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Enhancing Transparent Object Matting Using
Predicted Definite Foreground and Background

Yihui Liang , Qian Fu, Kun Zou , Guisong Liu , Member, IEEE, and Han Huang , Senior Member, IEEE

Abstract— Natural image matting is a widely used image
processing technique that extracts foreground by predicting the
alpha values of the unknown region based on the alpha values
of the known foreground and background regions. However,
existing image matting methods may not yield the most optimal
results when applied to images containing transparent objects
because the known foreground region is small or even absent.
To address this shortcoming, in this paper, we propose a novel
method named Transparent Object Matting using Predicted
Definite Foreground and Background (TOM-PDFB), which can
explore and utilize the definite foreground and background
in the unknown region. For this purpose, a newly developed
foreground-background confidence estimator is applied to predict
the confidence level of the definite foreground and the definite
background, thus providing the priors required for transparent
object matting. Next, foreground-background guided progressive
refinement network developed as a part of this work is adopted
to incorporate the estimated definite foreground and background
into the alpha matte refinement process. Extensive experimental
results demonstrate that the TOM-PDFB outperforms state-of-
the-art methods when applied to transparent objects. Project
page: https://github.com/yihuiliang/TOM-PDFB.
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I. INTRODUCTION

IMAGE matting is a critical task within the field of computer
vision, with a wide range of applications in image or video

editing, compositing, and film post-production [1]. It involves
accurately separating the foreground from the background in
an image by estimating the opacity of the foreground, which is
also known as alpha matte. For this purpose, a natural image is
represented as a convex combination of the foreground and the
background component, allowing the image matting problem
to be defined mathematically as follows:

Ii = αi Fi + (1− αi )Bi , αi ∈ [0, 1] (1)

where Ii , Fi , and Bi represent the color values of the input
image, the foreground, and the background at pixel i , respec-
tively, and αi denotes the opacity of the foreground at pixel i .
However, as only the value of Ii is known, the image matting is
an ill-posed problem. To address this issue, trimap is provided
as an additional input to impose further constraints on the
image matting problem. This is achieved because a trimap
divides the image into three non-overlapping regions, namely
the known foreground region (where the alpha value is known
to be 1), the known background region (where the alpha value
is known to be 0), and the unknown region (where the alpha
value is unknown and needs to be determined). The unknown
region comprises a small portion of definite foreground and
definite background, along with semi-transparent regions.

Predicting the alpha matte for transparent objects, such as
glass, plastic bags, fog, water drops, etc. is a challenge for
the standard image matting methods due to the corresponding
trimaps will consist of very few or even no known foreground
region [2]. As in most images with transparent elements, only a
small number of pixels are associated with definite foreground,
which may be scattered across the image, identifying definite
foreground when generating a trimap is difficult. Moreover,
as shown in Figure 1(a) and Figure 1(b), the known foreground
region may not be helpful in estimating the alpha matte of
transparent objects. However, transparent object matting is
crucial, not only because transparent objects frequently feature
in images, but also because enhancing the matting performance
of transparent objects can benefit non-transparent objects as
well [2].

Traditional matting methods include sampling-based meth-
ods which sample the known region and estimate each alpha
value by selecting a foreground color and a background
color from the sample set [3], [4], [5], and propagation-based
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Fig. 1. An example showcasing the comparative results of transparent object matting using both the trimap and the trimap integrated with definite foreground
and background from the unknown region: (a) the input image; (b) the trimap; (c) the definite foreground in the unknown region; (d) the definite background in
the unknown region; (e) the resulting alpha matte by using (b); (f) the resulting alpha matte by using (b) incorporated with (c) and (d); and (g) the ground-truth
alpha matte.

methods which propagate the alpha values from the known
region to the unknown region [6], [7], [8], [9]. As such
approaches rely on low-level features such as color and
position [3], [4], [6], they are unsuitable for transparent image
matting, where the background has a substantial influence on
the appearance of transparent objects, leading to pronounced
color similarities. To overcome this issue, deep learning
matting methods are increasingly being used due to their capa-
bility to automatically discover representations from extensive
datasets. The currently available deep learning matting meth-
ods can be categorized into trimap-free and trimap-based
methods. As their name suggests, trimap-free methods uti-
lize alternative information to that typically provided by
a trimap to identify the foreground to be extracted [10],
[11], [12], or extract specific foreground objects based on
a single image [13], [14], [15], [16]. However, due to the
absence of image-specific definite foreground and definite
background information, the matting results are typically
inadequate. In contrast, trimap-based deep learning methods
utilize information from the known regions to predict the alpha
values of the unknown region. Neural networks, including
convolutional neural networks (CNNs), are typically used for
this purpose [1], [17], [18], [19], [20], [21] even though
they do not yield satisfactory results when applied to images
containing transparent objects. This issue arises because a
significant portion of a transparent object is usually located
in the unknown region and numerous pixels comprising such
objects are situated at a significant distance from the known
regions. Thus, owing to the small effective reception fields of
neural networks, many pixels in the unknown region cannot
be correlated to the distant known features [2]. Recently,
given the remarkable success of the transformer model in
natural language processing (NLP), there has been a surge

of efforts to incorporate Transformers into visual tasks [22],
[23], [24]. Vision transformers exhibit distinct advantages over
CNNs in capturing global image information through self-
attention mechanisms. This has led to endeavors to integrate
vision transformers into image matting tasks [2], [25]. These
transformer-based methods have been successfully used to
guide the model in evaluating the similarity between known
and unknown regions to generate self-attention, thus aiding
the alpha matte prediction. In this context, MatteFormer [25]
is particularly noteworthy, as it incorporates the mean fea-
tures from all three trimap regions (foreground, background,
and unknown) as new queries in local windows to evaluate
similarity. On the other hand, in TransMatte [2] the trimap is
redesigned as a tri-token map, aiding the model in distinguish-
ing the known and unknown regions during the assessment of
similarity and relatedness. In other words, unlike the CNN-
based methods, these transformer-based approaches enable
unknown-region pixels to capture similar long-range features
from known regions, enhancing the transparent objects matting
performance. Nevertheless, the limited known foreground and
subtle similarity between regions pose a challenge, limiting
the full potential of self-attention mechanisms. This obstacle
persists as a challenge for these transformer-based methods in
matting transparent objects.

The definite foreground and background in the unknown
region play an important role in transparent object matting.
Figure 1 compares the alpha mattes obtained by popular image
matting methods on the original trimap and on the trimap
that includes the definite foreground and background in the
unknown region. The improvement of the alpha matte quality
demonstrates that the definite foreground and background in
the unknown region significantly contribute to transparent
object matting.
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This observation has motivated the present study, as a part
of which a novel method named Transparent Object Matting
Using Predicted Definite Foreground and Background (TOM-
PDFB) was developed to utilize the definite foreground and
background within the unknown region. TOM-PDFB intro-
duces two novel modules: the Foreground-Background Con-
fidence Estimator (FBCE) and the Foreground-Background
Guided Progressive Refinement Network (FB-PRN). The
FBCE predicts the foreground and background confidence
maps which provide the confidence levels that the pixel in
the unknown region is the definite foreground pixel and
definite background pixel, respectively. FB-PRN predicts fore-
ground and background at multiple resolutions according to
the information of the definite foreground and definite back-
ground estimated in the previous decoder layers, aiming to
progressively refine the alpha matte. Thus, the capabilities of
TOM-PDFB result in a high-quality alpha matte for transpar-
ent objects.

Accordingly, the contributions of this work can be summa-
rized as follows:
• We show that the definite foreground and definite back-

ground in the unknown region play an important role in
transparent object matting.

• We present a novel method named TOM-PDFB that pre-
dicts and exploits the definite foreground and background
within the unknown region. TOM-PDFB calculates the
confidence level of a pixel in the unknown region belong-
ing to the definite foreground or background and use it
to estimate and refine the alpha mattes.

• The experimental results on the Composition-1k and
Transparent-460 datasets demonstrate that TOM-PDFB
achieves excellent performance in the transparent object
matting task and outperforms the state-of-the-art image
matting methods.

The paper is structured as follows: In Section II, we review
related work, followed by the description of our Methodology
in Section III. We then present and discuss the experimental
results in Section IV and finally, conclude the paper in
Section V.

II. RELATED WORK

A. Traditional Matting

Traditional matting methods, based on the linear com-
bination equation shown in Eq. 1, can be classified
into sampling-based and propagation-based methods. The
sampling-based methods sample pixels from the known fore-
ground and known background regions to find candidate
foreground and background color pairs for each pixel in the
unknown region. In addition, they use a metric to deter-
mine the best foreground and background combination to
estimate the alpha value [3], [4], [5]. On the other hand,
the propagation-based methods, also known as affinity-based
methods, estimate the alpha matte by propagating alpha values
from the known foreground and background regions to the
unknown region based on the affinities or similarities between
pixels [6], [7], [8], [9].

As these methods heavily rely on the known foreground
and background low-level features such as color and position,

they cannot accurately matte transparent objects character-
ized by limited known definite foreground regions. Moreover,
as transparent objects are typically semi-transparent or highly
transparent, the background has a significant impact on their
appearance, resulting in high color similarity. This similarity
in low-level features makes it difficult for traditional methods
to effectively distinguish transparent objects from the back-
ground.

B. Deep Learning Matting

In recent years, deep learning matting methods have made
remarkable progress by effectively leveraging semantic infor-
mation contained in the image, which enables a better
understanding of transparent object representation compared
to that attained via traditional methods.

Convolutional neural networks (CNNs) play a crucial
role in this context, as they utilize semantic features from
the known regions to predict the alpha values of the
unknown regions. For instance, [1] released the Composition-
1K dataset and introduced the DIM, a two-stage architecture
for directly predicting alpha mattes. On the other hand,
SampleNet [26] uses the known foreground and background
information to supervise the network and improve prediction
accuracy. IndexNet [19] leverages index-guided methods for
up-sampling and down-sampling to enhance the prediction
details. In contrast, GCA-Matting [17] incorporates a Guided
Contextual Attention module that uses the trimap as a guide
to propagate high-level opacity information using learned low-
level affinity. TIMI-Net [18] fuses global information from
the RGB image and trimap to improve the accuracy of alpha
mattes. In this context, it is also worth noting methods that
aim to improve their generalizability to coarse trimaps. For
example, the strategies proposed in [27] and [28] incorpo-
rate trimap adaptation as an auxiliary task coupled to the
matting network, with the goal of enhancing the semantic
extraction of the coarse trimap by the matting network. Recent
approaches, on the other hand, incorporate additional super-
visory information. For example, ContextNet [29] employs
two encoder networks to extract local features and global
context information. It simultaneously estimates both the fore-
ground and alpha matte. TOM-Net [30], [31] is designed
for environmental matting task that aims to matting specific
transparent objects with refractive and reflective properties.
It utilizes the environmental matting model to estimate the
object mask, the attenuation mask, and the refractive flow field
for an input image [32]. Due to the difference between the
environmental matting and the natural image matting tasks, the
output produced by TOM-Net is significantly different from
natural image matting methods. Therefore, TOM-Net is not
suitable for natural image matting. FBAMatting [20] predicted
the foreground, the background, and the alpha matte simulta-
neously, and uses a foreground and background fusion loss that
acts as a constraint on the prediction results. The experimental
results reported in the literature demonstrate its ability to
extract transparent objects. Some methods aim to estimate the
alpha matte of various foreground objects, including transpar-
ent objects, SIM [21] clustered 20 different matting classes
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and introduced a semantic trimap that consists of confidence
maps for each matting class. However, the literature [33],
[34], [35], [36] indicates that CNNs analyze salient regions
within an image on an individual basis, which overlooks the
relationships between these regions and can compromise the
integrity of the object as a whole. These methods do not
utilize the image features outside their reception fields due
to which, accordingly [37], more than 50% of pixels in the
unknown regions cannot be correlated to pixels in the known
regions in the range of the effective reception fields of neural
networks. This limitation makes accurately predicting the
alpha matte of transparent objects difficult, especially in cases
where unknown regions comprise a significant portion of the
trimap.

To mitigate these limitations, building upon the suc-
cess of ViT [22] and related works [23], [24], [38], [39],
researchers have started applying transformers to typical
vision tasks. Vision transformers are characterized by powerful
self-attention mechanisms that are particularly valuable for
capturing global attention across the entire image, thus offering
advantages over CNNs. Transformer-based matting methods
have been shown capable of learning global semantic features
and capturing distant known information to guide the model
in evaluating the similarity between known and unknown
regions to generate attention for alpha matte prediction [2],
[25]. For instance, Park [25] proposed a Prior-Attentive Swin-
Transformer block that incorporates global mean features
which from the known foreground, known background, and
unknown regions as additional queries into the self-attention
mechanism in order to generate attention by evaluating similar-
ity. Hu [40] established the correlation between unknown and
known regions by providing global context features to the local
window self-attention. Cai [2] introduced the Transparent-
460 dataset, a high-resolution matting dataset focused on
transparent objects, and presented TransMatte, a transformer-
based approach. These researchers redesigned the trimap as a
tri-token map, effectively assisting the model in distinguish-
ing features from known and unknown regions during the
assessment of similarity by the proposed self-attention mech-
anism. The results obtained by TransMatte [2] demonstrate
the superiority of transformer-based methods over CNN-based
alternatives in transparent object matting tasks due to the
ability of pixels in the unknown region to capture similar
long-range features from the known regions. However, as most
transparent objects consist of a limited known foreground and
exhibit subtle similarity between known and unknown regions,
this limitation presents challenges for these transformer-based
methods.

Further advances have also been made with the aim of
reducing the resource burden associated with drawing trimaps,
giving rise to trimap-free approaches. Trimap-free methods
can predict alpha mattes without using a trimap, instead
relying on a background image [10], [11], scribble informa-
tion [12], or coarse mask [41], [42]. Some of these methods
only require a single RGB image as input [13], [14], [15],
[16], [43]. However, their applicability is limited to specific
types of images with opaque foregrounds [43]. Moreover,
the accuracy of these trimap-free methods is still inferior to

Fig. 2. Overall pipeline of transparent object matting using predicted definite
foreground and background (TOM-PDFB).

that of trimap-based methods [12], [21], [25], suggesting that
the definite foreground and background information from the
trimap is beneficial.

III. METHODOLOGY

The core concept of TOM-PDFB lies in leveraging the
definite foreground and background within the unknown
region to improve the matting of transparent objects.
As illustrated in Figure 2, TOM-PDFB consists of four
main modules: Foreground-Background Confidence Estimator
(FBCE), the transformer encoder, the CNN decoder, and
foreground-Background Progressive Refinement Network(FB-
PRN). FBCE estimates the confidence levels for definite
foreground and background, producing a foreground confi-
dence map (FCM) and a background confidence map (BCM),
thus providing additional information of the unknown region
for alpha estimations. The transformer encoder extracts fea-
tures from the image and the confidence levels for definite
foreground and background. The decoder generates alpha
mattes, foreground image, and background image according
to the features obtained by the transformer encoder. FB-PRN
progressively refines the alpha mattes generated at different
feature levels from the decoder to produce the final prediction.

The details of FBCE and FB-PRN are presented in
subsection III-A and III-B, respectively. The transformer
encoder leverages the Swin-Transformer architecture [23],
which has been shown to yield promising results when
applied in mainstream vision tasks with a hierarchical archi-
tecture design and the shifted window scheme [25]. The
variant-ResNet decoder introduced in [41] is employed here,
which involves convolution layers and upsample layers.

A. Foreground-Background Confidence Estimator

The Foreground-Background Confidence Estimator(FBCE)
is designed to estimate confidence levels of the definite
foreground and background in the unknown region of the
trimap, which provides additional information on the unknown
region, i.e. FCM and BCM, for the subsequent image matting
modules. An example of FCM and BCM is given in Figure 4.
FCM and BCM indicates the confidence levels at which
pixels were determined to belong to the definite foreground or
definite background, respectively. In 4, whiter colors indicate
higher confidence levels.

The network architecture of FBCE is a encoder-decoder
structure and the VGG-16 [44] is utilized as encoder due to
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Fig. 3. Overall framework of our proposed TOM-PDFB. The foreground-background confidence estimator(FBCE) predicts the confidence level of definite
foreground and definite background. The foreground-background progressive refinement network (FB-PRN) predicts the alpha matte, as well as the foreground
and background, at multiple resolutions. The alpha matte obtained from the lower-resolution prediction is used as guidance for the subsequent prediction.

Fig. 4. An example of the foreground confidence map (FCM) and the
background confidence map (BCM) predicted by the foreground-background
confidence estimator (FBCE).

its simplicity and high effectiveness. The decoder of FBCE
network consists of five pooling layers and convolutional layer
groups. A foreground-background confidence loss function is
designed to trained the network.

The foreground-background confidence loss function
involves the foreground confidence loss term LF and the
background confidence loss term LB , which can be formulated
as follows:

LF BC E = LF + LB, (2)

where LF and LB measure the error of foreground confidence
estimation and that of background confidence estimation,
respectively.

Equation 3 provides the definition of LF .

LF = −
∑

i

µi c
f

i (x̂i log p f
i + (1− x̂i ) log (1− p f

i )) (3)

where p f
i is the predicted confidence level of the definite

foreground at pixel i . x̂i is set to 1 for the pixel which alpha
value is greater than 0 in unknown region of the trimap and is
set to 0 for the pixel which alpha value is 0 in the unknown
region of the trimap. c f

i is a penalty factor that adaptively
adjusts the degree of penalty according to the pixel type, which

can be formulated as:

c f
i =

{
α̂i 0 < α̂i < 1
1 otherwise

(4)

where α̂i denotes the ground-truth alpha value of pixel i .
Considering that the goal of FBCE is to accurately predict the
definite foreground and background, c f

i is designed to severely
penalize the error of definite foreground/background estima-
tion. We note that semi-transparent pixels can also provide
image matting information. When their alpha value is closer
to 1, their features are similar to that of the definite foreground.
Therefore, c f

i also penalize the error in the semi-transparent
pixel according to the value of α̂i . When the pixel is a definite
foreground/background pixel, the value of c f

i is set to 1. When
the pixel is a semi-transparent pixel, the value of c f

i decreases
with the value of the α̂i , reducing the value of the foreground
confidence loss term.

The µi in Equation 3 is the weight assigned in order to adapt
the change of the number of different types of pixels in the
unknown region of the trimap for the foreground confidence
loss and can be defined as:

µi =


clamp(

√
|F |
|S|

), i ∈ F

clamp(

√
|S|
|F |

), i ∈ S

(5)

clamp(φ) = min(max(φ, 0.1), 10) (6)

where | ∗ | denotes the Cardinality of set *, F , B and S are
three sets obtained by categorizing the pixels in the unknown
region of the trimap into three distinct subsets. Pixels with an
alpha value of 1 constitute the definite foreground pixel set,
represented by the set F . Pixels with an alpha value between
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0 and 1 constitute the semi-transparent pixel set, denoted as
S. Pixels with an alpha value of 0 constitute the definite
background pixel set, denoted as B.

When |S| significantly surpasses |F |, the pixels in F ,
i.e. the definite foreground pixel, may provide limited local
appearance information. In such instances, focusing on the
pixels in the S set becomes crucial to identify pixels with
appearances similar to the foreground. In this case, paying
attention to the pixels in the S set may benefit model training.
Conversely, when the number of pixels in F surpasses those
in S, the pixel in the F set, i.e. the definite foreground pixel,
can provide reliable and accurate appearance information.
In this case, focusing on the pixel in the F set may allow
the FBCE network to learn accurate foreground confidence
features. Therefore, the value of µi is designed to changes
according to the number of different types of pixels in the
unknown region.

Similarly, the definition of the background confidence loss
term LB can be given by Eq. (7).

LB = −
∑

i

νi cb
i (ŷi log pb

i + (1− ŷi ) log (1− pb
i )), (7)

where pb
i is the predicted confidence level of the definite

background, and ŷi is set to 1 for the pixel which alpha value
is less than 1 in unknown region of the trimap and is set to
0 for the pixel which alpha value is 1 in the unknown region
of the trimap. cb

i is a penalty factor that adaptively adjusts the
degree of penalty according to the pixel type, which can be
formulated as:

cb
i =

{
1− α̂i 0 < α̂i < 1
1 otherwise

(8)

Here, νi denotes the adaptive weight for the background
confidence map prediction which is similar to µi and is
obtained using the expressions given in Eq.9 below.

νi =


clamp(

√
|B|
|S|

), i ∈ B

clamp(

√
|S|
|B|

), i ∈ S

(9)

B. Foreground-Background Progressive Refinement Network

The Foreground-Background Progressive Refinement Net-
work (FB-PRN) is designed to leverage the definite foreground
and background information from the image matting features
provided by the CNN decoder. Its design is inspired by the
Progressive Refinement Network (PRN) introduced by [41].
In contrast to PRN, FB-PRN specifically focuses on utilizing
the definite foreground and background information to target
the semi-transparent regions for improving the overall quality
of the alpha matte for transparent objects.

As illustrated in Figure 3, The FB-PRN consists of multi-
ple Foreground-Background Progressive Refinement Modules
(FB-PRMs). The FB-PRMs are set to work on the decoder
layers with output resolutions of 1/8, 1/4, and 1/1 of the
matting network input resolution H ×W [41], denoted as 1/8,
1/4, and 1/1 decoder layers, respectively. These decoder layers

Algorithm 1 Algorithm of Foreground-Background Pro-
gressive Refinement Network (FB-PRN)
Input: the height and width of the image: H, W , the

foreground, background and alpha matte
estimation outputs of the CNN decoder layers
with output resolutions of 1/8, 1/4, and 1/1 of the
input resolution: f ′0, b′0, α

′

0, f ′1, b′1, α
′

1, f ′2, b′2, α
′

2,
the ground-truth foreground: f̂ , the ground-truth
background: b̂, the ground-truth alpha matte: α̂.

Output: The predicted alpha matte:α2, the loss function
of the matting network:Ltotal

1 LF B ← 0 ;
2 Lα ← 0 ;
3 s0 ← 8, s1 ← 4, s2 ← 1; // initialize the scale factor sl

of the lth layer
4 for l = 0 to 2 do
5 // Step 1: predict the alpha matte at the lth layer of

FB-PRN
6 if l = 0 then
7 Initialize αbase

l ;

8 else
9 αbase

l ← αl−1 ;

10 α
′

l ← Up(α
′

l , (H, W )) ;
11 gα

l ← fαbase
l →gα

l
;

12 αl ← α
′

l ⊙ gα
l + αbase

l ⊙ (1− gα
l );

13 // Step 2: calculate training loss for the lth layer of
FB-PRN

14 wl ← l + 1
15 Lα ← Lα + wlL(l)

α (α̂ · gα
l , αl · gα

l );
16 αbase

l ← Down(αbase
l , (⌊ H

sl
⌋, ⌊W

sl
⌋)) ;

17 f̂l ← Down( f̂ , (⌊ H
sl
⌋, ⌊W

sl
⌋)) ;

18 b̂l ← Down(b̂, (⌊ H
sl
⌋, ⌊W

sl
⌋)) ;

19 g f
l ← fαbase

l →gα
l

;
20 gb

l ← fαbase
l →gb

l
;

21 LF B ← LF B + (Ll1( f̂l · g
f

l , f ′l · g
f

l )+

Ll1(b̂l · gb
l , b′l · g

b
l ));

22 Ltotal = Lα + LF B ;
23 return α2, Ltotal ;

are referred to as the 0th, 1st, and 2nd layers of the FB-PRN,
respectively.

The FB-PRN procedure is described in Algorithm 1 and the
symbols used in FB-PRN are defined in Table I. As shown
in Algorithm 1, the decoder layers produce the provisional
alpha matte α′l , the provisional foreground image f ′l and the
provisional background image b′l for each layer in FB-PRN.
FB-PRM refines the alpha matte of at each layer according
to the resulting α′l , f ′l and b′l , and calculates the loss for
training. At the 0th layer of the FB-PRN, αbase

l is initialized
by assigning a value of 1 to pixels corresponding to the
known foreground region in the trimap, a value of 0 to pixels
corresponding to the known background region, and a value
of 0.5 to pixels corresponding to the unknown region. The
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TABLE I
DEFINITIONS OF SYMBOLS USED IN ALGORITHM 1

provisional alpha matte α′l is up-sampled to the size of H×W
and alpha self-guidance mask gα

l is calculated as follows [41]:

fαbase
l →gα

l
(x, y) =

{
1, if 0 < αl−1(x, y) < 1
0, otherwise

(10)

Subsequently, the estimated alpha matte αl of the lth layer is
generated as described in Line 12 of Algorithm 1 by using
the alpha self-guidance mask gα

l to weight the sum of the
provisional alpha matte α′l and αbase

l .
The alpha loss at the lth layer L(l)

α is computed by compar-
ing the estimated alpha matte of this layer, i.e. αl , with the
ground truth alpha matte α̂. The alpha self-guidance mask gα

l
is multiplied by αl and α̂ respectively to strengthen the loss of
key regions. The alpha loss L incorporates three loss functions
[41]: composition loss [1] (Lcomp); Laplacian loss [29] (Llap)
and l1 regression loss (Ll1). The definition of l1 regression
loss can be described mathematically as:

Ll1(ŷi , yi ) =
1
N

N∑
i=1

|ŷi − yi |, (11)

where N represents the number of pixels in the input yi , and
ŷi is the ground truth. Denoting the ground-truth alpha matte
as α̂ and the predicted alpha matte as α, the alpha loss function
is obtained using the expression below:

L(α̂, α) = Ll1(α̂, α)+ Lcomp(α̂, α)+ Llap(α̂, α) (12)

The alpha loss at each layer is weighted and accumulated,
as illustrated in Line 15 of Algorithm 1. The accumulation is
assigned progressively increasing weights wl to strengthen the
penalty for alpha matte errors at the higher layers of FB-PRN
layers, whereby the value of wl is set in line with the approach
used for [41]. In addition, the foreground-background loss
is calculated to enhance the supervision of the definite fore-
ground and background in the current layer. The αbase

l , f ′ and
b′ are down-sampled to the size of ⌊ H

s ⌋ × ⌊
W
s ⌋ to align their

size. The foreground guide mask g f
l and background guide

mask gb
l are generated according to αbase

l , as illustrated in
Equation 13 and 14, respectively.

f
αbase

l →g f
l
(x, y) =

{
0, if αbase

l (x, y) = 0
1, otherwise

(13)

fαbase
l →gb

l
(x, y) =

{
0, if αbase

l (x, y) = 1
1, otherwise

(14)

As shown in Line 21 of Algorithm 1, the foreground and
background loss LF B at the lth layer includes the sum of the
l1 regression loss (Ll1) for both foreground and background
estimation. The l1 regression loss (Ll1) is depicted in Eq.
(11) and g f

l and gb
l are applied to constrain the measurement

of foreground and background estimation error within the
non-background and non-foreground region in αbase

l , respec-
tively. The total loss can be obtained by adding the Lα with
LF B

The outputs of Algorithm 1, i.e. the α2 and Ltotal , are used
as the predicted alpha matte and the loss for training the TOM-
PDFB network. respectively.

At the 1st and 2nd layer of the FB-PRN, the αbase
l is

initialized by the alpha matte estimated at the previous layer
αl−1. The remaining steps are identical to those described for
the 0th layer of FB-PRN.

FBCE is trained separately to provide accurate foreground
and background confidence maps for FB-PRN. In the next
step, the transformer encoder, the CNN decoder and FB-PRN
are trained simultaneously, utilizing the foreground and back-
ground confidence maps supplied by the pre-trained FBCE
as input. This training strategy facilitates the learning from
foreground and background confidence maps provided by
FBCE and allows the transformer encoder, the CNN decoder
and FB-PRN to benefit from the additional information about
the definite foreground and background.

IV. EXPERIMENTS

A. Dataset

Three image matting datasets were utilized to evaluate the
performance of the proposed method, including Composition-
1k [1], Distinction-646 [15] and Transparent-460 [2].
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Composition-1k dataset [1] is recognized as one of the most
popular image matting datasets, providing both a training set
and a test set. The training set of Composition-1k dataset
consists of 431 foreground object images with ground truth
alpha mattes. Training images are generated using the data
augmentation schemes introduced in GCA [17] in which back-
ground images for training are randomly sampled from the
MS COCO dataset [45] and trimaps for training are generated
based on alpha mattes. The test set comprises 50 unique
foreground images, each composited with 20 background
images pre-defined from the PASCAL VOC2012 dataset [46]
using the composition method provided with the test set,
which follows the formula shown in Eq. (1) [47], resulting
in 1000 test images. The corresponding trimaps are provided
in the test set of Composition-1k dataset.

Distinction-646 [15] dataset includes 1,000 test images
obtained using a similar methodology as Composition-1k test
set. However, this dataset was released without official trimaps
or other types of guidance. Therefore, the trimap generation
method introduced in [1] was employed to generate trimaps
from the ground-truth alpha mattes. Specifically, morpho-
logical dilation and erosion operations were applied to the
region with a value of 0 and the region with a value of 1 in
ground-truth alpha mattes with the random size of structural
element ranging from 1 to 29.

Transparent-460 [2] mainly feature of transparent objects as
the foreground, including water drops, jellyfish, plastic bags,
glass, and crystals, among others. The test set consists of 1,000
images obtained using a similar methodology to that adopted
in the Composition-1k test set. The dataset exhibits an average
resolution of 3820 × 3766. Due to the rich details brought by
the high resolution, this dataset was utilized in the experiments
to evaluate the image matting methods performance when
applied to images containing transparent objects.

B. Evaluation Metrics

For the evaluation purposes, four metrics defined in [48]
were utilized, namely Sum of Absolute Difference (SAD),
Mean Squared Error (MSE), Gradient (Grad) and Connectivity
(Conn).

SAD and MSE are widely used to measure the difference
between the predicted alpha values and the ground-truth alpha
values for each pixel. On the other hand, Grad and Conn
metrics are calculated for assessing the visual quality of the
alpha matte predictions. Grad measures the gradient error
and Conn evaluates the connectivity error difference between
the alpha matte image and its corresponding ground-truth,
as shown below:

S AD =
n∑
i

|αi − α̂i | (15)

M SE =
1
n

n∑
i

(αi − α̂i )
2 (16)

Grad =
∑

i

(∇αi −∇α̂i )
q (17)

Conn =
∑

i

(ϕ(αi , �)− ϕ(α̂i , �))p (18)

In the expression given above, n represents the number
of pixels in the unknown region of the trimap. For pixel
i , αi denotes the predicted alpha value, and α̂i represents
the ground-truth alpha value. The function ϕ measures the
connectivity of pixel i with respect to the source region �.
The source region � represents the largest connected region
that is completely opaque in both the predicted alpha matte
and the ground-truth alpha matte. Finally, the exponents q and
p are custom parameters. Note that the MSE values reported
in this work are scaled down by a factor of 1e-3 to facilitate
readability.

C. Implementation Details

The proposed method was implemented using PyTorch [49].
The network was initialized with the Tiny model of
Swin-Transformer pretrained on ImageNet [50]. During train-
ing, the network input size was set to 512 × 512, batch size
was set to 20, and Adam optimizer with β1 = 0.5 and
β2 = 0.999 was adopted. The learning rate was initialized to
4 × 10−4. The training consisted of 200, 000 iterations, with
the first 10, 000 treated as a warm-up, and the learning process
exhibited a cosine learning rate decay. The data augmentation
followed a similar approach as MatteFormer [25]. The state-
of-the-art approaches tested as a part of the experiments were
trained according to their respective suggested methods. All
experiments were run on a server with a Intel Xeon Gold 5218
CPU and two NVIDIA GeForce RTX 4090 GPUs.

D. Experiments on Transparent Objects

To verify the utility of TOM-PDFB in boosting the matting
performance when applied to images containing transparent
objects, we applied it to two types of objects and compared
the output to that yielded by the state-of-the-art image matting
methods based on the four evaluation metrics described in
Section IV-B. For this purpose, the methods used in compar-
ison were trained on the Composition-1k training set and the
evaluation was performed on the Composition-1k test set.

The Composition-1k test set was categorized into Transpar-
ent Partially (TP) and Transparent Totally (TT), following the
strategy adopted in TransMatte [2]. Accordingly, TT denotes
foreground objects that are semi-transparent or highly trans-
parent, with minor or non-salient foreground regions in the
trimap. In contrast, TP indicates that the object has significant
definite foreground areas, resulting in the presence of large
known foreground regions in the trimap, which provides essen-
tial information for predicting alpha values in the unknown
regions. Table II and Table V present the results obtained when
TOM-PDFB and other state-of-the-art methods were applied
to TT and TP images in the Composition-1k test dataset,
respectively. In this section, the experimental results for TT
objects are discussed, while Section IV-E is designated for
those pertaining to TP objects.

As illustrated in Table II, when applied to the TT objects,
TOM-PDFB outperforms all other tested methods in terms
of all four metrics. Moreover, TOM-PDFB exhibits 6.35%,
12.07%, 26.66%, and 8.60% improvements in SAD, MSE,
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TABLE II
QUANTITATIVE COMPARISON OF IMAGE MATTING PERFORMANCE FOR

TRANSPARENT TOTALLY (TT) OBJECTS ON THE COMPOSITION-1K
DATASET. TT OBJECTS ARE THOSE WHOSE ENTIRE IMAGE IS

HIGHLY TRANSPARENT

Grad, and Conn metrics, respectively, compared to Matte-
Former [25] which ranks second in the comparison. This
evaluation thus confirms the effectiveness of TOM-PDFB
when applied to TT objects. The outstanding performance
can be attributed to the fact that the known foreground
region is small or absent in the trimap for TT objects. Image
matting for TT objects faces a unique challenge: it cannot
leverage the information provided by the known foreground
and background regions in the trimap. TOM-PDFB addresses
this issus by predicting and exploiting the known foreground
and background information in the unknown region which
provide crucial clues for improving the alpha matte quality
of transparent objects.

Figure 5 provides a visual comparison of alpha mattes
obtained by TOM-PDFB and the state-of-the-art methods
used in this evaluation when applied the Composition-1K
dataset [1], focusing on the edges of transparent objects.
Six state-of-the-art matting methods were employed, includ-
ing DIM [1], IndexNet [19], GCA-Matting [17], SIM [21],
TransMatte [2] and MatteFormer [25]. DIM, IndexNet, and
MatteFormer focus on matting general objects, while GCA,
SIM, and TransMatte are designed for transparent object mat-
ting. The alpha mattes of two completely transparent objects
from the Composition-1k test set are shown in Figure 5.
In the first case, the tested state-of-the-art methods used in the
comparison struggled to distinguish the foreground filament
from the background clothes. This leads to alpha estima-
tion errors. However, TOM-PDFB accurately distinguished
foreground from the background. The performance advantage
of TOM-PDFB can be attributed to its utilization of the
definite foreground information about the filament and the
definite background information about clothes in the unknown
region. Consequently, TOM-PDFB is capable of obtaining
distinguishable features in this challenging case. In the second
case, the visually prominent background makes image matting
methods difficult to clearly discern the edges of the foreground
cup. Consequently, the alpha matte provided by tested state-of-
the-art methods degrades. However, TOM-PDFB effectively
identifies the definite foreground and background in the
unknown regions. As a result, it provides a high-quality alpha
matte that thoroughly removes the background, provides a
clear edge at the cup foot and retains the texture details.

To evaluate the performance of the presented TOM-PDFB
when applied to transparent objects and assess its

Fig. 5. The visual comparison results of the proposed method and the
state-of-the-art methods when applied to the images in the Composition-1k.
Best viewed by zooming in.

TABLE III
GENERALIZATION ABILITY COMPARISON OF IMAGE MATTING METHODS

ON TRANSPARENT-460 TEST DATASET. ALL THE METHODS WERE
TRAINED ON THE TRAINING SET OF COMPOSITION-1K DATASET

generalization capabilities, Seven state-of-the-art matting
models were trained on the Composition-1k training set
and were tested on the Transparent-460 test set, including
DIM [1], IndexNet [19], MGMatting [41], TIMI-Net [18],
FBAMatting [20], TransMatte [2] and MatteFormer [25]. The
Transparent-460 test set was chosen as it mainly consists
of high-resolution images featuring transparent objects in
the foreground. SAD, MSE, Grad and Conn metrics were
employed to provide a quantitative comparison of the quality
of alpha mattes obtained by the tested methods.

Table III summarizes the image matting performance of
TOM-PDFB and the aforementioned state-of-the-art methods
in terms of the four metrics. The presented TOM-PDFB
outperforms all tested image matting methods on the SAD,
Grad and Conn metrics and outperforms the CNN-based
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TABLE IV
PERFORMANCE OF THE PROPOSED METHOD AND THE STATE-OF-THE-ART

METHODS WHEN APPLIED TO THE COMPOSITION-1K TEST SET

image matting methods on the MSE metirc. It is worth
noting that the presented TOM-PDFB achieved over 16.7%
reduction in Grad and over 7.8% reduction in Conn relative
to MatteFormer which ranks second in the comparison. The
significant improvement on the Grad and Conn metrics shows
that TOM-PDFB estimates alpha mattes with smooth surface
changes and clear boundaries. This superior performance is
attributed to the ability of FB-PRN to progressively reduce the
unknown regions by leveraging definite foreground and back-
ground information across different semantic levels. These
results once again confirm the effectiveness of TOM-PDFB
in matting transparent objects, which is due to the exploration
of definite foreground and background in the unknown region.
Although TOM-PDFB fails to beat MatteFormer [25] on the
MSE metric, the difference in the attained values is not
significant, indicating that TOM-PDFB is still competitive on
MSE metric.

E. Experiments on General Objects

The purpose of this experiment was to validate the
image matting performance of TOM-PDFB when applied
to general objects. Accordingly, TOM-PDFB was compared
with 10 state-of-the-art image matting methods includ-
ing eight CNN-based methods(DIM [1], IndexNet [19],
ContextNet [29], GCA-Matting [17], MGMatting [41],
TIMI-Net [18], SIM [21] and FBAMatting [20]) and
two transformer-based methods(TransMatte [2] and Mat-
teFormer [25]). All tested methods were trained on the
Composition-1k dataset [1] and were evaluated on the
Composition-1k test set. To provide a quantitative comparison
of the quality of alpha mattes obtained by the tested methods,
SAD, MSE, Grad and Conn metrics were employed. As shown
in Table IV, when applied to the on the Composition-1k
test set, TOM-PDFB outperforms all involved image matting
methods on all four metrics, which confirms its suitability
for not only matting transparent objects but also matting
general objects. Moreover, TOM-PDFB demonstrated 9.67%,
15.00%, 14.94%, and 21.46% improvements on the SAD,
MSE, Grad, and Conn metrics compared to the state-of-the-
art MatteFormer [25] which ranks second in the comparison.
It maintains a matting performance advantage over existing
methods for general objects. These results indicate that pre-
dicting and utilizing definite foreground and background in
the unknown region can significantly improve the matting

TABLE V
QUANTITATIVE COMPARISON OF IMAGE MATTING PERFORMANCE FOR

TRANSPARENT PARTIALLY (TP) OBJECTS ON THE COMPOSITION-1K
DATASET. TP DENOTES OBJECTS WITH THE SIGNIFICANT KNOWN

FOREGROUND

performance for transparent objects, while also providing
benefits for matting non-transparent objects.

Additional experiment was conducted to assess the general-
izability of the proposed TOM-PDFB method to images with
partially transparent objects. For this purpose, the matting per-
formance of TOM-PDFB and seven state-of-the-art methods
was evaluated on TP objects in test set of Composition-
1K. Table V illustrates the results. Table II and V show the
quantitative comparison of image matting performance for TT
and TP objects on the Composition-1k dataset. TOM-PDFB
outperforms all the tested methods in terms of all fore metrics,
not only for TT objects but also for TP objects. These results
demonstrate its generalizability, confirming that TOM-PDFB
can handle both transparent and partially transparent objects.
We also notice a significant discrepancy in metric values
between TT and TP objects. The significant discrepancy
indicates the inherent challenge of obtaining high-quality
alpha mattes for transparent objects as these trimaps for
transparent objects often contains a large unknown region and
small known foreground and/or background regions. Image
matting for TP objects can leverage a substantial amount
of known information from the indicated foreground and
background regions in the trimap. In contrast, image matting
for transparent objects faces a scarcity of known informa-
tion. Consequently, extracting and utilizing potentially definite
foreground and background from the unknown regions plays
an important role in transparent object matting. Experimental
results have demonstrated that by effectively exploring poten-
tially determined foregrounds and backgrounds in unknown
regions, TOM-PDFB extends its suitability to partially trans-
parent objects as well.

The purpose of this experiment was to assess the general-
ization capabilities of TOM-PDFB when applied to previously
unseen data. TOM-PDFB was compared with five state-of-the-
art methods, including four CNN-based methods (DIM [1],
IndexNet [19], GCA-Matting [17], and TIMI-Net [18]), and
a transformer-based method, MatteFormer [25]. All these
methods were trained on the Composition-1k dataset [1]
and tested on the Distinction-646 dataset [15]. As shown in
Table VI, TOM-PDFB outperformed all the tested methods
across all four metrics. The transformer-based methods, i.e.
TOM-PDFB and MatteFormer [25], show significant advan-
tages over the CNN-based methods in terms of all four metrics,
and TOM-PDFB has small values on all four metrics indicating
its ability to provide high-quality alpha mattes.
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Fig. 6. Visual comparison of alpha mattes obtained by TOM-PDFB and five state-of-the-art image methods when applied to four images from the
Distinction-646 test set. All tested methods were trained on the Composition-1K training set. Best viewed by zooming in.

TABLE VI
GENERALIZATION ABILITY COMPARISON OF IMAGE MATTING METHODS

ON DISTINCTION-646 TEST DATASET. ALL THE METHODS WERE
TRAINED ON THE TRAINING SET OF COMPOSITION-1K DATASET

Figure 6 presents a visual comparison of the alpha mat-
tes obtained by applying the tested matting methods to the
Distinctions-646 test set. As shown in the first two rows
of Figure 6, the alpha matte produced by TOM-PDFB pre-
serves the intricate structural details of transparent foreground
objects. Moreover, TOM-PDFB can not only handle trans-
parent objects, it also provides high-quality alpha mattes for
opaque objects (as shown in the last two rows of Figure 6).
This benefit is attained because a challenging aspect of matting
opaque objects lies in their semi-transparent or transparent ele-
ments, and TOM-PDFB is equipped to handle such challenges.
Additionally, both FBCE and FB-PRN presented in this work
focus on determining definite foreground and background,
aiding in predicting opaque objects that typically have large
definite foreground and background regions. These experi-
mental results reaffirm the matting performance superiority of
TOM-PDFB and underscore its generalization capabilities.

F. Ablation Study

To evaluate the effectiveness of FBCE and FB-PRN,
an ablation study was conducted on the Composition-1k
dataset.

The effectiveness of the definite foreground and background
in the unknown region was evaluated in the first experiment
of the ablation study. Two strategies for dividing the unknown

TABLE VII
ABLATION STUDIES CONDUCTED ON THE COMPOSITION-1K DATASET:

EVALUATING THE ROLE OF FB-PRN (P ), FBCE (C ), SEGMENT
MAP WITH EQUAL INTERVALS (Savg ), AND SEGMENT MAP

WITH DEFINITE FOREGROUND, DEFINITE BACKGROUND, AND
SEMI-TRANSPARENT REGIONS (S f b )

region of the trimap were compared. The first approach -
denoted as baseline + Savg - segregated the unknown region
of the trimap into three equal intervals based on the alpha
value. The second approach - denoted as baseline + S f b -
segregated the unknown region of the trimap into definite
foreground, definite background, and semi-transparent image
regions. As can be seen from Table VII, the obtained results
clearly demonstrate the benefits of predicting definite fore-
ground and definite background for the matting performance.

The effectiveness of FBCE was assessed by comparing the
matting results of baseline + C (using FBCE to generate
the foreground confidence map and background confidence
map) with baseline + S f b (using cross-entropy loss for seg-
mentation). The ablation study results presented in Table VII,
confirm that utilizing the output from FBCE provided a slight
improvement over baseline + S f b.

Subsequently, the FB-PRN effectiveness was evaluated.
The quantitative results presented in Table VII demonstrate
that, when FB-PRN was used in isolation, the performance
improvement was limited. However, when FB-PRN was
combined with S f b or C (serving as prior information),
a significant performance improvement is observed between
the results of baseline+ P+ S f b and that of baseline+ P+C .
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Fig. 7. An example of the failure case of TOM-PDFB.

This observation indicates that the inclusion of S f b or C
greatly benefits FB-PRN. Furthermore, the enhancements in
the combined results compared to those achieved using only
S f b or C , suggesting that FB-PRN effectively utilizes the prior
information provided by S f b or C .

G. Limitations

While TOM-PDFB consistently delivers exceptional matting
results across various datasets and object types, there are
scenarios where it might fall short in producing high-quality
alpha mattes. Specifically, this limitation arises when the
trimap used as its input is inaccurate or when prediction
errors occur during the Foreground-Background Confidence
Estimator (FBCE) process.

TOM-PDFB achieves remarkable performance by predicting
and leveraging the definite foreground and background in the
unknown region. FBCE plays a crucial role in this process,
determining the definite foreground and background accord-
ing to the provided image and trimap. However, when an
incorrectly labeled trimap is used as input, FBCE may predict
inaccurate FCM and BCM and provide incorrect information
for image matting resulting in degraded matting performance.

In cases where prediction errors arise during the
Foreground-Background Confidence Estimator (FBCE) pro-
cess, leading to inaccurately predicted FCM and BCM, the
model can be misled. Consequently, this undermines the effec-
tiveness of the subsequent alpha matting process. Although
FB-PRN can gradually reduce the unknown region at different
levels and thus partially correct the errors, there may still be
significant biases that resulting in suboptimal matting results.
An example is shown in Fig. 7. In this case, the background
confidence map (BCM) predicted by FBCE contains error:
the bottom part of the image is incorrectly predicted as the
background. This discrepancy leads to errors in the estimation
of alpha matte.

V. CONCLUSION

As a part of this work, a method named Transparent
Object Matting using Predicted Definite Foreground and
Background (TOM-PDFB) for precise matting of images con-
taining transparent objects was proposed. It comprises of the
Foreground-Background Confidence Estimator (FBCE) that
explores potentially definite foreground and background in the
unknown region to developing the matting network. In the
next step, the proposed Foreground-Background Progressive
Refinement Network (FB-PRN) using the definite foreground
and background predicted in the previous decoder layers to
progressively refine the alpha matte.

The extensive experimental results reported in the preceding
sections demonstrate the effectiveness of TOM-PDFB when
applied not only on images containing transparent objects

but also general objects, thus confirming the importance of
definite foreground and background for transparent object
matting. However, erroneous FCM or BCM produced by
FBCE or an inaccurate trimap have the potential to mislead
the subsequent alpha matting process and lead to discrepancies
in the predicted alpha matte. Feature work includes exploring
methods to exclude outliers during FBCE prediction, aiming
to enhance the robustness of TOM-PDFB, especially when
dealing with inaccurate trimaps.
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