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High-resolution spatial transcriptomics (ST) data provide valuable insights into the molecular dynamics
underlying complex biological processes. However, their widespread application remains limited due to high
costs and technical challenges. Here, we present PRTS (Pathology-driven Reconstruction of Transcriptomic
States), a novel framework that predicts single-cell-resolution ST data directly from histological images.
Our results demonstrated that PRTS generated transcriptomic profiles for about 60,000 analyzable cell
tiles per tissue section, representing an approximately 27-fold increase in analytical units compared to
conventional ST spots and remarkably enhancing spatial resolution. Notably, PRTS achieves accurate cell-
level transcriptomic predictions using only hematoxylin-and-eosin-stained tissue images. This method
transforms costly ST technologies into a practical and scalable tool, offering a cost-efficient solution for
comprehensive ST profiling in hematoxylin-and-eosin-based disease research.
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Introduction

The function of many biological systems, such as embryos [1],
neural systems [2], and tumors [3], depends on the spatial orga-
nization of cells. Spatial transcriptomics (ST) technologies pro-
vide a powerful approach to studying spatial molecular changes
in complex biological processes and related diseases. Existing ST
technologies can be grouped into 2 approaches: in situ imaging-
based and next-generation-sequencing-based technologies [4].
The former provides subcellular resolution but is limited by low
gene throughput. In contrast, next-generation-sequencing-based
ST technologies detect transcriptome-wide expression patterns
but have a limited spatial resolution. Emerging methods like
Stereo-seq [5] and Visium HD [6] offer genome-wide coverage
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with a subcellular resolution, overcoming the limitations of tra-
ditional technologies. This high-definition molecular atlas facili-
tates more accurate interpretation of cellular spatial organization,
advancing in the understanding of tissue developments and
disease mechanisms.

Despite the great potential of ST in medical research, its high
cost and technical complexity currently limit its widespread
application [7]. The limited availability of ST data makes them
challenging to apply in clinical large-scale research and applica-
tions. Therefore, affordable and reliable methods are urgently
needed for predicting spatial gene expression data in large-scale
samples. Previous studies have shown that gene expression levels
are correlated with histological image features. Several method-
ologies have been developed recently for ST data prediction
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with histological images. The Inferring Super-resolution Tissue
ARchitecture (iStar) method was able to predict spatial gene
expression with super-resolution from histological images [8].
Furthermore, the integrated graph and image deep learning
(IGI-DL) method enabled the forecasting of the prognosis of
cancer patients by predicting the gene expression patterns within
specific regions on histological images [9]. However, these meth-
odologies are mostly developed based on the data from Visium
and Xenium, which limits their capacity to generate both high-
resolution and comprehensive ST data. Moreover, they are unable
to directly provide single-cell transcriptomics data.

To overcome these limitations, we present the deep-learning-
based framework PRTS (Pathology-driven Reconstruction of
Transcriptomic States), a method that predicts single-cell and
spatially resolved transcriptomics from pathological images.
Unlike previous approaches, PRTS is uniquely designed to pre-
dict the sparse, nucleus-focused transcriptome captured by plat-
forms. This fundamental distinction necessitates a different
technical implementation, as predicting a spot’s aggregate signal
relies on a distinct set of histological components compared to
predicting single-cell expression.

PRTS is primarily trained using the publicly available Visium
HD ST data and corresponding histological images from mouse
brain coronal sections. The framework remarkedly predicts
single-cell-level ST data (1,820 different genes) in similar types
of histological images (Fig. 1A). Our method has established a
more precise correlation between transcriptomes and economic
histological images, which may greatly advance research on the
organization of cells and their molecular basis.

As an expandable methodological framework, this study,
although using the mouse brain coronal section as an example,
enables researchers to apply our method to different Visium
HD samples for training. We also leveraged cancer sections to
explore the algorithm’s potential in pathological conditions.
This flexibility aims to accelerate the large-scale application of
spatial-related research across diverse biological scenarios.

Results

Training and evaluation process of PRTS

An overview of PRTS is shown in Fig. 1B. PRTS employs hier-
archical histological image feature fusion architecture that aims
to capture the fine-grained cell characteristics and microenviron-
ment features of local cell populations. Due to the high sparsity
of the expression matrix in a Visium HD dataset with a single-cell
resolution, it is difficult to distinguish between zero-valued ele-
ments and low-valued elements. Thus, we designed a double-
output neural network model that simultaneously determines
whether a gene is expressed and predicts its expression level.

We used the publicly available Visium HD dataset of mouse
brain coronal section as the training dataset. First, we per-
formed cell segmentation on high-resolution hematoxylin-and-
eosin-stained (H&E-stained) histological images (Fig. Sla to
d) and obtained the gene expression patterns of each cell pixel
region (Fig. Sle to g).

We performed quality control on the results of cell segmen-
tation, and poorly segmented tiles were removed at this step to
ensure the accuracy of cell tiles. Specifically, we excluded cell
tiles with abnormally large nuclear areas, as well as segmented
regions with very low nuclear unique molecular identifier
(UMI) counts. The former likely represented aggregates of mul-
tiple cells, while the latter were likely nonnuclear regions. Such
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tiles accounted for only a very small fraction of the total (Fig.
Sleandf). A total of 56,761 cells (Fig. S1h to 1) and 1,820 highly
variable genes (HVGs) were used for training (Table S1; for
selection criteria, see Methods).

Through the above training paradigm, PRTS can recognize
individual cells and predict the gene expression levels at their
locations when new mouse brain coronal section H&E images
are provided. The predicted results are presented in the form
of a cell X gene expression matrix (Fig. 1C). Thus, PRTS not
only meets the needs of ST analysis but is also compatible with
popular single-cell RNA sequencing analyses, such as cell clus-
tering, cell annotation, and functional enrichment analysis.

To assess the accuracy of PRTS in single-cell-resolved gene
expression prediction, we applied it to another publicly available
mouse brain section dataset from Visium HD. A total of 77,602
cell spots were used for validation. First, we numerically evalu-
ated the performance of our model. The model achieved an
accuracy of 81.39% in the binary-classification task of determin-
ing whether a gene is expressed (Table S2). Taking into account
the various methods used to prepare the slices, this accuracy
demonstrates PRTS’s consistency across multiple samples.

PRTS-inferred expression patterns highly agree with

actual tissue structures

Firstly, we explored whether gene expression patterns (Table S1)
are reliably predicted by PRTS. For the prediction of the global
patterns, we evaluated the total counts and number of features
for each cell. There are distinct variations in the total counts and
number of features across various spatial locations, demonstrat-
ing the intrinsic biological complexity among different tissue
structures [3,10-12]. In slices from the validation set (Fig. 2A),
almost all cells in the hippocampus region exhibited higher total
counts and feature numbers. In contrast, only scattered cells in
the cortical and striatal regions showed a high level of expression,
whereas cells in the meninges, corpus callosum, and ventricular—
subventricular zone displayed relatively lower total counts and
feature numbers. These distribution characteristics agrees with
the ground truth measured by Visium HD (Fig. 2B).

We further focused on predicting key genes in neuroscience
studies, including 4 genes with differential spatial and cellular
expression (Kcnmal, Plpl, Ptgds, and Ttr), as well as the
Alzheimer’s disease-related gene Apoe [13]. Virtually all PRTS-
predicted expression distribution characteristics matched the
ground truth. In general, the expression levels of specific genes
are higher in regions enriched with their corresponding cell types
(Fig. 2C to H). Kcnmal was enriched in neurons within the lat-
eral habenula region (Fig. 2D and Fig. S3) [14]; Plp1, in oligo-
dendrocytes within the subventricular zone and external capsule
(Fig. 2E and Fig. S3) [15]; Ptgds, in the pia mater region (Fig. 2F
and Fig. S3) [16]; and Ttr, in choroid plexus epithelial cells within
the lateral ventricle region (Fig. 2G and Fig. S3) [17]. Notably,
Apoeis widely expressed in the central nervous system, including
astrocytes, microglia, vascular wall cells, and choroid plexus epi-
thelial cells [18], and PRTS predicted higher Apoe expression
levels in the ventricular-subventricular zone, lateral ventricle,
and meningeal regions, where these cells are enriched (Fig. 2H
and Fig. $3). This highlights our model’s generalizability across
various cell types. We applied consecutively cut tissue sections
to H&E staining and immunohistochemistry (IHC), and the
expression features from IHC highly agreed with the predicted
results with H&E images (Fig. 2I and J and Fig. S4). Moreover,
we present the predicted expression patterns of 36 other key
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Fig. 1. Overview of PRTS (Pathology-driven Reconstruction of Transcriptomic States). (A) The application of PRTS. PRTS bridges histological imaging and transcriptomics by

predicting gene expression from hematoxylin and eosin (H&E) staining coronal sections. Based on coronal H&

E images of the mouse brain, PRTS can predict the gene expression

profiles of individual cells within the tissue. These predictions can be further utilized in downstream transcriptomic analyses, thereby bridging histological imaging, single-cell

transcriptomics, and spatial transcriptomics. (B) General workflow and architecture of PRTS. (C) User input

for PRTS. PRTS takes 2 inputs: a coronal H&E staining image and

cell coordinates derived from cell segmentation of the same image (see Methods). The output is an .h5ad file containing a cell-by-gene expression matrix, which can be used
for downstream analysis in Python packages such as Scanpy. UMI, unique molecular identifier; ST, spatial transcriptomics; MLP, multilayer perceptron.
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total counts map, each dot represents a cell, with darker blue indicating higher total counts. In the features map, darker red indicates a higher number of features. (C) Localization
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gene expressions. For each gene expression map, color gradients from black to red indicate low to high expression levels. For panels (D) to (F): left, H&E staining image; middle,
ground truth expression from Visium HD data; right, PRTS-predicted expression. Highlighted regions indicate cells with high expression levels. For panels (G) and (H), the same
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functional genes (Figs. S5 and S6 and Table S3) [19] to illustrate
the broad predictive capabilities of PRTS.

Interestingly, the brain slices from the validation set were
not fully sequenced. There is a small part on the left side of the
slices that falls outside the spot-covered area (Fig. 2B). However,
since PRTS only requires the histological images to generate
the ST data, the predicted result has full coverage of complete
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slices, showing its capability of complementing the sequencing
data under a real context.

PRTS predicts single-cell ST data from

histological images
Since the smallest spatial unit for gene expression data generation
is a single cell, the model enables us to directly extract single-cell
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subtypes from the predicted results. In this case, we have extracted
21 subtypes of cells in total, with a silhouette coeflicient of 0.0952
and an adjusted rand index of 0.1424 (Fig. 3A and Table S5). They
were annotated as one of the following types: neurons, astrocytes,
oligodendrocytes, choroid plexus epithelial cells, vascular and men-
ingeal cells, or glutamatergic astrocytes (Fig. 3A to C). Predicted

results show agreement with the manual annotation (Fig. 3D). Cell
annotation was performed by comparing the highly expressed genes
of each virtual cell subtype with curated single-cell marker data-
bases, including PanglaoDB [20] and CellMarker [21] (Table S5).
In the predicted results, different cell subtypes illustrated dis-
tinctive gene expression patterns (Fig. 3B). For neurons, we
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scored the marker gene sets for each subtype and found that the
scores for different subtypes exhibited spatially specific distribu-
tions, clearly identifying anatomical structures such as the hip-
pocampus and striatum. This suggests that the clustering results
of neurons might be based on spatially differential gene expres-
sion across the anatomic structures (Fig. S7). The predictions for
other cell subtypes even showed more typical expression features
compared to neurons. Three oligodendrocyte subtypes univer-
sally exhibited high expression of the myelin-associated proteins
Mog and Mobp, as well as the key transcription factors Sox10 and
Myrf[22]. Astrocytes were characterized by the elevated expres-
sion of Sparc [23] and Vim [24]. Choroid plexus epithelial cells
are marked by high expression of Ttr [25]. Vascular and menin-
geal cells were annotated by the high expression of Ptgds [16].
Interestingly, a specific cell subpopulation exhibited gene expres-
sion patterns characteristic of both neurons and astrocytes (Fig.
3B and Fig. S8). This profile is consistent with recently reported
glutamatergic astrocytes [26] but could also potentially represent
tissue tiles where astrocytes are co-located with neurons.

Cell subtypes have specific spatial distributions that can be
identified in both predicted results and ground truth measured
by Visium HD (Fig. 3C to H). In the cortical region, different cell
subtypes populated in specific regions and formed horizontal
layers (Fig. 3F). In the external capsule and lateral ventricle
regions, we captured an enriched population of oligodendrocytes
and the presence of choroid plexus epithelial cells (Fig. 3G). In
the hippocampal region, we identified the gradient distribution
of various neuron subtypes (Fig. 3H), with Neu_01 predomi-
nantly enriched in the CA1 region and Neu_02 primarily enriched
from the CA2 region to the dentate gyrus. The regional specifica-
tion of cell subtypes has been verified by multiple ST atlases of
the mouse brain [27,28]. This agreement suggests that PRTS is
able to annotate brain tissue structures at subtype-level resolution.
Quantitative comparisons further demonstrated near-identical
proportions of neurons and rare subtypes relative to manual
annotations, validating the framework’s accuracy in cell-type
quantification (Fig. 3l and J). Due to differing cell clustering strat-
egies, direct one-to-one correspondence between subpopulations
was hindered. Therefore, we aggregated the subpopulations into
broader categories and generated a confusion matrix. The results
indicated an overall classification accuracy of 53.9% at the broad
category level (Fig. 3K). We observed that the model exhibited
suboptimal performance in identifying astrocytes, which may be
attributed to their highly intricate morphological structure [29].

PRTS improves the resolution of a spot-level
ST method

Traditional spot-based ST technologies suffer from limited
resolution and fail to resolve cellular heterogeneity. PRTS over-
comes this limitation by generating transcriptomic profiles at
single-cell resolution directly from histological images. In 2
spot-based ST datasets (2,298/2,234 spots), PRTS reconstructed
transcriptomes for 62,711 and 60,259 cells, respectively, repre-
senting an approximately 27-fold increase in spatial resolution
(Fig. 4 and Fig. S9).

It should be emphasized that, due to the limitations of cur-
rent cell segmentation algorithms, the reported number may
exceed the true number of cells as a result of artifacts and mis-
segmentation. Therefore, quality control of the generated data
is essential, such as removing certain cell subpopulations with
only a small number of aggregated cells, which are likely to be
mis-segmented tiles.
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Building on PRTS’s ability to improve predictive accuracy,
we further validated its performance on spot-based ST datasets.
Overall, the predicted total cell counts and features aligned with
actual spot distribution (Fig. 4B and C). For the prediction of
individual genes, we visualized the same set of genes as in Fig.
2. The areas of high expression in the predicted images matched
those in the ground truth (Fig. 4D and E).

Next, we assessed PRTS’s capability for single-cell annota-
tion of brain tissues. All extracted cells were clustered into 19
subtypes, annotated as one of the following: neurons, oligoden-
drocytes, astrocytes, choroid plexus epithelial cells, vascular
and meningeal cells, or glutamatergic astrocytes (Fig. 4H to L).
Spot-based ST, on its own, cannot achieve single-cell annota-
tion without cell composition inference algorithms.

It is well known that in spot-based ST methods, tissue struc-
tures can be divided into different tissue domains based on the
gene expression pattern difference between spots [30]. We
found that the predicted results can still reflect the distribution
characteristics of tissue domains by identifying the enriched
regions of different cells. The hippocampus is divided into 3
domains based on real sequencing data, namely, CA1, CA2 to
CA3, and DG (Fig. 4G). In the predictions, the hippocampus
was primarily occupied by Neu_08 (orange cluster), Neu_03
(green cluster), and Neu_02 (brown cluster), respectively (Fig.
4H). Similarly, both the measured and predicted data captured
structural changes in multiple layers between the cortex and
corpus callosum (Fig. 4H), highlighting the accuracy of PRTS.
What sets PRTS apart is its finer, single-cell-level resolution,
which allows us to zoom into local structures to identify cell
distribution within tissue domains (Fig. 4K), offering deeper
insights into the cellular microenvironment of specific regions.

PRTS maintains robustness in cancer scenarios
Although we demonstrated the feasibility of PRTS in generating
data from mouse brain samples, it remains necessary to evalu-
ate its differences from existing algorithms and its potential
applicability in broader contexts. One of the most important
applications of ST and H&E imaging is cancer research and
diagnosis, and many ST data generation algorithms have been
developed specifically for cancer. To this end, we applied the
PRTS framework to human breast cancer and lung cancer
Visium HD datasets to assess its robustness in complex patho-
logical tissues.

First, we aimed to evaluate the regression accuracy of gene
expression prediction across multiple tissue types. For breast
cancer sections, a single slice was partitioned into different
regions for independent model training and validation. For lung
cancer sections, 2 consecutive slices were used separately for
training and validation. In addition, we obtained a third fresh-
frozen mouse brain section to further test predictive perfor-
mance in the brain. We calculated the Pearson correlation
coeflicient (PCC) and root mean square error (RMSE) between
predicted and true values—metrics commonly employed for
evaluating predictive performance in similar algorithms. The
results showed that across the mouse brain, lung cancer, and
breast cancer, the mean PCC values for PRTS were 0.330, 0.270,
and 0.204, respectively, while the mean RMSE values were 0.194,
0.227, and 0.259 (Fig. 5A). A complete list of PCC and RMSE
values for each predictable gene is provided in Table S6 to facili-
tate detailed inspection of gene-level prediction performance.

It should be noted that although our algorithm, like many
others, focuses on gene prediction, to the best of our knowledge,
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Fig. 4. Analysis of spot-level spatial transcriptomics data predicted by PRTS. (A) Histological image corresponding to the spatial transcriptomics dataset (10x Genomics
demo data). (B) Ground truth distribution of total counts (left) and number of detected features (right) across spatial transcriptomics spots. Each bright dot represents
a spot. (C) PRTS-predicted total counts (left) and number of features (right) across the tissue section. For panels (B) and (C), red boxes highlight regions with high values,
and a green line separates areas with contrasting value distributions. (D) Ground truth expression of selected genes across spatial transcriptomics spots. From left to right:
Kenmal, Plp1, Ptgds, Ttr, and Apoe. (E) PRTS-predicted gene expression at the single-cell level, for the same set of genes shown in panel (D). Each dot represents a cell. For
panels (D) and (E), red boxes highlight high-expression regions, and a red line separates zones with contrasting expression patterns. (F) UMAP visualization of spot clusters.
CTX, cortex; TH, thalamus; CC, corpus callosum; AMY, amygdala; VLM, vascular and leptomeningeal cells; HIP, hippocampus; PIR, piriform cortex; STR, striatum; CPm, medial
caudate putamen; CPI, lateral caudate putamen; VL, lateral ventricle; DG, dentate gyrus; LHb, lateral habenula; L2/3, cortical layer 2/3; L3, layer 3; L4/5, layers 4/5; L6, layer
6. (G) Spatial distribution of spot clusters across the tissue section. (H) PRTS-predicted spatial distribution of cell subtypes across the section. Blue and red lines delineate
distinct cellular zones within the cortex and hippocampus, respectively. (1) PRTS-predicted UMAP visualization of cell clusters. Neu, neurons; OLG, oligodendrocytes; AC,
astrocytes; CPEC, choroid plexus epithelial cells; VLM, vascular and leptomeningeal cells; GAC, glutamatergic astrocytes. (J) Marker gene expression across predicted cell
subtypes. (K) Regional views illustrating PRTS-predicted cell-type distributions. Each pair of panels shows a region of interest, with the left panel displaying the ground truth
H&E staining image and the right panel showing the corresponding PRTS-predicted cell-type assignments. Regions from left to right: hippocampus, amygdala and adjacent
meninges, lateral ventricle and corpus callosum. (L) Proportions of major predicted cell types.

all mainstream ST prediction methods have been developed for
conventional spot-level data rather than the single-cell-level ST
used in our study. In other words, those algorithms generate RNA
counts for entire spot regions, which include nuclear RNA, cyto-
plasmic RNA, extracellular RNA, and others, whereas our
method quantifies only nuclear RNA. Previous studies have
reported that nuclear RNA abundance does not directly corre-
spond to total cellular RNA. For example, in the MIN6 pancreatic
p-cell line, most genes were found to have more transcripts in
the cytoplasm than in the nucleus [31]. Therefore, our algorithm
cannot be directly compared on the same scale with other meth-
ods. To better contextualize performance in the gene regression
task, we reviewed the predictive values reported in the literature.

Wen et al. 2025 | https://doi.org/10.34133/research.0961

For average PCC, most reported values across samples fall
between 0.1 and 0.4 [8,9,32-34]. Given that single-cell ST data
are inherently more sparse and present greater challenges for
numerical prediction, we consider the performance of PRTS in
this task to be comparable to, and acceptable within, the range
of existing methods.

Next, we conducted ablation experiments to evaluate the
contributions of the local and global modules in complex tissue
prediction. Specifically, we used the complete model as the
baseline and systematically removed the features extracted
from local pixel patches and global pixel patches, ensuring that
the observed performance changes were attributable to the
removed component. The results showed that removing either
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Fig. 5. Performance of PRTS across different tissues. (A) Performance of PRTS on fresh-frozen mouse brain sections, human lung adenocarcinoma, and human breast cancer
datasets. (B) Results of ablation experiments for PRTS on fresh-frozen mouse brain, human lung adenocarcinoma, and human breast cancer datasets. (C) Local regions selected
for gene prediction in human lung adenocarcinoma. Red box, IGLCI; green, VIM; blue, JCHAIN. (D) Local prediction performance of PRTS in human lung adenocarcinoma. From
left to right: IGLCI, VIM, and JCHAIN. For each gene, expression from the ground truth data (top panel) and the model prediction (bottom panel) are shown. Input data were
normalized for model prediction. (E) Localized distribution of predicted cell subpopulations in human lung adenocarcinoma. Top: ground truth distribution, defined by one cell
subgroup. Bottom: distribution predicted by PRTS, defined by 2 subgroups. PCC, Pearson correlation coefficient; RMSE, root mean square error.

component led to a decline in predictive performance (Fig. 5B),
demonstrating the overall effectiveness of our architectural
design.

Finally, using lung cancer as an example, we further illus-
trated the mapping of normalized data within tissue sections
(Fig. 5C to E). We presented the predicted expression patterns
of the IGLCI, VIM, and JCHAIN genes in selected regions (Fig.
5D), all of which exhibited expression characteristics consistent
with tissue structure. We observed the localization of cell sub-
populations clustered around the bronchus region. Similar
spatial clustering patterns were noted for both the ground truth
and predicted data (Fig. 5E). However, due to the complexity
of cell subtypes within the tumor microenvironment, detailed
functional annotation of these subpopulations remains chal-
lenging. It should be emphasized that, unlike normal tissues
with well-defined spatial organization, cancer tissue slices
exhibit a more disordered cellular arrangement. Therefore,
incorporating additional cancer tissue slices for training will
likely be necessary in future work to uncover novel spatial
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structures and gene expression features in such complex patho-
logical contexts.

Discussion

Subcellular-resolution ST data enable a more accurate and com-
prehensive interpretation of spatial heterogeneity at the cellular
level. Hence, we developed PRTS, a novel method that utilizes
easily accessible H&E images to effectively predict large-scale
ST data, addressing the scarcity of high-resolution ST data.
Furthermore, by comparing prediction results from different
samples, we can facilitate the identification and screening of
potential spatial discrepancies. This approach may diminish
the necessity for expensive sequencing experiments, thereby
decreasing experimental expenditures and advancing spatially
contextualized biomedical research.

Most existing methods rely on spot-level ST data, whereas
PRTS is designed for single-cell-level modeling, creating a fun-
damental distinction from established prediction algorithms
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such as iStar, HiST2ST, and IGI-DL. PRTS predicts nuclear
RNA, while these other methods capture total RNA signals
within a region, making their outputs difficult to align both
numerically and biologically. Moreover, single-cell-level data
differ markedly from conventional ST in terms of dimensional-
ity, sparsity, and value range, further complicating direct com-
parisons. We attempted comparisons at the super-pixel level,
but inconsistencies in measurement units and data aggregation
strategies prevented meaningful alignment of data points across
algorithms. Nevertheless, we reported the PCCs of PRTS along-
side published results to provide researchers with a clearer
understanding of the relative strengths and limitations of the
method.

By benchmarking the accuracy of predicted gene expression
level and cell annotation with ground truth dataset, we showed
that PRTS is capable of generating accurate subcellular ST data
with real histological images. The performance of PRTS for brain
slices is consistent with those in existing studies [27,28,35,36]. The
algorithm can only predict ST data based on HVGs. The number
of such genes is substantially lower than the total number of genes
measurable by high-throughput sequencing platforms, which may
result in incomplete or missing coverage of certain biologically
relevant pathways. This limitation arises because most genes
exhibit weak spatial associations that may not be reflected in image
structures, and including an excessive number of genes would intro-
duce tremendous computational burdens and exacerbate high-
dimensional sparsity. In future work, we plan to employ approaches
such as module detection to shift from predicting the expression
of individual genes to inferring the activity of gene modules or
biological pathways with coordinated functions, thereby enhanc-
ing the biological interpretability of the predictions.

We also recognize that further experimental validation, such
as quantitative comparisons with IHC results, is still lacking. True
IHC images may display diffuse positivity, making direct com-
parisons with predicted images challenging. Moreover, positivity
criteria vary across methods, making quantitative analysis of
such comparisons difficult. In particular, gene expression values
at the single-cell level are distributed continuously, and defining
positivity based on arbitrary thresholds can introduce observer
subjectivity.

The predictive workflow in this study is built upon accurate
single-cell segmentation. However, segmentation algorithms
inherently produce errors, which may contribute to prediction
inaccuracies—for example, splitting a single cell into multiple
tiles or misclassifying artifacts as cells. As a result, the number
of segmented cell tiles may exceed the true number of cells. To
mitigate the impact of segmentation errors, we performed qual-
ity control by excluding abnormal tiles such as multicell aggre-
gates. In the future, we plan to compare different segmentation
algorithms to identify the most suitable approach for various
tissue types [37]. Importantly, the PRTS framework itself is not
dependent on any specific segmentation method; its core pre-
dictive module requires only cell images and coordinate infor-
mation as input. Thus, the framework is inherently flexible and
compatible with future advances in segmentation algorithms.

Moreover, early ST technologies had poor resolution for
mixed expression information from multiple cells within each
sequenced spot [38]. Therefore, methodologies such as decon-
volution are necessary to annotate cell subtypes within indi-
vidual spots [39,40]. Given the variability in performance
among different deconvolution methods, the precision of cell-
type annotation remains moderate [41].
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Our current results demonstrate that PRTS can directly gen-
erate data at single-cell resolution and numerically impute values
for regions that are difficult to sequence, thereby contributing to
practical research applications. Nevertheless, we also observed
that the average silhouette coeflicient of the virtual subpopula-
tions was relatively low. Although this is consistent with the
inherent characteristics of single-cell clustering—such as high-
dimensional sparsity and the continuous or transitional nature
of cell states—where silhouette coeflicients are often low even
for real single-cell subpopulations [42,43], we remain cautious
and plan to further optimize the algorithm to improve model
performance. Furthermore, we found that the model’s ability to
identify astrocytes was compromised. This limitation may be
attributed to the complex morphology of astrocytes and their
frequent close proximity to neurons [44]. Therefore, further vali-
dation with large-scale training datasets is required to improve
the identification of specific and rare cell types.

In terms of data expansion, beyond mouse brain tissue, this
study also incorporated human breast cancer and lung cancer
Visium HD datasets. The results showed that PRTS maintained
robust performance across different tissue types, providing
preliminary evidence of its ability to capture the intrinsic ana-
tomical features of diverse tissues. However, models trained
from single sections still require validation in larger cohorts to
confirm their generalizability. While PRTS was able to identify
the gradient distributions and nuclear gene expression patterns
of cells, this currently serves only as proof of concept. Drawing
conclusions about novel spatial structures based on such lim-
ited data would lack robustness. Future studies will therefore
focus on integrating multisample, large-scale ST datasets to
build comprehensive models capable of systematically uncover-
ing spatial functional units and heterogeneous patterns that are
blurred in low-resolution ST data.

In addition, unavoidable technical deformations arise dur-
ing tissue section preparation. The mouse brain sections used
in this study were obtained through different preparation meth-
ods, including the formalin-fixed paraffin-embedded (FFPE)
process, frozen fixation, and fresh-frozen processing. The mor-
phological differences among these sections are far greater than
those between simple consecutive sections, providing prelimi-
nary evidence that the algorithm exhibits a degree of tolerance
to tissue deformation. Nevertheless, further evaluation is needed
to assess the performance of PRTS across a wider range of section
preparation conditions.

The biggest limitation is that, despite being a state-of-the-
art ST technology, Visium HD has a limited number of slices
available for training. Based on the current data scale, PRTS
is not yet sufficient to support highly variable cross-species or
cross-platform analyses. Different slice preparation techniques
may lead to substantial morphological variation, impairing
the high-accuracy prediction capability of PRTS. Expanding
the types and scope of Visium HD sequencing, optimizing
cell segmentation algorithms, and increasing the scale of
training datasets are all crucial for developing a generic predic-
tion model. More importantly, we have provided a framework
for the development of single-cell-level ST data generation
models.

Our team is actively collecting large cohorts of ST sections
for single diseases such as lung cancer, through both mining of
public datasets and prospective sequencing efforts. These cohorts
encompass data from multiple platforms, including Xenium and
Stereo-seq. The goal is to leverage the diversity of these sections
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to overcome the limitations of cross-sample heterogeneity,
thereby constructing a clinically oriented, generalizable PRTS
framework and further exploring its potential applications in
tumor spatial biology.

Methods

Transcriptomics data preprocessing

All Visium HD datasets used in this study come from publicly
available datasets provided by 10x Genomics (https://www.
10xgenomics.com/datasets?configure%5BhitsPerPage%5D=
50&configure%5BmaxValuesPerFacet%5D=1000&query
=HD). The FFPE slides of the coronal region of the C57BL/6
mouse brain were downloaded as our training dataset, while
the validation dataset consists of frozen-fixed slides of the
coronal region of the C57BL/6 mouse brain. We extracted the
2 X 2-pm filtered barcode matrix, parquet tissue position
matrix, and high-resolution histology feature images of the
slices from all datasets.

To create nucleus masks for each cell in the slices, we began
by performing cell segmentation on the high-resolution H&E
images corresponding to the sequencing data. Images were sub-
jected to percentile normalization before generating the nuclei
segmentation masks. Cell segmentation was performed with
StarDist2 [45], which identifies cell boundaries and generates
polygon masks. We converted the results into GeoDataFrame
using the GeoPandas package (v0.12) to record the spatial coor-
dinates of each cell [46]. After the segmentation, we counted the
sum of the unique barcodes within the nuclei regions. Cells meet-
ing the following criteria were retained. For a single cell, (a) the
value is less than 2,000, (b) the UMI count is greater than 20, and
(c) the mitochondrial gene amount is below 15%. Finally, 56,761
cells in total were used for training. For the validation dataset,
the same filtering criteria were applied, resulting in 77,602 cells.

Notably, when analyzing the new histological images, cell seg-
mentation must be performed to obtain nucleus masks necessary
for generating gene expression data. Since the current model was
developed based on hemisection images, the full-brain H&E
image was manually split prior to prediction. Our cell segmenta-
tion strategy and workflow were based on the analysis guidelines
provided by 10x Genomics. See details at https://www.10xgenomics.
com/analysis-guides/segmentation-visium-hd.

To understand the overall features of the cells in the training
dataset, we performed dimensionality reduction and clustering
on the dataset using Scanpy (v1.9.8) [47]. We identified 2,000
HVGs using the highly_variable_genes function. The top 50
principal components (PCs) were calculated using the pca
function. Based on these principal component analysis (PCA)
components, we constructed a neighborhood graph with the
neighbors function and performed Leiden clustering on this
graph (resolution = 0.6). Uniform manifold approximation and
projection (UMAP) was used for dimensionality reduction.

Through the clustering process, we identified a total of 20
cell clusters. Differential gene expression analysis was carried
out using the rank_genes_groups function in Scanpy. The
results were tested with the Wilcoxon rank-sum test. We
retained only genes with P.adjust < 0.01 and [log,FC| > 1 for
training, which resulted in a total of 1,820 genes. The motiva-
tion of identifying differentially expressed genes is to establish
the correlation between the gene expression profiles and spa-
tially morphological features of cells, which provides potential
biomarkers for studying functional heterogeneity in cells.
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Based on typical marker genes, we classified the cell clusters
into 4 main types: neurons (Snap25, Camk2nl, Ncdn, and
Atp1bl), oligodendrocytes (Plp1, Mbp, and Mobp), astrocytes
(Apoe and Aldoc), and choroid plexus epithelial cells (Clu, Ttr,
and Enpp2). Meanwhile, we also noticed a few cell clusters lack-
ing distinct gene expression patterns. Given that subtypes with-
out distinct expression profiles are commonly observed in both
ST and single-cell RNA sequencing studies [48], these subtypes
may represent a cluster of misidentified or low-quality cell
spots. Thus, these clusters were included during the training
process. When analyzing new slices, cells lacking distinct
expression features tend not to be classified into any major cell
types, instead forming separate clusters, making them easy to
exclude.

In addition to the mouse brain datasets, lung and breast
cancer tissue sections were processed using the same pipeline
to assess generalizability. Following differential gene expression
analysis and filtering, 1,656 genes were retained for the lung
cancer model and 1,147 for the breast cancer model.

Cellular gene expression prediction with

histological images

To facilitate the processing of histological images with different
resolutions, we first rescaled each image so that the size of each
pixel is 0.5 x 0.5 um”. This rescaling ratio ensures that a 16 x
16-pixel tile corresponds to an area of 8 x 8 um?, which is about
the size of a single cell [8]. Then, based on the cell masks
obtained from cell segmentation, we drew a minimum bound-
ing rectangle to the adjacent polygons to extract individual cell
regions and extracted a 256 X 256-pixel tile from the histologi-
cal image to serve as the cell’s neighboring spatial region.
Additionally, for each cell, we divided the 256 X 256-pixel tile
into 16 X 16-pixel patches.

The 16 X 16-pixel images primarily capture the fine-grained
cellular structures, such as cell morphology and subcellular com-
ponents, whereas the 256 X 256-pixel images reflect the global
tissue structure. Let X € RM*N>*3be the RGB-channel histologi-
cal image with a height M and a width N. For each cell, a 256 x
256-pixel image tile centered on its spatial location was extracted
and used as input to a pre-trained vision transformer (ViT)
model [49]. Specifically, we employed a ViT-256/16 model pre-
trained using the self-supervised DINO framework [50], pro-
cessing the image by dividing it into a sequence of 16 X 16
patches (tokens). The final hidden state of the dedicated [CLS]
token serves as a holistic representation of the entire image tile,
which we used as the global feature vector C,.

To represent fine-grained cellular morphology, the local fea-
ture C, was derived from the patch tokens whose 16 X 16 regions
overlapped with the cell nucleus. As a single cell typically spans
multiple patches, their feature vectors were aggregated by average
pooling to generate a unified C, vector. The local feature C; and
the global feature C, were then concatenated to form a compre-
hensive histology feature vector z, € R“1*2 In our implementa-
tion, the feature dimensions were set to C; = 192 and C, = 384.

In gene expression prediction tasks, the prevalence of zero
values and sparse counts makes it challenging for conventional
regression models to distinguish between low-value gene expres-
sion and zero expression. To address this, we designed a dual-
output neural network model to simultaneously determine
whether a gene is expressed and predicts its expression level.
Given the class imbalance problem in transcriptomics datasets,
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where most genes are in a silent state and positive samples (active
genes) are much fewer than negative samples (silent genes), we
introduce class weights into the loss function to enhance the
model’s capacity.

To express the loss function, let ¥, be the gene expression
prediction for gene i and y; be the observed gene expression
for gene i. Then, the class weighting coefficient w; could be
expressed numerically as

wi:{a}p ify;>0

where o, > w, (1)
w, ify;=0

Then, the weighted loss function is

d
Lreg(j’\>y) = Z wi - (j/\i_yi)z 2)
i=1

where d is the number of genes to predict, and the classification
loss Ly, is calculated based on binary-classification labels of
whether a gene is expressed or not. Then, the total loss function
Loss is a weighted sum of these 2 losses:

Loss = A Lyeq (ﬁ,y) + 45 Lyin (37,)/) ©)

The hyperparameters Wy, Oy, Ay, and A, were determined
through grid search on the validation set to optimize perfor-
mance. In this study, we setw, = L, w, = 5,4, = 1,and 4, =20
based on the optimal validation results.

After model training, the predicted gene expression for gene
iatcell xis

Vi = furp (Zx),- 4)

where fy;p(+); is the ith dimension of the output vector from
the neural network model and z,, € R>7is the histology feature
vector of cell x. The predicted expression values obtained for
all cells were denormalized and integrated into a gene expres-
sion matrix, which was then exported as an .h5ad file for down-
stream analysis.

For the network architecture, we used a feed-forward neural
network consisting of 4 hidden layers with 512, 512, 1,024, and
1,024 nodes, respectively. Each hidden layer employed a leaky
rectified linear unit as the activation function, followed by a
batch normalization layer to accelerate training and a dropout
layer (rate = 0.1) to prevent overfitting. The output layer was a
linear layer with the number of nodes equal to the number of
predicted genes.

The model was trained using the AdamW optimizer with a
learning rate of 0.01 and a weight decay of 0.05. Training was
conducted on an NVIDIA GeForce RTX 4060 graphics processing
unit with a batch size of 256 for 100 epochs, with early stopping
applied if the validation loss did not improve for 10 consecutive
epochs. The total number of model parameters was approximately
4.0 million. The entire analytical workflow, from histological
image input to generation of the gene expression matrix, was com-
pleted within 100 min for a single dataset. Detailed runtimes for
training and prediction are reported in Table S6.

Evaluation criteria for gene expression prediction
To assess the accuracy of predicted gene expressions at the cel-
lular level, we compared the predicted values with ground truth
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measurements for each gene across all cells. Both ground truth
and predicted values were normalized using the loglp trans-
formation. Prediction accuracy was evaluated using 2 primary
metrics: RMSE and PCC.

RMSE was calculated by treating ground truth and predicted
expression values as vectors and computing their euclidean
distance. This metric provides a straightforward measure of the
overall prediction error. However, because RMSE does not
reflect the strength of linear associations, we also employed
PCC to evaluate how well predicted expression levels captured
the relative patterns of gene activity across cells.

PCC quantifies the linear correlation between 2 variables,
offering insight into the model’s ability to rank expression levels
across cells even when systematic differences in absolute value
exist. In the context of cellular-resolution prediction, RMSE
and PCC provide complementary perspectives: RMSE mea-
sures the magnitude of absolute error, while PCC assesses the
consistency of relative patterns.

To examine the contribution of the multiscale features, we
conducted an ablation study. Specifically, we compared the full
model (incorporating both the local feature, C;, and global fea-
tures, C,) against 2 reduced models: one using only local fea-
tures (C,) and another using only global features (C,).

Model visualization of gene expression patterns

We computed key quality metrics such as the total counts and
the number of features for each cell spot using the pp.calculate_
qc_metrics function in Scanpy. Image registration was applied
to map the spatial location of cells with their coordinates as well
as the quality metrics of the expression matrix. To visualize the
spatial heterogeneity of total counts and features, we plotted a
3-panel figure using Matplotlib (v3.7.3), showing the original
tissue slice, the heatmap of UMI counts, and the heatmap of the
number of features [51]. We used the 99th percentile to set the
color range to eliminate the influence of outliers. Similarly, we
used the same aforementioned spatial mapping algorithm to
label the individual gene expression intensity with the microana-
tomical structure. For multigene scoring, we utilized Scanpy’s
built-in score_genes method to integrate and score target gene
sets (the top 5 marker genes for each neuronal subtype) and
labeled these scores with the microanatomical structure.

Preparation of validated immunohistochemical

sections
All relevant procedures involving animal experiments presented
in this study were compliant with ethical regulations regarding
animal research and were conducted under the approval of the
Experimental Animal Ethics Committee of the South China
University of Technology (license number AE-2025083).

Mouse brains were dissected from 6- to 10-week-old C57BL/6]
male mice. The mice were housed at a relative humidity of 45% =+
15% and aroom temperature of 23.0 + 1.5 °C in the SPF Laboratory
Animal Research Center of the South China University of
Technology. Following the dissection, the brain tissues were fixed
in 4% paraformaldehyde and incubated for 24 h at room tempera-
ture. The brain tissues were washed by phosphate-buffered saline
(PBS) buffer to remove the excess paraformaldehyde and trans-
ported to Wuhan Servicebio Technology for paraffin embedding,
H&E staining, and subsequent IHC.

To prepare FFPE samples, mouse brain tissue samples were
fixed and trimmed, followed by graded ethanol dehydration,
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xylene clearing, and paraffin infiltration. The samples were then
embedded using a paraffin embedding station. The FFPE blocks
were sliced into 4-pm sections, flattened out in a 40 °C water
bath, and dried at 60 °C.

Then, parafin-embedded tissue sections were deparaffinized
twice in xylene (20 min each), hydrated in pure ethanol (5 min),
hydrated again in 75% ethanol (5 min), and gently washed in
the water. The tissue sections on the slide were stained with
hematoxylin and incubated for 3 to 5 min at room temperature.
The slides were then treated with differentiation and bluing
buffer. After dehydration in 85% and 95% ethanol (5 min each),
the slides were stained with eosin for 5 min. Final dehydration
and clearing were performed using pure ethanol 3 times (5 min
each) and xylene twice (5 min each). Slides were mounted with
neutral resin and imaged with a microscope.

For THC, paraffin-embedded tissue sections were deparaf-
finized 3 times (10 min each), followed by rehydration for 3
times (5 min each), and then rinsed with distilled water. Antigen
retrieval was performed under conditions specified in Table 4,
followed by 3 washes with PBS (pH 7.4) for 5 min each. Endo-
genous peroxidase activity was blocked with 3% H,O, for 25
min, followed by PBS wash and blocking with 3% bovine serum
albumin for 30 min. Primary antibodies were applied and incu-
bated overnight at 4 °C. After washing with PBS, slides were
incubated with horseradish peroxidase-conjugated secondary
antibodiesatroom temperature for 50 min. 3,3'-Diaminobenzidine
was used for chromogenic development, followed by hematoxy-
lin staining. Slides were dehydrated through a gradient alcohol
(75% ethanol — 85% ethanol — pure ethanol for twice —
n-butanol — xylene, 5 min each). The slides were mounted with
neutral resin, examined, and imaged under a microscope.

Cell annotation and spatial mapping

This study employed a systematic ST analysis workflow to anno-
tate the predicted data. First, the raw data matrix generated by
PRTS was normalized using the Scanpy framework (including
total count normalization and log1p transformation). After filter-
ing with the highly_variable_genes function, 800 HVGs were
retained. The top 50 PCs were computed using the pca function.
A neighborhood graph based on PCA components was gener-
ated using the neighbors function, followed by Leiden clustering
with a resolution of 0.6. When annotating the ground truth data-
set, the resolution for Leiden clustering was increased to 1.8 to
ensure a comparable number of clusters. UMAP was employed
for dimensionality reduction. In the annotation process, only cell
clusters with a cell count of 1,200 or greater were retained. This
step helped remove low-quality and misidentified image tiles.
For the retained cell subtypes, differential expression analysis
was performed using the Wilcoxon rank-sum test to identify
subtype-specific marker genes. A threshold of |log,FC| > 0.25
was used for screening. For the subsequent annotation step,
only the top 25 most differentially expressed genes were
included. Cell types were annotated based on the biological
functions and spatial differential expression patterns of the
marker genes.

We primarily referenced 2 databases: PanglaoDB and Cell-
Marker. PanglaoDB evaluates the expression of specific genes
across different cell types using 1,368 single-cell transcriptome
datasets, whereas CellMarker provides manually curated markers
for 9,148 cell types across various mouse tissues. For most virtual
subpopulations, the highly expressed genes we identified could
be supported by evidence from these databases.
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For gene enrichment analysis, we selected genes with |log,
(FoldChange)| > 0 and converted the selected gene list from gene
symbols to UniProt. Gene Ontology enrichment analysis was
performed using goatools (v1.4.12) with a P value set to 0.2 [52].
The Benjamini-Hochberg method was used to control the false-
positive rate, and biological processes, molecular functions, and
cellular components were analyzed separately.

In the validation slices, we performed further clustering and
annotation on the cell clusters generated from the ground truth
dataset. The methods and parameters used for clustering were
kept the same as those for the predicted data, except for the
resolution of the Leiden clustering.

In the quantitative analysis, we used Seaborn (v0.13.2) to
plot horizontal bar charts that display the proportion of each
cell subtype relative to the total cell count [51]. Pie charts were
utilized to visualize the proportion of major cell types out of
the total cell population.

To evaluate performance at the broad cell category level, the
21 annotated cell subpopulations were consolidated into 4
major classes when generating the confusion matrix: all neu-
ronal subpopulations (including the putative GAC subpopula-
tion due to its distinct glutamatergic expression profile) were
grouped under “Neurons”, oligodendrocyte subpopulations
were aggregated into “Oligodendrocytes”, astrocyte subpopula-
tions were combined as “Astrocytes”, and cells such as choroid
plexus epithelial cells (CPEC) and vascular and leptomeningeal
cells (VLM) were merged into “Stromal Cells”.

Based on the characteristics of the lung cancer data, the
following adjustments were made during annotation: for the
original data, the resolution parameter for Leiden clustering
was set to 0.5, and clusters containing fewer than 2,000 cells
were removed; for the predicted data, the resolution was set to
0.6, and clusters with fewer than 1,200 cells were filtered out.

Standard analysis of spot-level ST

The spot-level ST data used in this study come from 2 publicly
available 10X Visium datasets provided by 10x Genomics. All
datasets consist of coronal sections of mouse brains prepared by
the FFPE process. We extracted the filtered expression matrices in
HDF5 format and the corresponding spatially resolved images for
standard ST analysis. Additionally, we extracted high-resolution
histological images for generating prediction results.

The standard ST analysis pipeline was implemented in R
(version 4.2.1) using Seurat (v5.1.0) to analyze the extracted
data [53]. A spot was retained for further analysis if it met the
criteria: a total gene count between 1,000 and 100,000 and a
number of expressed genes between 200 and 10,000. After fil-
tering, the 2 datasets retained 2,298 (Fig. 4) and 2,234 (Fig. S9)
spots, respectively.

We normalized the ST data using the SCTransform method
and performed PCA with the RunPCA function. The Find-
Neighbors function was employed to construct a neighborhood
graph based on the PCA components. For the 2-dimensional
visualization of spot clusters, the RunUMAP function was used
to create a UMAP plot. The top 30 PCs were filtered for comput-
ing the embeddings. Ultimately, we identified 18 and 16 spot
clusters in 2 datasets (Fig. 3 and Fig. S8), respectively.

Analysis of spot-level ST using PRTS

We began with converting the high-resolution histological
images corresponding to TIFF format and then followed the
same method and parameters as outlined in the “Transcriptomics
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data preprocessing” section to perform cell segmentation. It is
important to keep the H&E images used for actual prediction
as similar as the images in the training dataset, so we must select
images that are complete hemisphere slices and follow an iden-
tical orientation for slice placement, with the hippocampal area
located at the top right corner of the overall tissue image.

Once the cell segmentation results were loaded into PRTS
and the output cell X gene expression matrices were obtained,
we evaluated the accuracy of the predicted gene expression
values and cell annotations following the same steps as for slices
in the validation datasets. In terms of gene expression, we used
Scanpy to compute the total counts and number of features for
each cell spot, labeling this information with the spatial coor-
dinates of the cells. Similarly, we employed the same spatial
mapping algorithm to label single-gene expression intensities
with the microanatomical structure. For cell annotation, we
first performed normalization on the raw data matrix and
retained 600 HVGs using the highly variable_genes function.
The top 50 PCs were computed with the pca function. We used
the neighbors function to plot neighborhood graphs based on
these PCA components and performed Leiden clustering with
a resolution of 0.6 on them. Similarly, only clusters with 1,200
or more cells were retained.

At this resolution, we identified 19 and 17 cell subtypes in 2
datasets, respectively (Fig. 4 and Fig. S9). Differential expression
analysis was performed using the Wilcoxon rank-sum test, with
[log,FC| > 0.25 as the threshold. The top 25 most differentially
expressed genes were used for cell annotation.

Statistical analysis

The statistical analysis was implemented in R, RStudio, and

Python. Differences were considered significant when P < 0.05.
The code of PRTS is available at https://github.com/

morkwok/PRTS.
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