finding potential
high quality solutions due to the finite number of available
FEs. Consequently, it is crucial to reduce the number of the
repetitively evaluated solutions in V to improve the efficiency
of EAs.

This paper proposes a framework for EAs to solve the image
matting problem where a microscale subset of the decision set
is estimated for EAs to find the best solutions. The microscale
subset of the decision set is estimated by incorporating the
optimization of similar subproblems. EAs explore the subset to
find the best solutions with a scheme of dynamic allocation of
FEs. The contribution of our work is to make EAs an efficient
approach to solving the image matting problem in weak prior
scenarios.

the optimal solution

solutions found by
other EAs-based

methods

solutions found
by the proposed

method

Fig. 2. Comparison of the process of searching for solutions between EAs
with the proposed method and their original versions. The rectangle is a
decision set. The red and black ellipses denote the subset of the definition
and the subset found by our strategy, respectively

The remainder of this paper is organized as follows. The
mathematical model of image matting is demonstrated in
Section II. The microscale-searching optimization algorithm is
introduced in Section III. A framework based on microscale-
searching for EAs is proposed in Section IV. Empirical results
are presented and discussed in Section V. Section VI concludes
this paper.

II. LARGE-SCALE COMBINATORIAL OPTIMIZATION
MODEL OF IMAGE MATTING

This section introduces the large-scale combinatorial opti-
mization model of image matting. From the perspective of
image matting [24], [25], the color vector Iz of unknown pixel
z can be modeled as a linear combination of a pixel pair, which
can be modeled as

Iz = αzFz + (1− αz)Bz
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where αz ∈ [0, 1] is the alpha value of z. Fz and Bz are vectors
of RGB color of a selected pixel pair. As shown in Fig. 3, the
unknown pixels, the set of foreground and background pixels
are given by a trimap. Given a selected pixel pair, the alpha
value can be calculated by

α̂z =
(Iz −Bz)(Fz −Bz)

||Fz −Bz||2
(1)

where α̂z is the estimated alpha value for z.

Foreground

Unknown

Background
 

Image
Alpha
Matte

Trimap

Fig. 3. Procedure of calculating alpha value for a pixel. The resolution of
image is 497× 800. The image involves 2× 105 foreground pixels, 1× 105

background pixels, and 3× 104 unknown pixels.

If a pixel pair is selected for z, the difference between the
true alpha value α∗

z and the estimated alpha value α̂z computed
by Eq. (1) is approximated by a handcrafted fitness function gz
because α∗

z is unknown. Let ΩF , ΩB , and ΩU denote the sets
of foreground, background pixels, respectively. The optimal
pixel pairs selection problem can be modeled as

min G(X) =

N∑
i=1

gzi(xF,zi , xB,zi) (2)

s.t. X =

(
xF,z1 , xF,z2 , ..., xF,zN ,
xB,z1 , xB,z2 , ..., xB,zN

)
(3)

xF,zi ∈ ΩF , xB,zi ∈ ΩB (4)
zi ∈ ΩU , i = 1, 2, ..., N (5)
ΩF ∪ ΩB ∪ ΩU = T (6)

where the decision variables xF,zi and xB,zi denote the
indexes of selected foreground and background pixels for the
unknown pixel zi. N denotes the total number of unknown
pixels in ΩU . The range of values for xF,zi and xB,zi are
restricted to the set of positive integers, which characterizes
this problem as a combinatorial optimization problem.

Both the number of foreground pixels and background
pixels of the image in Fig. 3 are about 105 according to the
corresponding trimap. For one unknown pixel, the number of
pixel pairs that can be selected is equal to the size of the
combination of foreground pixel set and background pixel
set. The size of the combination is about 1010. According to
the CEC’2010 competition on large-scale global optimization
[20], image matting is a large-scale optimization problem
because the number of unknown pixels is more than 103. The
image matting problem is still challenging due to the following
reasons: 1) the handcrafted function gzi is non-convex and
multi-peak [7]. 2) The dimensionality of the decision vector
is high and the value ranges of the decision variables are large.

3) The image matting problem is not fully separable because
xF,zi interacts with xB,zi .

EAs have been applied to solve various computer vision
tasks efficiently [26]–[28]. Although some optimization meth-
ods like brute-force [17], [29] and random walk [16] have been
used to solve image matting, it is difficult for them to utilize
similarity of subproblems to improve the solving efficiency
due to the large size of decision sets. The population-based
characteristic provides advantages for EAs to solve large-scale
optimization problems [21], [30], [31]. However, the efficiency
of EAs in solving image matting is influenced by repetitive
FEs.

III. MICROSCALE VALID DECISION SUBSET FOR
LARGE-SCALE OPTIMIZATION PROBLEM OF IMAGE

MATTING

This section presents a strategy to estimate a microscale
subset of the decision set where the number of repetitively
evaluated solutions is reduced for EAs. We assume that FEs
can be reduced from the perspective of subsets of the decision
set. The definition of valid decision subsets is introduced based
on the assumption. A strategy is proposed to estimate valid
decision subsets from disjoint subsets of pixel pairs based on
the definition. Finally, an analysis is presented to show that
the valid decision subset found by the proposed strategy is a
microscale subset of the decision set.

A. Assumption of Microscale Searching

This subsection presents an assumption about the reduction
of FEs from the perspective of subsets of the decision set.
Let Ω = ΩF × ΩB denote a set of pixel pairs. The Cartesian
product of N sets Ω is the decision set D of the optimal pixel
pairs selection problem.

Definition 1 (decision subset): A decision subset V is a
subset of decision set D that consists of feasible solutions
found by algorithms.

The optimal pixel pairs selection problem can be decom-
posed into 1 ≤ K ≤ N subproblems since the objective
function (Eq. (2)) is the sum of N function values. If K = N ,
the decision set of each subproblem is Ω. Let Vk ⊆ Ω and
Vz ⊆ Ω denote decision subsets of the subproblem k and the
subproblem z respectively. If the pixel k and the pixel z are
similar, the intersection of Vk and Vz could cause repetitive
FEs because solutions that have the same value of fitness
functions for similar pixels widely exist in the decision set [7].
As shown in Fig. 4, many pixel pairs are evaluated multiple
times for a given number of FEs.

Let A denote the decision vector of a subproblem. The
decision set DA of A is the Cartesian product of Ns sets Ω.
Ns ≤ N is the number of similar pixels. If Ns = 1, DA = Ω.
If Ns = N , DA = D.

Definition 2 (valid decision subset): Let V denote a decision
subset of DA. V is a valid decision subset if V satisfies the
following conditions,

d(A∗, Â) < d(A∗, A) ∀Â ∈ V, A /∈ V (7)
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Fig. 4. Visualization of the number of repetitive FEs. Brighter pixels are
evaluated more often in (b)

where A∗ is the optimal solution of A. A is any solution out
of V . A function d is used to calculate the difference between
the fitness values of two solutions.

According to Definition 2, although solutions in V may
lead to repetitive FEs, they contribute more significantly to
the overall solution compared to solutions not in V . It means
that the efficiency of EAs can be improved if EAs can be
guided to search in a microscale valid decision subset.

In the following subsections, an algorithm is proposed to
estimate a microscale valid decision subset V . A dynamic
allocation strategy of FEs is proposed based on the similarity
of subproblems to find the best solutions based on V .

B. Strategy for Estimating a Microscale Valid Decision Subset

This subsection proposes a microscale-searching strategy to
estimate a valid decision subset. For the i-th and the k-th
subproblems, their fitness functions satisfy

∃ε ≥ 0, |gi(x̂)− gk(x̂)| ≤ ε (8)

where x̂ is a selected pixel pair. The maximum of ε reflects
how the i-th subproblem is similar to the k-th subproblems.
If ε is equal to 0, the i-th and k-th subproblems can be seen
as the same. Let Vi denote a valid decision subset of the i-th
subproblem. x∗i is the optimal solution of the i-th subproblem.
x is any solution out of Vi. According to Definition 2, the
relations of the fitness values of x̂, x∗i , and x satisfies

|gi(x̂)− gi(x∗i )| < |gi(x)− gi(x∗i )| ∀x̂ ∈ Vi, x /∈ Vi (9)

Let Vk denote a valid decision subset of the k-th subproblem.
Eq. (9) can be rewritten as follows by substituting Eq. (8) into
Eq. (9)

|gk(x̂)− gi(x∗i )| < |gi(x)− gi(x∗i )|+ ε̂ ∀x̂ ∈ Vk, x /∈ Vk
(10)

ε̂ is the maximum of ε that makes Eq. (10) true. (10) indicates
that Vi can be estimated by Vk. If the value of ε̂ is small,
the estimated subset gets close to the true subset because ε̂
represents the similarity of the two subproblems. On the other
hand, a small size of the estimated subset implies that ε̂ is
small because x̂ needs to be close to the optimal solution.
This implies that we can enhance the quality of Vk subject to
the constraint of its scale.

A strategy is proposed to solve the microscale valid decision
subset estimation problem by incorporating the optimization of

similar subproblems (Algorithm 1). The estimation of a valid
decision subset is decomposed into a search for its elements.
During each iteration, the best solution in the population is
added into the estimated valid decision subset. The strong
global search capacity of evolutionary algorithms ensures that
these best solutions are winners against other solutions in
various areas of the decision set. Eq. (10) dictates that these
solutions belong to one of optimal valid decision subsets.
There are de/(Np ·t1)e iterations during the optimization (Line
4). ri controls the generation number of the population in each
iteration. The available generation number is bt1 ·rjc (Line 9).
Let Sj and Hj denote the sets of best-so-far solutions found in
the current iteration and in all previous iterations, respectively.
Let (XSF , YSF ), (XSB , YSB) denote the spatial coordinates
of pixel pairs in Sj . Let (XHF , YHF ), (XHB , YHB) denote
the spatial coordinates of pixel pairs in Hj . rj is updated as
follows

rj = 1− 1

2
(
|XSF ∩XHF |
|XSF |

+
|XHB ∩XSB |
|XSB |

) (11)

If rj is equal to 1, all best-so-far solutions found in this
iteration are better than those in Hj . FEs are encouraged to
allocate to search for better solutions in the next iteration.
Otherwise, FEs are preserved to be used to search in the
estimated valid decision subset as rj is close to 0. The valid
decision subset obtained by the union of all Hj can be used
for all similar subproblems (Line 15).

Algorithm 1 Estimation of Valid Decision Subsets
Input: the number of similar subproblems Ns,the number of FEs

e,the population size Np,t1
Output: the valid decision subset,

rest FEs for each subproblem
1: Initialize population Pi, i = 1, 2, ..., Ns randomly
2: Initialize ri, i = 1, 2, ..., Ns as 1
3: Initialize ai, i = 1, 2, ..., Ns as 0
4: for i = 1 to de/(Np · t1)e do
5: for j = 1 to Ns do
6: Sj ← ∅
7: XF , YF , XB , YB ← ∅
8: aj ← aj + (1− rj) ·Np · t1
9: Obtain solutions s with the best fitness values from each

generation while EAs update the population using bNp · t1 ·
rjc fitness evaluations.

10: Sj ← Sj ∪ {s}
11: Update rj by Eq. (11)
12: Hj ← Hj ∪ Sj

13: end for
14: end for
15: V ←

⋃Ns
i=1 Hi

16: return V, a1, a2, ..., aNs

C. Analysis of the Estimated Microscale Valid Decision Subset
This subsection provides an analysis of the size of valid

decision subsets estimated by Algorithm 1. Let Np denote
the population size. e/Np is the maximum number of best-so-
far solutions that EAs can find for a subproblem. The actual
number of best-so-far solutions is equal to the size of Hi. The
size of Hi is smaller than e/Np because the allocation of FEs
is dynamical. The size of Hi satisfies

|Hi| ≤ e/Np (12)
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The size of the valid decision subset for a group of Ns similar
subproblems is

|V| =
Ns∑
i=1

|Hi| ≤ (Ns · e/Np)Ns (13)

The size of the decision set of the optimal pixel pair opti-
mization problem is |Ω|Ns according to Eq. (2). Let εs denote
the ratio of the size of valid decision subsets to that of the
decision set. εs satisfies

εs ≤ (
Ns · e/Np

|Ω|
)Ns (14)

In practice, the number of iterations e/Np and similar sub-
problems are far less than |Ω|. The value of εs will become
much smaller than 1 as the number of pixels Ns increases.
Therefore, the valid decision subset V estimated by Algorithm
1 is microscale. According to Definition (2), solutions in the
valid decision subset are close to the optimal solution. The
rest FEs can be allocated to searching for the best solutions
in V .

IV. FRAMEWORK OF MICROSCALE-SEARCHING
EVOLUTIONARY OPTIMIZATION FOR IMAGE MATTING

This section presents a framework for EAs to solve the
image matting problem based on the concept of microscale-
searching. The flowchart of the framework is shown in Fig.
5. Unknown pixels are first grouped into M clusters by the
agglomerative clustering method [32] based on their features.
These features are represented by a contatenation of the
pixel’s spatial coordinate vector and its RGB color vector.
Microscale valid decision subsets are estimated for each group
by Algorithm 1. Algorithm 2 is proposed to search for
solutions in the estimated microscale valid decision subset.
Finally, an alpha matte is calculated by Eq. (1) with the found
pixel pairs.

A scheme for dynamically assigning FEs to search for the
best solutions in estimated microscale valid decision subsets is
proposed. It is indicated that the allocation of FEs should be
dynamically adjusted according the contribution of stagnant
subpopulations [33]–[35]. The main reason why subpopula-
tions are stagnant is that solutions in V do not satisfy Eq. (7).
Not all subproblems in the same group have similar solutions
because it is difficult to extract robust features to measure
the correlation between the similarity of subproblems and the
similarity of solutions. Let SP denote a set of subproblems
that have solutions similar to those of other subproblems. Let
SP denote a set of subproblems that have no such solutions. A
portion of FEs should be allocated to searching for solutions
out of V for SP because V may not involve solutions that
satisfy Eq. (7) for SP . For SP , the majority of FEs should
be allocated to searching in V .

The correlation between the similarity of subproblems and
the similarity of solutions is calculated by the distance from the

Begin

Cluster subproblems into  groups by
pixel features

Generate offsprings for all
subproblems in the decision set

Select individuals from all offsprings
to estimate  gradually

End

Calculate alpha values

Initialize populations for all subproblems
in the -th group

no yes

a valid decision subset
 has been estimated

Select an index  of subproblems
by roulette wheel. 

Generate offsprings for  in the
decision set 

Generate offsprings for  based on

yes

Fitness evaluations are exhuasted

yes

no

no

Fig. 5. Flowchart of microscale-searching evolutionary optimization for image
matting.

feature vectors of subproblems to the centroid of the feature
vectors. The correlation can be calculated as follows

f =
1

Ns

Ns∑
i=1

fi, wi =
||fi − f ||2∑Ns

j=1 ||fj − f ||2
(15)

W = (w1, w2, ..., wNs) (16)

where fi is the feature vector of i-th subproblem, and the
centroid f is calculated by averaging the feature vectors. Ns is
the number of similar subproblems. An Ns-dimensional vector
W is used to show the correlation among subproblems. wi is
the value of the i-th dimension of the vector. wi is close to
1 for the subproblems that have feature vectors far from the
centroid.

A roulette-wheel selection method is used to decide whether
FEs are allocated to searching in V or not based on W (Line
8). More FEs are allocated to searching out of V for SP
than SP because SP are more likely to be chosen (Lines
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Algorithm 2 Scheme of Allocation of FEs among Different
Subproblems
Input: the numbers of FEs e1, e2, ..., eNs ,the weight vector W ,

the estimated valid decision subset V ,
the population size Np,the decision set D,t2

Output: the indexes of pixel pairs U
1: Initialize populations Pi, Qi, i = 1, 2, ..., Ns by randomly select-

ing solutions in V
2: Initialize xi, i = 1, 2, ..., Ns as two-dimensional zero vectors
3: while ei > 0, i = 1, 2, ..., Ns do
4: for i = 1 to Ns do
5: if ei ≤ 0 then
6: continue
7: end if
8: idx← the index of a subproblem selected by using roulette-

wheel selection based on W
9: if i == idx then

10: Update Pi by searching in D for t2 generations
11: else
12: Update Qi by searching in V for t2 generations
13: end if
14: Obtain the best solution ubest by comparing solutions in Pi

and Qi

15: if ubest has better fitness value than that of xi then
16: xi ← ubest

17: end if
18: ei ← ei − t2 ·Np

19: end for
20: end while
21: return x1, x2, ..., xNs

9-13). Best solution are obtained by comparing solutions of
two populations (Line 14).

The microscale-searching evolutionary optimization as illus-
trated in Fig. 5 comprises two algorithms. The time complexity
of Algorithm 1 in a single iteration is O(Ns × Np × G1),
where Ns is the number of subproblems, Np is the popu-
lation size, and G1 is the maximum number of generations
for Algorithm 1. The time complexity of Algorithm 2 is
O(Ns × Np × G2), where G2 is the maximum number
of generations for Algorithm 2. The two algorithms are
executed sequentially. Their time complexities can therefore
be summed. The complexity for each iteration of the loop is
thus O(Ns×Np× (G1 +G2)). Consequently, the overall time
complexity of microscale-searching evolutionary optimization
method is O(M ×Ns ×Np × (G1 +G2)).

V. EXPERIMENTS

This section comprises three experiments. The first exper-
iment shows the comparison of different methods on con-
vergence trends or matting metrics. The second experiment
visualizes repetitively evaluated solutions, demonstrating the
impact of searching within a microscale valid decision subset
on reducing the number of repetitively evaluated solutions.
The third experiment investigates the existence of a microscale
valid decision subset within the decision set of the image
matting problem.

A. Experimental Setup

To evaluate the performance of EAs with MSEO, all ex-
periments are carried out on a benchmark dataset [12] which

contains 35 natural images. 27 of all images are training
images with ground-truth alpha mattes, while the remaining
eight images whose ground-truth is unavailable are provided
for evaluation and ranking only.

We use genetic algorithm (GA) [36], competitive swarm op-
timization (CSO) [30], and particle swarm optimization (PSO)
[37] in experiments due to their popularity in literature. MSEO
with GA, CSO, and PSO are dubbed MSEO-GA, MSEO-
CSO, and MSEO-PSO, respectively. The objective function for
individuals in CSO-based approaches is formulated as follows

g(xF , xB , k) = h1(xF , xB , k) + h2(xF , k) + h3(xB , k)

The objective function evaluates the quality of a pixel pair
(xF , xB) for the k-th unknown pixel. h1(xF , xB , k) is color
chromatic criteria, h2(xF , k) is spatial closeness criteria for
foreground pixels, and h3(xB , k) is spatial closeness criteria
for background pixels. The formulations of three criteria are
presented as

h1(xF , xB , k) = ‖Ck − α̂CxF
− (1− α̂)CxB

‖2

h2(xF , k) = ‖Sk − SxF
‖2

h3(xB , k) = ‖Sk − SxB
‖2.

Ck and Sk are the color vector and the spatial vector of the
k-th unknown pixel.

FEs for each subproblem E is set to 5000. Population
size Np is set to 50. The paramters t1, t2 in Algorithm 1
and Algorithm 2 are set to 20, 10, 30, 10, and 30, 10 for
MSEO-GA, MSEO-CSO, MSEO-PSO ,respectively, according
to parameters study in Section V.F.

B. Improvement of Efficiency by Microscale-searching on Im-
age Matting

This subsection demonstrates the advantages of MSEO from
the perspectives of convergence trends, fitness values, and
matting metrics. Mean square error (MSE) as an image matting
metric is used to study the accuracy of image matting. MSE
measures the difference between the estimated alpha value and
the true value [12]. All experiments are run 30 times. Wilcoxon
rank sum test with 0.05 significance level is conducted on the
experimental results.

The comparison of convergence trends are shown in Fig. 6
to investigate how MSEO cooperates with EAs. PSO, CSO,
and GA are involved in this comparison. The vertical axes of
curves are log values of fitness values, and the horizontal axes
are the number of FEs executed by EAs. The dash lines in the
figures are the results of the original EAs. The dot lines are
the results of EAs with MSEO. The diamonds on the dot lines
indicate that the fitness values are equal to the fitness values
of the best solutions found by the original EAs.

There are several sudden drops on the curves. The drops
indicate that EAs start to search for the best solutions in the
estimated valid decision subsets for different subproblems due
to the FEs consumption strategy in Algorithm 1. The red dia-
monds in the convergence trends of Fig. 6 are used to mark the
time when MSEO-EAs finds the solutions that have the closest
fitness value to that of the best solutions found by original
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Fig. 6. The vertical axes of curves are fitness value, and the horizontal axes are the number of FEs executed by EAs. The dash lines in the figures are the
results of the original EAs. The dot lines are the results of EAs with MSEO. The diamonds on the dot lines indicate that the fitness values are equal to the
fitness values of the best solutions found by the original EAs.
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EAs. In all examples, GA converges the earliest among all
methods. Crossover and mutation operators in GA are directly
applicable to the discrete decision set of the optimal pixel pair
selection problem. However, these operators neglect the spatial
smoothness characteristic of pixels within an image. This
characteristic could otherwise provide heuristic information to
the algorithm. The incorporation of MSEO supplements GA
with this smoothness characteristic. This is achieved because
the valid decision subset, integral to MSEO, is estimated based
on subproblem similarity. Solutions to similar subproblems
tend to be spatially proximate within the image during the
optimization process. Conversely, the decision vector for the
optimal pixel pair selection problem is first converted to a
continuous representation when methods like PSO and CSO
optimize this problem. The characteristics among pixels in
the image can be more easily utilized in the continuous
real-number space to facilitate the search process of EAs.
However, for methods like PSO and CSO, although they can
find better solutions more easily compared to GA, solutions
would be repetitively evaluated across similar subproblems.
The exploration efficiency of these methods is compromised
by these repetitive FEs. The incorporation of MSEO reduces
the exploration cost for these methods in large-scale decision
sets, as they can search within the valid decision subset. The
valid decision subset has already saved heuristic information
from the optimization of similar subproblems across diverse
regions of the decision set.

Table I summarizes the comparison of the fitness values of
the best solutions and matting metrics of the predicted alpha
mattes obtained by MSEO-EAs and original EAs. ”+” and
”↓” respectively denote that the results of EAs with MSEO are
significantly better to those of the original EAs according to
the Wilcoxon test, conducted at a 5% significance level over 30
independent trials. ”−” signifies results that are significantly
worse, while ”≈” indicates no significant difference from the
compared method. It can be seen that MSEO-EAs find better
solutions than the original EAs in all cases. However, the
results of MSEO-EAs on matting metrics do not surpass those
of the original EAs in some cases, because the fitness function
is an approximation of matting metrics. Table II presents the
comparison results between EAs combined with MSEO and
existing single-objective EAs-based matting methods in terms
of four matting metrics, MSE, SAD, CON, and GRAD. MSE
and SAD are used to measure the difference between the
found pixel pairs and the optimal pixel pairs. GRAD and
CON evaluate the visual perceptual differences between the
predicted alpha mattes and the ground truth alpha mattes.
The comparisons include MSEO-CSO versus GC-CSO [8] and
MSEO-PSO versus ACSC-PSO [6]. GC-CSO and ACSC-PSO
focus on accelerating the solving of the matting problem using
EAs. GC-CSO employs solutions of representative subprob-
lems as solutions for other similar subproblems. ACSC-PSO
controls the diversity of solutions by monitoring convergence
speed. Our method not only enhances the solution efficiency
of evolutionary algorithms but also discovers better solutions
because it is based on an effective decision subset.

C. Performance on Weak-prior Scenarios

This subsection demonstrates the advantages of our method
by comparing the performance of matting approaches requir-
ing weak priors with that of approaches requiring strong
priors on weak-prior scenarios. A weak-prior scenario is
defined as one where the data contains trimaps but lacks
finely annotated alpha mattes. Existing matting methods that
require strong priors are mostly trained using natural image
matting datasets. We construct the weak-prior scenario by
combining data from natural images and medical images. The
selected medical matting dataset is Brain-growth [38] that
consists of 39 low-intensity contrast T2-W MR images for the
newborn brain’s white matter tissue myelination process, and
the natural image dataset is AlphaMatting. Since the natural
image dataset contains fewer images than the medical image
dataset, the weak-prior dataset is composed of 27 randomly
selected images from Brain-growth combined with all images
from the AlphaMatting dataset.

The methods requiring weak priors included in this ex-
periment are as follows: 1) Propagation-based methods:
Closed-Form [13], KNN [15], and Information-Flow [39]. 2)
Sampling-based methods: Bayesian Matting [40] and PDMS
[18]. The methods requiring strong priors include DIM [41],
FBA [42], DiffMatte [43], and MedicalMatting [44]. Specifi-
cally, DIM, FBA, and DiffMatte were trained on Composition-
1K dataset [41], while MedicalMatting was trained on the
Brain-growth dataset.

Table III presents the mean and standard deviation of
matting metrics obtained from 10 independent runs. The MSE
results in the table demonstrate that the proposed method
achieves the most accurate matting masks in weak-prior sce-
narios. The SAD results are not as strong as the MSE results
because the MSE metric tends to amplify predictions that
deviate significantly from the ground truth values. In weak-
prior scenarios, despite a distribution shift between medical
and natural images, both types of images contain similar local
regions. This similarity enables deep learning-based methods
to achieve highly accurate predictions in these areas. However,
in regions dissimilar to natural images, deep learning-based
methods struggle to produce accurate predictions, and the MSE
metric subsequently amplifies these inaccuracies. The results
in the table also reveal that matting methods requiring weak
priors generally yield more accurate alpha mattes predictions
compared to methods requiring strong priors. This observa-
tion underscores the necessity of designing efficient matting
methods based on EAs.

D. Effect on the Reduction of Repetitive FEs

Fig. 7 visualizes the number of repetitive FEs for GT01,
GT11, and GT27. The first and the second columns are natural
images and corresponding trimaps. The visualization results of
repetitive FEs are shown in the third, fourth, and fifth rows
for CSO, GC-CSO, and MSEO-CSO repetitively. Bright pixels
are evaluated more often. The upper bound of the number of
repetitive FEs is set differently for the sake of distinction.

As can be seen in the last three columns of Fig. 7, the results
of MSEO-CSO have smaller numbers of bright pixels than
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TABLE I
”↓” INDICATES THAT THE FITNESS VALUE OF THE BEST SOLUTION OBTAINED BY MSEO-EAS IS SIGNIFICANTLY LESS THAN THAT OF THE BEST

SOLUTION OBTAINED BY THE ORIGINAL EAS, WHILE ”↑” SIGNIFIES THE OPPOSITE. ”+”, ”–”, AND ”≈” INDICATE THAT IMPROVING APPROACHES ARE
SIGNIFICANTLY BETTER THAN THE ORIGINAL EAS. THE NUMBERS IN THE LAST COLUMN REPRESENT THE TOTAL NUMBER OF ”↓” AND ”+”,

RESPECTIVELY.

GT01 GT02 GT03 GT04 GT05 GT06 GT07 GT08 GT09 GT10 GT11 GT12 GT13 GT14

CSO ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / - ↓ / + ↓ / - ↓ / - ↓ / + ↓ / ≈ ↓ / + ↓ / -
GA ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / +
PSO ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / - ↓ / + ↓ / - ↓ / - ↓ / + ↓ / + ↓ / + ↓ / -

GT15 GT16 GT17 GT18 GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27

CSO ↓ / + ↓ / - ↓ / - ↓ / + ↓ / + ↓ / + ↓ / + ↓ / ≈ ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + 26/19
GA ↓ / + ↓ / ≈ ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + ↓ / + 26/26
PSO ↓ / + ↓ / - ↓ / - ↓ / + ↓ / + ↓ / ≈ ↓ / + ↓ / + ↓ / ≈ ↓ / + ↓ / + ↓ / + ↓ / + 26/19
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Fig. 7. Visualization results of the number of repetitive FEs of CSO-based methods for GT01, GT07, and GT21 from the first row to the third row. The last
three columns visualize the number of repetitive FEs. Bright pixels are evaluated more often.

TABLE II
COMPARISON WITH EXISTING SINGLE-OBJECTIVE EAS-BASED MATTING
METHODS IN TERMS OF FOUR MATTING METRICS. THE NUMBERS UNDER

EACH METRIC FROM LEFT TO RIGHT REPRESENT THE TOTAL COUNTS
WHERE THE EAS COMBINED WITH MSEO IS SIGNIFICANTLY BETTER,

SIMILAR, AND SIGNIFICANTLY WORSE THAN OTHER METHODS,
RESPECTIVELY.

MSE SAD CON GRAD

GC-CSO 18/3/6 23/1/3 21/0/6 21/2/4
ASCS-PSO 27/0/0 27/0/0 27/0/0 27/0/0

those of other methods because a lot of repetitively evaluated
solutions are avoided during the estimation of microscale valid
decision subsets. For MSEO-CSO, most repetitive FEs are
generated when EAs search for solutions in the microscale
valid decision subset. For CSO, the number of bright pixels
is larger than that of other methods because a lot of solutions
are repetitively evaluated. For GC-CSO, the number of bright
pixels is smaller than that of CSO because the search space
is limited by the initial solutions that are the solutions of rep-
resentative subproblems. The Fig. 6 illustrates that the quality

of solutions found by MSEO-CSO initially lags behind that of
solutions found by CSO. However, solutions found by MSEO-
CSO progressively improve to surpass the quality of those of
CSO before the exhaustion of FEs. This progression suggests
that the reduction of FEs enable CSO to discover high-quality
solutions using fewer FEs. Furthermore, the results in Table
I demonstrate that MSEO-CSO also predicts more accurate
alpha mattes in all three cases.

E. Existence of Microscale Valid Decision Subsets

The properties of decision subsets found by Algorithm 1
are presented in this subsection to verify whether a microscale
valid decision subset exists in the decision set of the image
matting problem. According to Definition (2), the difference
among fitness values of solutions in a microscale valid decision
subset and the optimal solution is smaller than that among
solutions out of a microscale valid decision subset and the
optimal solution. The proportion of optimal pixel pairs is used
to manifest the quality of solutions in the decision subsets. The
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TABLE III
COMPARISON OF MATTING METRICS BETWEEN METHODS REQUIRING STRONG PRIORS AND THOSE REQUIRING WEAK PRIORS IN WEAK-PRIOR

SCENARIOS. THE TABLE PRESENTS THE MEAN AND STANDARD DEVIATION OF MATTING METRICS FROM 10 INDEPENDENT EXPERIMENTS, WITH THE
BEST VALUES HIGHLIGHTED IN BOLD.

Methods MSE SAD CON GRAD

DIM 0.0530±0.0012 2.2397±0.0073 2.4806±0.0136 2.1518±0.0076
FBA 0.0725±0.0031 1.7979±0.0120 1.7552±0.0253 1.7624±0.0122
MedicalMatting 0.3746±0.0036 22.0245±0.0151 20.8340±0.0356 22.0070±0.0153
DiffMatte 0.0870±0.0050 1.6750±0.0155 1.6449±0.0157 1.5941±0.0247

Closed-Form 0.0500±0.0013 2.9354±0.0058 5.0067±0.0134 2.8837±0.0062
KNN 0.0564±0.0007 3.6230±0.0050 4.1823±0.0098 3.5249±0.0054
Information-Flow 0.0464±0.0013 2.7059±0.0054 2.5809±0.0103 2.6365±0.0057

Bayesian 0.1548±0.0016 14.8008±0.0065 17.5435±0.0114 14.9725±0.0067
PDMS 0.0443±0.0016 2.7769±0.0057 2.6824±0.0131 2.6692±0.0060

MSEO-CSO 0.0431±0.0013 2.5544±0.0063 2.0628±0.0107 2.0664±0.0000

TABLE IV
PROPERTIES OF VALID DECISION SUBSETS. “DS” DENOTE DECISION SETS. “DSS” DENOTE DECISION SUBSETS. BOTH THE SIZES OF “DS” AND “DSS”

ARE EQUAL TO THE NUMBER OF PIXEL PAIRS. | · | MEANS THE SIZE OF THE SET.

Image IDs GT01 GT02 GT03 GT04 GT05 GT06 GT07 GT08 GT09
|DS| 3.02E+154 1.76E+150 9.00E+220 1.77E+337 2.06E+303 4.08E+215 3.83E+201 7.97E+663 2.83E+781
|DSS| 2.20E+74 1.60E+72 2.10E+108 3.90E+176 9.00E+162 8.50E+107 3.60E+96 8.60E+369 1.30E+440
εs 7.29E-81 9.10E-80 2.33E-112 2.21E-161 4.38E-141 2.08E-108 9.39E-106 1.08E-294 4.59E-342
ε̂s 6.30E-26 1.80E-26 3.90E-37 4.50E-59 9.10E-52 4.90E-36 3.30E-34 8.80E-115 2.10E-136
τ 91.1% 99.7% 98.9% 99.7% 95.1% 98.9% 99.1% 97.5% 96.3%

Image IDs GT10 GT11 GT12 GT13 GT14 GT15 GT16 GT17 GT18
|DS| 2.33E+318 9.10E+157 2.02E+286 8.56E+243 1.80E+185 3.27E+263 6.98E+588 3.83E+254 8.37E+193
|DSS| 6.70E+167 2.30E+72 1.50E+145 1.40E+127 8.50E+92 3.90E+136 3.30E+343 5.10E+128 1.00E+98
εs 2.88E-152 2.53E-86 7.44E-142 1.64E-117 4.72E-93 1.19E-127 4.73E-247 1.33E-125 1.19E-96
ε̂s 2.80E-55 3.30E-26 1.60E-50 8.70E-41 4.60E-32 1.20E-46 2.30E-103 9.60E-43 9.90E-32
τ 99.4% 99.7% 96.7% 98.8% 99.4% 99.6% 98.3% 99.5% 99.7%

Image IDs GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27
|DS| 3.45E+119 5.93E+337 9.35E+252 9.43E+246 6.12E+282 1.42E+533 5.73E+866 1.34E+806 2.73E+660
|DSS| 1.40E+55 2.50E+175 5.10E+127 8.40E+121 5.80E+137 5.20E+306 1.00E+530 1.40E+479 1.30E+364
εs 4.06E-65 4.21E-163 5.46E-126 8.91E-126 9.48E-146 3.66E-226 1.75E-336 1.05E-328 4.76E-296
ε̂s 2.00E-20 2.20E-58 1.10E-43 4.70E-41 1.00E-48 5.60E-93 5.60E-156 4.20E-143 1.60E-115
τ 99.5% 99.1% 99.7% 98.2% 99.7% 98.8% 99.3% 99.2% 99.7%

proportion τ of optimal pixel pairs in the decision subsets is
calculated as

τ =
1

m

∑m
i=1

∑ni

j=1 oi,j∑m
i=1 ni

oi,j =

1,
if an optimal pixel pair exists for j-th
subproblem in i-th cluster

0, otherwise

ni is the number of subproblems in i-th cluster. The quality
of solutions in the decision subsets is proportional to τ
because the difference between the fitness values of best-so-
far solutions and the optimal solution becomes smaller if the
optimal pixel pairs are contained in the decision subsets. The
mean sizes of decision subsets found for all clusters is used to
calculate εs of Eq (14) to show the scale of decision subsets
compared to the size of the decision set.

The first row of Table IV shows the mean sizes of the
decision set of all clusters. The second row shows the mean
sizes of decision subsets of all clusters. The third row shows
the εs that is the result of the division of |DSS| and |DS|.
The fourth row shows the ε̂s calculated by Eq. (14) when E
is 5000 and N is 50. The size of decision subsets found by
Algorithm 1 is microscale because εs is smaller than ε̂s for all

cases. The last row of Table IV shows that more than 95 per
cent of optimal pixel pairs of subproblems are contained in
decision subsets. Although not all optimal pixel pairs are the
optimal solutions of the objective function because the matting
equation Eq. (1) is ill-posed, the fitness values of optimal
pixel pairs are better than that of most pixel pairs. The result
of Table IV indicates that microscale valid decision subsets
are involved in decision subsets found by Algorithm 1 for
most cases. The reasons that some optimal pixel pairs are not
included in valid decision subsets are attributed as follows. 1)
The handcrafted image features mislead clustering algorithms
to incorrectly group a few subproblems. 2) Although repetitive
FEs are avoided, the number of FEs is still not enough for EAs
to find optimal solutions.

F. Parameter Analysis

The performance of MSEO is mainly influenced by the
subset estimated by Algorithm 1. t1, t2 are investigated in
Table V on GT01 because they are vital for Algorithm 1. t2
is first fixed to study the influence of t1 because the solutions
in estimated microscale valid decision subsets is determined
by t1. t2 is studied after the best value of t1 is set. t1 control
the number of generations in one iteration. A small t1 would
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TABLE V
COMPARISON OF MSE, CON, AND FITNESS VALUES AMONG DIFFERENT SETTING OF (t1, t2). BOLDED TEXT INDICATES THE BEST RESULTS.

MSEO-CSO MSEO-GA MSEO-PSO

t1 t2 MSE CON Fitness t1 t2 MSE CON Fitness t1 t2 MSE CON Fitness

10 10 1.91E-03 4.63E+02 1.46E+05 10 10 2.21E-03 5.35E+02 1.87E+05 10 10 1.93E-03 4.60E+02 1.41E+05
20 10 1.83E-03 4.35E+02 1.22E+05 20 10 2.12E-03 5.16E+02 1.95E+05 20 10 1.79E-03 4.23E+02 1.15E+05
30 10 1.78E-03 4.19E+02 1.22E+05 30 10 2.17E-03 5.18E+02 2.32E+05 30 10 1.79E-03 4.26E+02 1.17E+05
40 10 1.97E-03 4.58E+02 1.83E+05 40 10 5.35E-03 7.27E+02 5.37E+05 40 10 1.93E-03 4.50E+02 1.55E+05
50 10 5.56E-03 7.41E+02 1.91E+05 50 10 5.56E-03 7.41E+02 7.34E+05 50 10 5.56E-03 7.41E+02 1.78E+05
30 20 1.82E-03 4.34E+02 1.23E+05 20 20 2.14E-03 5.13E+02 2.06E+05 20 20 1.78E-03 4.24E+02 1.12E+05
30 30 1.81E-03 4.30E+02 1.25E+05 20 30 2.17E-03 5.18E+02 2.14E+05 20 30 1.78E-03 4.22E+02 1.13E+05
30 40 1.81E-03 4.33E+02 1.27E+05 20 40 2.15E-03 5.14E+02 2.20E+05 20 40 1.80E-03 4.23E+02 1.15E+05
30 50 1.81E-03 4.25E+02 1.27E+05 20 50 2.23E-03 5.39E+02 2.31E+05 20 50 1.81E-03 4.28E+02 1.15E+05

cause EAs to stop prematurely. A large t1 would result in
few number of FEs left for searching in the estimated valid
decision subsets. This is consistent with the results in the
third to seventh rows of Table V. t2 is related to the number
of times that EAs search out of the estimated valid decision
subsets. The eighth row to the last row of Table V indicates
that whether EAs search outside the subsets has less impact on
the results after the valid decision subsets are estimated. The
results of Table also validates the existence and effectiveness
of valid decision subsets.

VI. DISCUSSION

The experimental results validate that our proposed
Microscale-searching Evolutionary Optimization (MSEO)
framework effectively enhances the efficiency and quality
of EA-based image matting. The primary strength of our
approach lies in its robust performance in scenarios with weak
priors, where deep learning methods, reliant on extensive high-
quality training data, often struggle. By operating as a single-
instance optimization, our algorithm requires no pre-training.
The microscale-searching mechanism successfully balances
global exploration with local exploitation, allowing the EA
to search high-quality solutions with fewer fitness evaluations
compared to its standard counterparts. This positions our
method as a powerful tool for applications demanding high-
fidelity matting without access to large, labeled datasets or
precise user-provided trimaps.

Despite its advantages, we acknowledge the inherent lim-
itations of our framework, which in turn motivate future
work. The most significant trade-off is the computational cost.
While more efficient than traditional EAs, our optimization-
based approach is slower than the inference speed of pre-
trained deep learning models, making it better suited for offline
processing rather than real-time applications. Furthermore, the
framework’s core mechanism assumes a degree of structural
self-similarity within the image, and its effectiveness may
be reduced on highly heterogeneous images. Consequently,
future research will focus on two key areas: 1) accelerating the
optimization process, potentially through GPU parallelization
or hybrid algorithms, to broaden its applicability; and 2)
developing more adaptive knowledge transfer mechanisms that
are less dependent on spatial proximity and can handle a wider
variety of image content. Addressing these limitations will

be crucial in advancing EA-based methods as a practical and
powerful alternative in the image matting toolkit.

VII. CONCLUSION

In this paper, we propose a microscale-searching framework
to improve the efficiency of EAs to solve the image matting
problem. A microscale valid decision subset is estimated
by collecting best-so-far solutions of similar subproblems.
Competitive solutions can be found by EAs with the help of
the proposed microscale-searching evolutionary optimization
with less number of FEs than other EAs-based image matting
methods. The proposed microscale-searching framework make
EAs efficient approaches to solving the image matting prob-
lem. Experimental results validate that the estimated subset
is substantially smaller than the decision set. For more than
90% of the subproblems, the estimated subsets also include the
optimal solution. The existence of microscale valid decision
subsets provides guidance for a reasonable allocation of FEs.
The framework FEs allocation strategy improves the efficiency
of EAs in solving the image matting problem.

In the future, we will try to design more efficient EAs-based
approaches based on the concept of microscale valid decision
subsets for other computer vision tasks.
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