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High-Resolution Natural Image Matting by Refining
Low-Resolution Alpha Mattes

Xianmin Ye", Yihui Liang", Mian Tan, Fujian Feng", Lin Wang, and Han Huang", Senior Member, IEEE

Abstract—High-resolution natural image matting plays an
important role in image editing, film-making and remote sensing
due to its ability of accurately extract the foreground from a
natural background. However, due to the complexity brought
about by the proliferation of resolution, the existing image
matting methods cannot obtain high-quality alpha mattes on
high-resolution images in reasonable time. To overcome this chal-
lenge, we introduce a high-resolution image matting framework
based on alpha matte refinement from low-resolution to high-
resolution (HRIMF-AMR). The proposed framework transforms
the complex high-resolution image matting problem into low-
resolution image matting problem and high-resolution alpha
matte refinement problem. While the first problem is solved
by adopting an existing image matting method, the latter is
addressed by applying the Detail Difference Feature Extractor
(DDFE) designed as a part of our work. The DDFE extracts detail
difference features from high-resolution images by measuring
the image feature difference between high-resolution images and
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low-resolution images. The low-resolution alpha matte is refined
according to the extracted detail difference feature, providing
the high-resolution alpha matte. In addition, the Matte Detail
Resolution Difference (MDRD) loss is introduced to train the
DDFE, which imposes an additional constraint on the extraction
of detail difference features with mattes. Experimental results
show that integrating HRIMF-AMR significantly enhances the
performance of existing matting methods on high-resolution
images of Transparent-460 and Alphamatting. Project page:
https://github.com/yexianmin/HRAMR-Matting

Index Terms—High-resolution image matting, natural image
matting, alpha matte detail, detail difference feature.

I. INTRODUCTION

IGH-resolution natural image matting is the process of

precisely extracting the foreground from the background
in a high-resolution image by accurately determining the
opacity of the foreground. It is essential in several key appli-
cations, such as image editing [1], film-making [2], remote
sensing [3] and autonomous driving [4], [5]. High-resolution
image matting methods provide highly accurate foregrounds
extracted from natural images, which can be used to synthesize
realistic images and videos. In addition, it plays a key role in
remote sensing, contributing to the accurate analysis of remote
sensing images with clouds. In image matting problem, the
color /; of the pixel i is modeled as a convex combination of
foreground color F; and background color B;:

IjzaiFi+(1—Cli)Bi,iE{l,z,"',N} (1)

where «; € [0, 1], represents the opacity of the foreground
object at pixel i. N is the number of pixels in the image.
The value of N can reach 10° for high-resolution (such as 2K
resolution) images. As shown in Fig. 1, the high-resolution
image depicted in Fig. 1(b) provides more details than the low-
resolution image presented in Fig. 1(c). At higher resolutions,
even small errors become very noticeable, yet this increased
detail poses a challenge for the matting algorithm. Therefore,
as the number of pixels increases, accurately determining the
alpha value of each pixel within reasonable time becomes
crucial for maintaining the image matting efficiency and
quality. As there are three unknowns and only one available
value in Eq. (1), the image matting problem is inherently
ill-posed. Accordingly, image matting methods rely on a
trimap to distinguish known foreground, known background,
and unknown regions, allowing only the alpha values in the
unknown region to be solved.
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(a) Original image (b) High-res image (c) Low-res image

(e) Matteformer[7]

(d) MGM-trimap[6] (f) Ours

Fig. 1. The visual comparison of high-resolution image matting results on the Alphamatting [8] high-resolution dataset. The original image is shown in figures
(a), with low-resolution and high-resolution enlargements of the original image provided in (b) and (c), respectively. Figures (d) and (e) show close-ups of
the visual results of MGM-trimap [6] and Matteformer [7] on high-resolution images, respectively. Figure (f) shows a close-up of the visual results of our

method on high-resolution images.

Image matting can be divided into traditional methods [9],
[10] and deep learning-based methods [11], [12], [13], [14].
Traditional methods include propagation-based methods [9],
[15], [16], [17] and optimization-based [10], [18], [19], [20],
[21] methods. Propagation-based methods typically involve a
pixel-by-pixel analysis to ascertain the degree of similarity.
They analyze pixel similarity using graph models with Laplace
matrices and optimization techniques [22]. They are impracti-
cal for use on high-resolution images, as the sheer volume
of pixels results in a prohibitively large number of com-
parisons that need to be made. Although optimization-based
methods treat matting as a pixel-pair optimization problem,
these methods also encounter significant challenges when
dealing with high-resolution images because the complexity
and size of the search space increases exponentially with
the resolution. To address these challenges and reduce the
processing time and resources, researchers have employed
swarm optimization techniques [20] and micro-scale search-
ing algorithms [21]. While capable of navigating complex
solution spaces, these methods may struggle with the high-
dimensional nonlinear nature of the matting problem and may
converge to a local optimal solution rather than a global
solution. In addition, parameter tuning of these algorithms
can be complex, and the computational costs associated
with pixel affinity for high-resolution images can still be
prohibitive.

Deep learning-based methods have advanced image matting
significantly. Deep Image Matting (DIM) [11] introduced
CNNs for alpha matte estimation, using an encoder-decoder
architecture with refinement modules, and created a large-scale
dataset for training. Researchers have proposed techniques like
attention mechanisms [23], adaptive upsampling [12], multi-
branch information mining [14], and progressive refinement
[6] to address the limitations of CNNs in capturing long-
range dependencies and to enhance the details of alpha mattes.
Other researchers have explored computational efficiency in
high-resolution image matting by introducing techniques such
as image patch [2], [13] and sparse maps [24] to reduce
computational costs. However, limited by the receptive field
of the CNN, they are still not ideal in preserving fine
details of images. Recent studies have used self-attention
mechanisms [25], such as Matteformer [7], ELGT-Matting
[26], ViTMatte [27] and DiffMatte [28], to model global
context and preserve complex structures, providing a promis-
ing direction to overcome these limitations. However, such

methods still have difficulty in preserving fine details in com-
plex semi-transparent regions when applied to high-resolution
images.

None of the aforementioned methods can accurately extract
foreground details from high-resolution images in a timeframe
acceptable for most practical applications. Therefore, even
with advanced methods like Matteformer [7] or MGM [6],
detail on high-resolution images is not adequately captured,
as evident from Fig. 1(d) and 1(e).

To overcome these shortcomings, we introduce a high-
resolution image matting framework based on alpha matte
refinement from low-resolution to high-resolution (HRIMF-
AMR), allowing us to transform the complex high-resolution
matting problem into a low-resolution matting problem and
a high-resolution alpha matte refinement problem. To achieve
this objective, the HRIMF-AMR employs a Detail Difference
Feature Extractor (DDFE) module to extract fine details unique
to high-resolution images, which are then used to refine
the corresponding low-resolution alpha matte. Additionally,
a Matte Detail Resolution Difference (MDRD) loss function
is incorporated to improve the extraction of these resolution-
specific details, ensuring that the detailed differences between
high-resolution and low-resolution images are effectively cap-
tured within the alpha matte.

The main contributions of this work are summarized below:

e We present a high-resolution image matting framework
based on alpha matte refinement from low-resolution
to high-resolution, HRIMF-AMR, which transforms the
complex problem of high-resolution image matting into
two simpler problems: the low-resolution image matting
problem and the high-resolution alpha matte refinement
problem.

e We present Detail Difference Feature Extractor (DDFE)
and the Matte Detail Resolution Difference (MDRD) loss
function for solving the high-resolution matte refinement
problem. DDFE provides foreground details for high-
resolution matte refinement by capturing the subtle detail
differences between high-resolution and low-resolution
images. MDRD introduces additional constraints to the
feature extraction to ensure that the extracted features can
represent the detail difference along with the matte.

o Extensive experimental results demonstrate that integrat-
ing the presented HRIMF-AMR significantly improves
the performance of existing image matting methods on
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high-resolution images. This integration enables exist-
ing image matting methods to achieve state-of-the-art
performance and makes them applicable to high-
resolution image matting tasks.

II. RELATED WORK

This section provides a brief literature review, focusing on
image matting methods, which are categorized according to
the underlying principle, i.e., (1) traditional matting methods
that rely on statistical algorithms and (2) deep learning-based
matting methods that rely on deep neural networks.

A. Traditional Methods

As one of the traditional methods, the propagation-based
method [9], [15], [16], [17] propagates alpha values from
known regions to unknown regions by measuring similarity
between unknown pixels and known foreground and back-
ground pixels. On the other hand, the optimization-based
method [10], [18], [19] models the image matting problem as a
pixel-pair optimization problem and estimates the alpha value
by solving the optimization problem for each unknown pixel.
Closed-form matting [9] is based on the assumption of local
smoothing of foreground and background colors, allowing
an alpha-based Color-Line model to be established. Spectral
matting [15] introduces spectral clustering dependent on a
properly defined Laplacian matrix, which is based on Closed-
form matting [9]. KNN matting [16] uses color similarity and
spatial proximity to solve the image problem globally for K
nearest neighbors, which speeds up interference while main-
taining accuracy. Information flow matting [17] sets multiple
information channels and adjusts their respective propagation
modes to accurately generate alpha mattes. Huang et al.
[29] proposed pixel-level discrete multi-objective sampling
(PDMS) method, which effectively solves the problems of
incomplete sample space and multi-sampling standard conflict
by formalizing the color sampling process as a multi-objective
optimization problem (MOP). The main advantage of PDMS
stems from its ability to minimize color differences and
spatial distances between unknown pixels and known pixels,
along with its capacity to make adaptive tradeoffs between
conflicting sampling criteria. However, extensive computations
are required to evaluate and select the best foreground and
background color sample pairs, resulting in high computational
complexity.

In order to reduce the computational burden of the matting
algorithm, some interesting schemes [20], [21], [30], [31]
have been proposed. For example, Feng et al. [20] devel-
oped an innovative group competition optimization algorithm
that capitalizes on the color similarity of pixels in unknown
regions to cluster them effectively. This algorithm fosters
group cooperation to streamline the optimization process,
thereby significantly diminishing the computational complex-
ity for high-resolution image matting. Still, as the algorithm
necessitates a substantial number of iterations to attain optimal
matting outcomes, its practical utility is relatively low. MS-
AM [21] incorporates micro-search and solves the problem
of high-resolution image matting by effective decision subset
exploration. While this method reduces the search space and
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improves the processing efficiency in theory, to ensure the
best performance in practical applications, parameters must
be carefully adjusted according to the specific features of the
image. As a proxy model-based matting method, IMBSM [30]
estimates high-quality alpha mattes in reasonable time and out-
performs traditional pixel-pair optimization techniques. MCSS
[31] relies on a multi-criteria sampling strategy that, when
combined with the Gaussian process proxy model, effectively
improves the matting quality under resource constraints.

As demonstrated above, even when strategies to alleviate
the pressure on computational resources are incorporated,
traditional image matting methods are still incapable of dealing
with high-resolution images. These methods often rely on
complex similarity measures and precise operations at the pixel
level, which are insufficiently flexible and efficient and thus
cannot be applied to the extensive data volumes associated
with high-resolution images. In addition, they may struggle to
accurately distinguish between foreground and background in
detail-rich regions, resulting in unsatisfactory matting results.
These disadvantages are particularly prominent in the field
of modern image processing, especially in scenes where a
large number of high-resolution images need to be processed
quickly and accurately.

B. Deep Learning-Based Methods

In recent years, deep learning has produced extremely
promising results for the image matting task. For instance,
Deep Image Matting (DIM) [11] introduced large-scale Adobe
Composite-1K dataset and an end-to-end encoder-decoder
network, marking a milestone in the field. However, DIM [11]
is limited by its receptive field in natural image matting, as its
convolutional neural network (CNN) architecture struggles to
capture long-range context, affecting the accurate estimation
of alpha values, particularly in regions with fine details like
hair or transparency.

To address the limitations of CNNs in capturing long-
range dependencies and fine details, several methods have
been proposed. GCA-Matting [23] incorporates a guided con-
textual attention module that learns low-level affinities and
propagates high-level opacity information globally, enhancing
detail preservation. HDMatt [13] leverages the Cross-Patch
Contextual Module (CPC) to capture long-distance con-
text dependencies between image patches. However, this
method may unintentionally lose details due to inconsistencies
between local and global contexts caused by chunking. AU
[12] improves the handling of fine structures by learning
affinity during upsampling, exploiting pairwise interactions
in images. MGM [6] introduces a Progressive Refinement
Network (PRN) that refines details progressively through
a self-guided decoding process. A two-stage framework
addresses trimap dependency and model complexity: the Seg-
mentation Network (SN) captures semantics and classifies
pixels into unknown, foreground, and background regions,
while the Matting Refine Network (MRN) captures detailed
texture information and regresses accurate alpha values [32].
However, without trimap, it cannot achieve the same level
of detail preservation as trimap-based methods. In addition,
MODNet [33] obtains a real-time portrait matting model
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by decomposing the trimap-free portrait matting task into
three explicit sub-goals, namely semantic estimation, detail
prediction and semantic detail fusion. However, the detail
prediction part is limited by using the tensor concatenated from
the downsampled image and the intermediate layer features
of semantic estimation as input, which may struggle with
complex fine details on high-resolution images. BGMV2 [2]
replaces the trimap with a background image as input, provid-
ing prior information for matting. While effective for static
backgrounds, it struggles with dynamic backgrounds, often
losing fine details. SparseMat [24] reduces spatial complexity
by using sparse maps, skipping regions where the foreground
is already determined. However, this approach compromises
the ability to handle abrupt changes in discontinuous areas,
leading to detail loss in complex regions.

Recent advancements have shifted toward self-attention
mechanisms to better capture long-range dependencies and
fine details. Matteformer [7] introduces Swin-Transformer
[34] into natural image matting, presenting trimap-based prior
tokens for improved detail preservation and context modeling.
ELGT-Matting [26] addresses the limited receptive fields of
CNNs with a local-global transformer block, combining global
context learning and local feature integration through window-
level global MSA and local-global window MSA modules.
ViTMatte [27] leverages Vision Transformers [35] to cap-
ture intricate details and long-range dependencies, achieving
outstanding performance due to the pre-trained, semantically
rich representations of Vision Transformers [35]. A domain
alignment module with a dynamic attention pruning mecha-
nism based on transformers is proposed in references [25],
designed to locate domain-sensitive regions and enable robust
performance on both synthetic and natural images. However, it
often struggles with insufficient user control and tends to lose
fine details, particularly in complex areas like transparency and
hair objects [6]. DiffMatte [28] introduces a diffusion model
[36] that iteratively refines the alpha matte through a pixel-
level denoising process, addressing the limitations of one-step
prediction methods in complex cases. By adopting a self-
attention-based backbone network, DiffMatte [28] enhances its
ability to capture long-range dependencies and refine details.
However, the large number of pixels in high-resolution images
reduces sampling efficiency, impacting computational perfor-
mance and fine detail preservation.

Current image matting methods often fail to preserve fine
details like hair and transparency, especially in high-resolution
scenarios, resulting in blurred outputs or loss of intricate
structures. While self-attention mechanisms have improved
detail retention, they still struggle with discontinuous edges
and transparent regions. A more effective approach is needed
to enhance matting quality for high-resolution images.

III. METHODOLOGY

We begin this section with a brief description of the
approach adopted in this work and overall network structure,
followed by a detailed description of the Detail Difference
Feature Extractor (DDFE) and the Matte Detail Resolution
Difference (MDRD) loss function incorporated into our high-
resolution matting design.
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Fig. 2. Pipeline of the HRIMF-AMR and the relationship between the two
problems transformed by the proposed approach.

A. Streamlined Approach to High-Resolution Matting

As shown in Fig. 2, our HRIMF-AMR employs an innova-
tive two-step process to deliver high-quality high-resolution
alpha mattes. Initially, we reduce the computational load
by scaling down the image resolution, which simultaneously
generates a preliminary alpha matte. This step streamlines
the image matting process without compromising the final
alpha matte quality. Subsequently, we refine the low-resolution
matte with the intricate details of the high-resolution image.
By integrating these details through fusion, we significantly
enhance the clarity and precision of the high-resolution matte.
By adopting this strategy, the HRIMF-AMR described here
not only ensures the high quality of the high-resolution alpha
matte but also circumvents the high computational costs asso-
ciated with high-resolution image matting, achieving a dual
optimization of efficiency and quality.

B. High-Resolution Natural Image Matting Framework

Fig. 3 shows our proposed high-resolution image matting
framework based on alpha matte refinement from Ilow-
resolution to high-resolution (HRIMF-AMR), which is an
innovative framework for high-resolution image matting. The
main advantage of the HRIMF-AMR stems from the appli-
cation of transformation and conquest, which transforms the
complex high-resolution image matting problem into two
relatively simple problems: the low-resolution image mat-
ting problem and the high-resolution alpha matte refinement
problem. First, we concatenate a high-resolution RGB image
I, € RP*W>X3 and its corresponding trimap T, € R*W*1 by
channel and input them to the low-resolution image matting
branch of HRIMF-AMR. The high-resolution images and
trimap are downsampled by a ratio of % and then input into
the low-resolution image matting network (/; € Rz*2Wx3,
T, € R2Hx2Wx1) Matteformer [7] is a competitive matting
method that accurately extracts alpha mattes from images and
is used in the low-resolution image matting branch of HRIMF-
AMR. The resolution of the image input to the minutiae
Difference Feature Extractor (DDFE) is the original resolution.
The DDFE consists of a series of convolutional layers. This
module contrasts details derived from high-resolution images
with those obtained from low-resolution images with the
aim of capturing only the details present in high-resolution
images. Rather than relying on a special design, we simply
use fusion of the matte detail difference feature with the
upsampled low-resolution alpha matte to predict the final
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High-Resolution Image Matting Framework based on Alpha Matte
Refinement from low-resolution to high-resolution (HRIMF-AMR)
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Fig. 3. An overview of the proposed high-resolution image matting framework based on alpha matte refinement from low-resolution to high-resolution
(HRIMF-AMR). The framework overcomes the challenge of high-resolution matting by transforming it into two simple problems: high-resolution detail
refinement and low-resolution matting. Detail Difference Feature Extractor (DDFE) is proposed to solve the high-resolution detail refinement problem. By
incorporating the Matte Detail Resolution Difference (MDRD) loss function into the DDFE training, additional guidance for the extraction of features that

reflect the subtleties in matte detail resolution is provided.

alpha matte a;, € RP*W>! At the fusion stage, the detail
difference features corresponding to the unknown regions of
the trimap are incorporated into the upsampled low-resolution
alpha mattes through an addition operation.

It should be noted that our HRIMF-AMR allows us to
easily integrate and replace various natural image matting net-
works. Furthermore, the modularity and plug-and-play nature
of HRIMF-AMR allows each component to be explored and
optimized independently.

C. Detail Difference Feature Extractor

As high-resolution images comprise a significant number
of pixels, they capture a greater level of detail compared to
low-resolution images, allowing for finer local variations and
texture information. This enhanced detail is crucial for high-
resolution image matting, as it provides a wealth of visual cues
that can significantly improve the matting process accuracy.
Thus, by leveraging the inherent differences between the detail
features present in high-resolution and low-resolution images
our objective is to identify and isolate the features that are
distinct in high resolution but may be less pronounced or even
lost in low resolution. This preliminary idea is theoretical and
involves the use of subtraction to highlight these differences.
By focusing on these differences, the aim is to develop a
difference feature representation that encapsulates only the

high-resolution image details. This representation forms the
basis for our image matting algorithms, ensuring that they
concentrate on the most relevant aspects of the high-resolution
alpha matte. The ultimate goal is to improve the precision
and effectiveness of the matting process by leveraging the
full potential of high-resolution imagery for superior matting
results.

As depicted in Fig. 4, the DDFE is at the heart of our
HRIMF-AMR, allowing the differences in detail between high-
resolution and low-resolution images to be extracted, while the
downsampling module quickly reduces the dimensionality of
high-resolution images for subsequent matting network stages.
Given the need to minimize the computational complexity in
high-resolution natural image matting, we have selected the
nearest neighbor method [37] for downsampling. However,
from an information theory standpoint, the significant reduc-
tion of pixels in high-resolution images can lead to the loss
of fine details that, while seemingly insignificant, are crucial
for accurate matting. To address this limitation, the DDFE
is specifically engineered to capture these subtle details and
transform them into detail difference features. These features
are then integrated with low-resolution mattes from the matting
network to reconstruct more precise high-resolution mattes.

Calculation of the detail difference features involves three
steps. First, we apply a simple convolutional neural net-
work layer to the high-resolution image, aiming to capture
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Fig. 4. The detail difference feature extractor structure. A simple convolu-
tional neural network layer is applied to the high-resolution image as well
as the low-resolution image, aiming to capture detail features in the image
using simple structures. DDFE aligns the detail features of the low-resolution
image to those of the high-resolution image, and extracts the detail features
unique to the high-resolution image by capturing the differences between the
features extracted from the high-resolution and the low-resolution images.

its fine detail features using simple structures. Next, we
downsample the high-resolution image to generate a low-
resolution image and extract its features. Finally, by comparing
the features extracted from the high-resolution image and
the low-resolution image, we extract the unique details that
appear only in the high-resolution image. These steps are
accomplished using the following formulas:

HDF = Conv(I},), RHXW>3

LDF = Convy(1)),
DDF = Conv(HDF — LDF)
DDF ;¢ f5r = Tanh(Convy x 1(DDF)) )

I, €

I[ c R%HX%WX:S

where HDF and LDF respectively represent the detail features
of the high-resolution and the low-resolution image, and Conv,
Convix1, and Convy are simple convolutional layers, each
playing a specific role. Namely, Conv is utilized for feature
extraction, Conv)x is required for dimensionality reduction,
and Convy is adopted in the transposition convolutional layer.
In order to restrict the eigenvalues to a normalized range, the
calculated result is normalized by applying the 7anh function.
This step ensures that the DDF ranges from —1 to 1, resulting
in an offset for alpha matte refinement, which is necessary
to correct the upsampled results of the low-resolution alpha
matte.

The matting head fuses the Detail Difference Features
(DDF) obtained by the Detail Difference Features Extractor
(DDFE) and the low-resolution alpha matte obtained by the
low-resolution matting branch. The structure of the matting
head includes three convolutional layers with a kernel size of
3 x 3, and one convolutional layer with a kernel size of 1 x 1.

D. Loss Function

In the domain of image processing, particularly in the
context of high-resolution image matting, the transition from
low to high resolution is not merely a matter of scaling up. It
involves capturing the intricate details that are often lost in the
process. A variety of loss functions were employed during the
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training phase, including Regression, Compositional, Lapla-
cian, and the Matte Detail Resolution Difference (MDRD)
loss. The MDRD loss function introduces a novel perspective
to high-resolution image matting, particularly in the context
of enhancing details that are often neglected by traditional
loss functions. Below, we provide a concise explanation of
the Regression loss, Compositional loss, and Laplacian loss.
We also highlight the distinctive contributions of the MDRD
loss and contrast it with the aforementioned loss functions.

1) Regression Loss: The definition of regression loss, also
known as alpha 1-norm loss, involves calculating the mean
absolute error between the actual and estimated alpha mattes
within the domain of the unknown region:

1 .

Lree =17 ;'“‘ il (3)
where U is the unknown region marked in the trimap, and &;
and «; denote the predicted and ground-truth alpha matte at
position i in the trimap, respectively.

2) Compositional Loss: In deep image matting [11], the
compositional loss is defined as the absolute difference
between the RGB colors of two composited images. One
image is composited using the predicted alpha matte on the
ground - truth foreground and background, and the other is
composited using the ground - truth alpha matte, as defined
below:

ﬁcomp = (Cpre - Cgt)2 + €2 4

where ¢, denotes an image composited by predicted alpha
matte, ¢, denotes an image composited by ground-truth alpha
matte, and € denotes a small number for avoiding zero
compositional loss.

3) Laplacian Loss: Laplacian loss is defined as the differ-
ence between the predicted alpha matte & and the ground-truth
alpha matte «, as described below:

5
Lip = 27" L@ - L' (@], (5)
i=1
where L' denotes the i layer of the Laplacian pyramid of the
alpha map, & and « respectively represent the predicted and
ground-truth alpha mattes.

4) Matte Detail Resolution Difference Loss: The Matte
Detail Resolution Difference (MDRD) loss function introduces
a novel strategy in the domain of high-resolution image
matting by focusing on the supervision of the Detail Difference
Feature Extraction (DDFE) process. This loss is distinct from
other loss functions that typically target the final prediction
outcomes.

Unlike the Regression Loss, which emphasizes overall accu-
racy, the MDRD loss is specifically tailored to capture and
accentuate the subtleties of high-resolution mattes. It provides
a more nuanced approach to detail preservation, ensuring that
the transition from low to high resolution is not just a matter of
scale but also of quality and clarity. In contrast to the Laplacian
Loss, which measures structural content across different layers
of the image, MDRD is more sensitive to the resolution-
specific details that are intrinsic to high-resolution images.
This enhanced resolution sensitivity ensures that the details
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are not only upscaled but are also accurately and distinctly
represented, reflecting the true essence of high-resolution
imagery. Moreover, the MDRD loss function complements
the Compositional Loss by focusing on the level of detail.
While the Compositional Loss ensures color accuracy in image
compositing, MDRD elevates this by ensuring that the color
accuracy is accompanied by a high level of detail fidelity. This
dual focus on both composition and detail makes MDRD a
comprehensive loss function that addresses the multifaceted
requirements of high-quality image matting.

MDRD is uniquely positioned to enhance the fine details
characteristic of high-resolution mattes. It does not directly
supervise the predicted alpha mattes but instead supervises the
intermediate feature extraction step, ensuring that the learned
features are rich in detail and resolution-specific information.
This proactive supervision allows for a more refined and accu-
rate representation of high-resolution details during the feature
learning phase. The formulation of MDRD is as follows:

Londra = HDDF(fofset - Difﬁ’”z (6)
DDFY

of fset is calculated from the DDF,ss, using a high-
resolution trimap. Specifically, the unknown region value of
the trimap are set to 1, while the other regions value are set
to 0, and these values are then weighted and applied to the
DDF,r5e. Dif fo is calculated by measuring the difference
between the ground-truth alpha mattes and the low-resolution
alpha mattes predicted by the existing image matting model.
|#]l, is defined as the Euclidean norm.

MDRD is a complement to the total loss, where MDRD
supervises DDFE to focus on extracting matte details that
only exist in high-resolution images, regression loss supervises
the overall quality of high-resolution matte, compositional loss
supervises the color accuracy in image synthesis, and Lapla-
cian loss supervises the structural content of different layers of
alpha mattes. Combining multiple losses can achieve the effect
of accurately extracting high-resolution alpha matte details.
The integration of MDRD into the total loss £ calculation is
represented as:

L= /hﬁrec + AZ»CComp + /l3£lap + /l4£mdrd @)

IV. EXPERIMENT

In this section, the organization of the section was described.
The dataset and five evaluation metrics used in the experiments
were introduced, followed by a description of the imple-
mentation details and training setup. Five experiments were
conducted: (1) validation of the HRIMF-AMR framework’s
effectiveness; (2) assessment of its adaptability; (3) ablation
studies on DDFE and MDRD; (4) complexity analysis of
HRIMF-AMR; and (5) discussion of its limitations.

A. Datasets

To assess the practical efficacy of the proposed approach,
we carry out test experiments with high-resolution datasets.
We employ the portion of Alphamatting [8] featuring high-
resolution images, along with the Transparent-460 [38] dataset,
given that their image resolutions are typically 2K and above.
Fig. 5 illustrates the image resolution distribution of the
datasets used in the experiments.
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Fig. 5. Boxplot of image resolution size (replaced by the product of
height and width of the image) for the dataset used in this article. Adobe
Composition-1K-Test [11] and Alphamatting-low-Test [8] may be considered
representative of low-resolution image datasets, and Transparent-460-Test [38]
and Alphamatting-high-Test [8] may be considered representative of high-
resolution image datasets. Alphamatting-low-Test and Alphamatting-high-Test
are obtained from the same dataset but differ in resolution size.

1) Transparent-460: The Transparent-460 [38] dataset con-
tains 460 well-annotated high-fidelity alpha mattes, with 410
images in the training subset and 50 images in the test subset.
The background is based on the Adobe Composition-1K from
the Microsoft COCO [39] and PASCAL VOC 2012 [40]
datasets, respectively. It contains 41,000 training samples and
1,000 test samples, following the same composition rules as
in [11]. In addition, images comprising the Transparent-460
test dataset have greater resolution, with an average size of
3915 x 4059 (ranging from 1661 x 1661 to 4480 x 6720).

2) Alphamatting: The Alphamatting [8] dataset consists of
8 test images and 27 training images, but provides both high-
and low-resolution version for each image. Since the Adobe
Composition-1K dataset integrates images from Alphamatting-
train, only eight images from Alphamatting-test are used in the
experiments. The average resolution of these eight images is
3127 x 2364, ranging from 2689 x 2085 to 3908 x 2600. How-
ever, the corresponding low-resolution image has an average
resolution of 800 x 607 (with a minimum of 800 x 532 and a
maximum of 800 x 671). All images in this dataset are natural
(i.e., none are synthetic images).

3) Adobe Composition-1K: The Adobe Composition-1K
[11] dataset comprises 43,100 images, each accompanied by
an alpha matte resulting from the fusion of 431 distinct fore-
ground elements with a corresponding number of background
images. These backgrounds were randomly chosen from the
Microsoft COCO [39] collection. Additionally, the test dataset
encompasses 1,000 images, which are a blend of 50 unique
foreground images with backgrounds sourced from the Pascal
VOC 2012 [40] dataset. The average resolution of images in
this test dataset varies from 1120 x 502 to 1920 x 1920, with
an average of 1655 x 1380.

B. Metrics

We rate the performance of HRIMF-AMR via five metrics,
four of which measure the quality of the predicted alpha
mattes, while the remaining one reflects the computational
complexity.
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The Sum of Absolute Difference (SAD) metric measures the
overall error by calculating the sum of the absolute differences
of all pixels between the predicted alpha mattes and the true
alpha mattes. It is the most intuitive error metric because it
directly accumulates the prediction error for each pixel. SAD
is calculated using the following expression:

n
SAD = Z la; — &
i=1

®)

where «; is the ith pixel value of the predicted alpha matte,
@; is the ith pixel value of the true alpha matte, and n is the
total number of pixels.

The Mean Squared Error (MSE) metric emphasizes the
effects of larger errors by squaring the prediction errors and
then averaging them. This measure makes the contribution
of a single large error to the overall error more significant,
and helps to identify and improve significant defects in the
algorithm. The formula for calculating MSE is:

1 ¢ .
MSE = ;(a, &) 9)
for clarity, MSE is defined in this article as 1073,

Gradient error (Grad) metrics focus on assessing the edge
quality of predicted alpha mattes by calculating the difference
between the gradients of predicted and true alpha mattes.
This metric is especially important for matting tasks that
require high edge quality because it reflects the smoothness
and accuracy of edges. The gradient error is calculated as:

Grad =) (Iva; = va|l") (10)

where Va; and V&; are the gradients of the predicted and true
alpha mattes, respectively, and ¢ is a constant, usually 2.

The Connectivity error (Conn) metric measures the dif-
ference between the connectivity of foreground pixels in
the predicted alpha matte and the connectivity in the true
alpha matte. This index is critical to ensure the integrity
and connectivity of foreground objects in image matting. The
connectivity error is calculated as:

Conn =7y, (p(a;, Q) — ¢(a;,Q)) an

where ¢ (a;, Q) and ¢ (&;, Q) denote the connectivity of pixel
i in the predicted and true alpha mattes, respectively, and Q
denotes the foreground region.

Latency is a key performance metric that measures the
system response time, reflecting the total time that elapses
from the request issuance to the response receipt.

C. Implementation Details

To provide alpha mattes for the comparisons of image mat-
ting quality, we integrate our HRIMF-AMR into Matteformer
[7]. All methods were implemented under the environment of
Python 3.9, PyTorch 1.8, CUDA 11.1, and cuDNN 8.0.5. We
trained and tested our model on workstation clusters—CPU:
Intel Xeon Gold 6226R CPU, GPU: NVIDIA A100 Tensor
Core GPU with 40GB of graphics memory. It should be noted
that the experiments discussed in this article (unless otherwise
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noted) were performed with the same resource configuration
of the workstation cluster, i.e., with six core CPUs and one
GPU. For fair comparison with other state-of-the-art methods,
the method integrated with HRIMF-AMR was also trained on
the Adobe Composition-1K [11] dataset.

In the training phase, input images were cropped randomly
to 1024 x 1024. The random seed was set to 8282. These
images are then subjected to random affine transformation,
cropping, and real-world enhancement according to the strat-
egy described in [6]. Affine transformations include random
rotation, scaling, cropping, and vertical and horizontal flipping.
To speed up the training process and prevent overfitting
problems, the pre-trained weights of Matteformer [7] was
loaded and the whole model was trained in an end-to-end
manner. For loss optimization, the Adam [41] optimizer with
B1 = 0.5 and B, = 0.999 was set. Further, we set the initial
optimizer learning rate to le-3, and use the warm-up strategy
for 2,500 iterations, after which we adjust the learning rate
according to the decay law of the learning rate. In the fine-
tuning phase, the optimal HRIMF-AMR model is trained in
16 batches on an NVIDIA A100 for 50,000 iterations. In the
inference phase, we input the high-resolution images and the
trimap into the network to predict high-resolution alpha mattes.

D. Comparison Results on High-Resolution Images

As described in Subsection IV-B, sum of absolute dif-
ference (SAD), mean square error (MSE), gradient error
(Grad) and connectivity (Conn) are used to assess the method
integrated with HRIMF-AMR performance when applied
to high-resolution images dataset. As outlined in Subsec-
tion IV-A, Adobe Composition-1K [11] and the portion of
low-resolution images in the Alphamatting [8] test datasets
are excluded from the comparison due to low resolution. For
fair comparison, the proposed and the state-of-the-art methods
used for the comparison are trained on the same dataset.

In the Table I, HRIMF-AMR achieves 32.65% to 80.41%
improvement in SAD and 58.46% to 94.74% improvement
in MSE compared to CNN-based image matting methods.
HRIMF-AMR achieves 9.84% to 33.79% improvements in
SAD and 37.55% to 61.44% improvements in MSE compared
to Transformer-based image matting methods. These signif-
icant advancements in SAD and MSE metrics are primarily
attributed to the contributions of Detail Difference Feature
Extractor (DDFE) and Matte Detail Resolution Difference
(MDRD) loss function. In addition, HRIMF-AMR achieves
2.19% to 88.13% improvement in Grad and 29.22% to 63.01%
improvement in Conn compared to CNN-based image matting
methods. HRIMF-AMR achieves 1.70% to 26.41% improve-
ments in Conn compared to Transformer-based image matting
methods. Although our method is inferior to DiffMatte-Swin
[28] in terms of the Grad metric, the latter consumes a
large amount of computational resources. DiffMatte-Swin [28]
requires approximately 100GB of memory to run on the
Transparent-460 [38] dataset. While our method only uses
23GB of graphic memory, enabling our method to run on
consumer GPUs. Although HRIMF-AMR underperforms than
the self-attention-based method in the Grad metrics, it out-
performs in the MSE, SAD and Conn metrics. The main
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Fig. 6. Visual comparison of our HRIMF-AMR against other methods worked on the portion of high-resolution images in the Alphamatting [8] dataset.
HRIMF-AMR demonstrates state-of-the-art performance in capturing fine details.

(a) Image (b) DIM N (c) TIMI

(d) MGM-trimap

(e) Matteformer (f) Ours (g) GT

Fig. 7. Visual comparison of our HRIMF-AMR against other methods worked on the Transparent-460 [38] dataset. GT denotes the ground truth of the alpha

matte. HRIMF-AMR excels in detail, outperforming other methods.

reasons are the difficulty of extracting edge details is caused by
image downsampling in complex foreground structure scenes,
and there is a quantitative deviation in index evaluation. This
evidence demonstrates the effectiveness of HRIMF-AMR. By
transforming the high-resolution image matting problem into a
low-resolution image matting task and a high-resolution alpha

matte refinement process, HRIMF-AMR significantly reduces
computational complexity while maintaining high accuracy.
In Fig. 6 and Fig. 7, our method is visually compared with
other state-of-the-art methods when applied to the portion
of high-resolution images in the Alphamatting [8] and the
Transparent-460 [38] test datasets, respectively. From Fig. 6, it
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TABLE I

QUANTITATIVE RESULTS WERE ACHIEVED BY TESTING OUR METHOD
AND OTHER STATE-OF-THE-ART METHODS ON THE TRANSPARENT-
460 DATASET AFTER TRAINING ON THE ADOBE
COMPOSITION-1K DATASET

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

TABLE III

ABLATION STUDY RESULTS OF THE PROPOSED DETAIL DIFFERENCE FEA-
TURE MODULE AND MATTE DETAIL RESOLUTION DIFFERENCE
Loss FUNCTION

Methods SAD MSE Grad Conn
Methods SAD MSE Grad Conn BL [7] 194.73  21.59 36.97 161.75
DIM [11] 507.71 87.28 162.10  422.63 BL + bilinear [42] 264.58  48.57 299.17 17296
GCA-Matting [23]F 372.76 67.56 91.65 301.95 BL + DDFE 174.93 13.45 56.71 157.09
A2U[12]* 350.37 56.11 106.35 292.21 BL + DDFE + MDRD | 17343 13.09 55.84 156.35
MGM-trimap [6] 257.50 31.51 57.09 220.91
TIMI-Net [14] 328.08 44.20 142.11  289.79
f/[zifz?gf;ter[zé]] ?gigg 2;]8'5793 4276().9574 ?27‘7“51 HRIMF-AMR. Specifically, the accuracy of the DIM [11]
TransMatting [38] 192.36 20.96 41.80 158.37 method is improved by about by 21.4% (SAD), 36.3%
ELGT-Matting [26]* 261.93  33.95 49.87  212.46 (MSE), 18.1% (Grad), and 19.8% (Conn), respectively. Our
o VIT;‘/M“@ [287](') sstt | s0sa7 2581 2746 15905 HRIMF-AMR also addresses memory limitations encountered
DiffMatte-SwinT (S10) [28] 37 . . 159. . . 2 . .
Ours T34 1309 5584 15635 by certain algorithms, the A“U [12] method being a prime

The involved methods were run on a workstation equipped with an Intel
Xeon Gold 6226R CPU, 30 GB memory and an NVIDIA A100 GPU with
40GB of graphics memory.

x denotes the method was ran on a workstation equipped with an Intel
Xeon Platinum 8352V CPU, 300 GB memory and an NVIDIA A800 GPU
with 80GB of graphics memory.

1 denotes the method was run on a personal computer equipped with an
Intel Core 19-10900K CPU, 128 GB memory, and 1TB virtual memory
(GPU acceleration was not available).

The experimental results of ViTMatte [27] cannot be provided because it
ran out of 1024 GB memory.

TABLE I
ADAPTABILITY RESULTS OF THE PROPOSED FRAMEWORK

Methods SAD MSE Grad Conn

DIM [11] 507.71 8728 162.10 422.63

DIM [11] + HRIMF-AMR 399.37 55.81 132.69 336.92
A?U [12] 350.37  56.11 10635 292.21

A2U [12] + HRIMF-AMR 286.52 39.64 9035  250.19
MGM-trimap [6] 25750 3151 57.09 22091
MGM-trimap [6] + HRIMF-AMR | 21241 20.03 8381  186.46
Matteformer [7] 19473 2159 3697 161.75
Matteformer [7] + HRIMF-AMR | 17343 13.09 5584  156.35

is evident that our method is still highly competitive in detail
extraction from high-resolution natural images. It should also
be noted that the images depicted in Fig. 6 have no ground-
truth as it has not been published for this test set [8]. Likewise,
because www.alphamatting.com does not provide an evaluation
interface for high-resolution test images, no quantitative results
are reported. Fig. 7 shows that, unlike other methods used in
the comparison, our method can extract fine details from high-
resolution images, such as the reflection of glass and the noise
of transparent spheres.

E. Adaptability of HRIMF-AMR

To verify the adaptability of the proposed HRIMF-AMR
framework, it has been integrated with classical methods such
as DIM [11], A%U [12], MGM-trimap [6], and Matteformer
[7]. These methods have been carefully integrated, trained, and
tested to ensure that our framework works optimally across
different matting methods.

The adaptability results of HRIMF-AMR, shown in Table II,
highlight the significant improvement in the overall per-
formance of these classical methods after integration with

example. Initially, it required more graphics memory than
was available on a workstation equipped with an Intel Xeon
Gold 6226R CPU, 30 GB memory and an NVIDIA A100
GPU with 40GB of graphics memory. However, by integrating
it with HRIMF-AMR, it was rendered capable of operating
under these constraints. In addition, when incorporated into the
HRIMF-AMR ensemble, the MGM-trimap [6] method exhibits
significant accuracy improvements, with SAD reduced by
17.9%, MSE by 36.2%, and Conn by 15.7%. The Matteformer
[7] method also demonstrates significant efficiency gains due
to the HRIMF-AMR adoption. Its accuracy increased by
10.9% (SAD), 39.4% (MSE), and 0.03% (Conn). These results
confirm that HRIMF-AMR can improve the accuracy of exist-
ing high-resolution image matting methods, while reducing
the computational resources required for processing high-
resolution images.

After integrating HRIMF-AMR into the system, a slight
increase in Grad error is observed, which could be attributed
to several underlying factors. It is conceivable that focusing
on minimizing SAD and MSE may lead to an emphasis on
overall image quality, possibly at the expense of refining edge
details. In addition, although HRIMF-AMR is designed to
optimize in a wider accuracy range, it may introduce small
artifacts in the edge regions, which may affect the smooth-
ness and accuracy of the edges, thus increasing the Grad
error. However, our experimental results show that HRIMF-
AMR has strong robustness and significantly improves the
computational efficiency and accuracy of these image matting
methods, which verifies the effectiveness of the HRIMF-AMR
ensemble.

F. Ablation Study

Ablation studies are conducted by training on the Adobe
Composition-1K [11] dataset and testing on the Transparent-
460 [38] dataset. In this experiment, we investigate three
schemes: training and testing with interpolation-based upsam-
pling and downsampling [42], utilizing our DDFE, and
incorporating MDRD loss as an additional constraint. The
results presented in Table III show that using interpolation-
based upsampling and downsampling for training and testing
results in a considerable loss of detail information in high-
resolution images, which is unacceptable for a dense predictive
task such as high-resolution image matting. The reported
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Fig. 8. Examples of paired low-resolution predicted alpha matte, high-
resolution predicted alpha matte on the error correction. (a) high-resolution
image, (b) predicted low-resolution alpha mattes obtained by the low-
resolution image matting branch in HRIMF-AMR, (c) predicted high-
resolution alpha mattes obtained by HRIMF-AMR and (d) high-resolution
ground truth.

results thus reflect the effectiveness of DDFE and MDRD com-
prising our HRIMF-AMR. The DDFE significantly reduces
the SAD and MSE values, reflecting the improved accuracy
in capturing details. The addition of MDRD loss function
further refines these metrics, indicating its subtle but positive
effect on detail. As the Grad metric evaluates the edge quality
of a predicted alpha matte by comparing the gradient of
the predicted alpha matte with that of the true alpha matte,
it initially increased with the addition of DDFE, suggesting
that the edge smoothness is temporarily reduced. Although
incorporating MDRD loss has a positive impact on improving
the balance between detail preservation and edge smoothing,
there is still scope for further optimization to achieve desirable
edge quality. The Conn metric, which is critical to ensuring
the integrity and connectivity of foreground objects, shows
improvements over the DDFE module, highlighting the role
of MDRD in preserving foreground connectivity. The MDRD
loss further optimizes the Conn metric and strengthens the
ability of the framework to maintain the alpha matte structure
consistency.

G. Limitation

To assess error correction ability of HRIMF-AMR, we
compared the alpha matte quality between the low-resolution
branch and the final high-resolution output using mean abso-
lute difference (MAD) and mean square error (MSE) metrics
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TABLE IV

QUANTITATIVE RESULTS OF ERROR CORRECTION CAPABILITY OF THE
PROPOSED FRAMEWORK

Alpha mattes MAD MSE
Predicted low-resolution alpha mattes 118.08  26.23
Predicted high-resolution alpha mattes 67.31 13.09

Predicted low-resolution alpha mattes were obtained by the
low-resolution image matting branch in HRIMF-AMR.
Predicted high-resolution alpha mattes were obtained by
HRIMF-AMR.

TABLE V

A COMPLEXITY ANALYSIS OF OUR METHOD ON THE
TRANSPARENT-460 DATASET

Method Params Fﬁ\(])g};’s L'ﬁ\e]rgléy MSE

DIM [11] 130.6M  7914.14 G 2.39 s 87.28
A2U[12] 8. 1M 3,262.56 G 3395 56.11
MGM-trimap [6] 29.7M 284.30 G 275 s 31.51
TIMI-Net [14] 34.89M 45.19 G 1.30 s 44.20
Matteformer [7] 44.81M  1,744.26 G 3.94 s 21.59
ELGT-Matting [26] 53.0M 1,708.03 G 2.76 s 33.95
Ours 44.82M 498.56 G 2.29 s 13.09

on the Transparent-460 [38] dataset. MAD and MSE are two
resolution-independent metrics, and the MAD is defined as
1073, For the low-resolution alpha matte, the metrics were
computed against a downsampled ground truth using the same
ratio as in the low-resolution branch. The results show that
HRIMF-AMR improves MAD by 43% and MSE by 50.1%
over the low-resolution branch, demonstrating its ability to
correct inaccuracies (Table IV, Fig. 8). However, the method
has limitations: (1) Severe errors in the low-resolution alpha
matte, particularly in images with similar foreground and back-
ground characteristics (e.g., meshes, holes, or lines), cannot
be fully corrected, as downsampling may cause critical detail
loss. (2) Performance degradation occurs when low-resolution
alpha mattes contain significant errors, as HRIMF-AMR’s
refinement depends on the quality of the low-resolution alpha
matte, potentially increasing gradient error by nearly 50%
compared to the baseline in challenging cases.

H. Complexity Analysis

This experiment studies the complexity of HRIMF-AMR.
The FLOPs, number of parameters, and average latency of
the involved methods were computed on the Transparent-460
[38] dataset. The average FLOPs were obtained by calculating
the FLOPs for 1000 images in the Transparent-460 [38]
Test dataset. The average latency of the involved methods
was obtained by performing them on 1000 images in the
Transparent-460 [38] Test dataset. In addition, MSE metric
was used in the comparison to demonstrate their trade-off
between computational complexity and matting accuracy. The
involved methods were run on a workstation equipped with
an Intel Xeon Platinum 8352V CPU, 300 GB memory, and an
NVIDIA A800 GPU with 80 GB of graphics memory.

The experimental results shown in Table V demonstrate that
HRIMF-AMR outperforms almost all involved image matting
methods in terms of FLOPs and average latency. Specifically,
HRIMF-AMR demonstrates significantly fewer FLOPs than
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DIM [11], A%U [12], Matteformer [7] and ELGT-Matting [26].
Although HRIMF-AMR does not surpass MGM-trimap [6] in
terms of FLOPs, it achieves lower average latency and MSE.
Similarly, while HRIMF-AMR is less efficient than TIMI-Net
[14] in both FLOPs and average latency, it maintains a lower
MSE. A particularly noteworthy observation is that while
HRIMF-AMR and Matteformer possess a comparable number
of parameters, HRIMF-AMR outperforms Matteformer by
71.42% in FLOPs on the Transparent-460 [38] dataset. These
results collectively demonstrate that HRIMF-AMR achieves
an appropriate balance between computational efficiency and
performance in high-resolution image matting.

V. CONCLUSION

In this work, we introduced the high-resolution image
matting framework based on alpha matte refinement from low-
resolution to high-resolution (HRIMF-AMR), addressing the
challenges associated with the low quality and efficiency in
high-resolution image matting. By decomposing the problem
into low-resolution matting and high-resolution refinement,
our approach reduces its complexity. Appropriate existing
methods are leveraged for the initial low-resolution matting.
For the refinement, the Detail Difference Feature Extractor
(DDFE) is introduced to capture fine details by comparing
high-resolution and low-resolution image features. The matte
is then enhanced using these extracted features. The novel
Matte Detail Resolution Difference (MDRD) loss function is
employed for training the DDFE, ensuring that the extracted
features are aligned with the matte quality. The experimental
results reported here demonstrate that the method integrated
our HRIMF-AMR outperforms state-of-the-art methods when
applied to high-resolution datasets in terms of Sum of Absolute
Differences (SAD), Mean Square Error (MSE), and Connec-
tivity error (Conn), validating its effectiveness and superiority
in high-resolution image matting.

Our future work will involve designing novel framework
components that can accurately extract information about
discontinuous foreground changes when the background is
similar, and can accurately capture detailed features when
computational resources are limited.
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