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High-resolution spatial transcriptomics (ST) data provide valuable insights into the molecular dynamics 
underlying complex biological processes. However, their widespread application remains limited due to high 
costs and technical challenges. Here, we present PRTS (Pathology-driven Reconstruction of Transcriptomic 
States), a novel framework that predicts single-cell-resolution ST data directly from histological images. 
Our results demonstrated that PRTS generated transcriptomic profiles for about 60,000 analyzable cell 
tiles per tissue section, representing an approximately 27-fold increase in analytical units compared to 
conventional ST spots and remarkably enhancing spatial resolution. Notably, PRTS achieves accurate cell-
level transcriptomic predictions using only hematoxylin-and-eosin-stained tissue images. This method 
transforms costly ST technologies into a practical and scalable tool, offering a cost-efficient solution for 
comprehensive ST profiling in hematoxylin-and-eosin-based disease research.

Introduction

   The function of many biological systems, such as embryos [  1 ], 
neural systems [  2 ], and tumors [  3 ], depends on the spatial orga-
nization of cells. Spatial transcriptomics (ST) technologies pro-
vide a powerful approach to studying spatial molecular changes 
in complex biological processes and related diseases. Existing ST 
technologies can be grouped into 2 approaches: in situ imaging-
based and next-generation-sequencing-based technologies [  4 ]. 
The former provides subcellular resolution but is limited by low 
gene throughput. In contrast, next-generation-sequencing-based 
ST technologies detect transcriptome-wide expression patterns 
but have a limited spatial resolution. Emerging methods like 
Stereo-seq [  5 ] and Visium HD [  6 ] offer genome-wide coverage 

with a subcellular resolution, overcoming the limitations of tra-
ditional technologies. This high-definition molecular atlas facili-
tates more accurate interpretation of cellular spatial organization, 
advancing in the understanding of tissue developments and 
disease mechanisms.

   Despite the great potential of ST in medical research, its high 
cost and technical complexity currently limit its widespread 
application [  7 ]. The limited availability of ST data makes them 
challenging to apply in clinical large-scale research and applica-
tions. Therefore, affordable and reliable methods are urgently 
needed for predicting spatial gene expression data in large-scale 
samples. Previous studies have shown that gene expression levels 
are correlated with histological image features. Several method-
ologies have been developed recently for ST data prediction 
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with histological images. The Inferring Super-resolution Tissue 
ARchitecture (iStar) method was able to predict spatial gene 
expression with super-resolution from histological images [  8 ]. 
Furthermore, the integrated graph and image deep learning 
(IGI-DL) method enabled the forecasting of the prognosis of 
cancer patients by predicting the gene expression patterns within 
specific regions on histological images [  9 ]. However, these meth-
odologies are mostly developed based on the data from Visium 
and Xenium, which limits their capacity to generate both high-
resolution and comprehensive ST data. Moreover, they are unable 
to directly provide single-cell transcriptomics data.

   To overcome these limitations, we present the deep-learning-
based framework PRTS (Pathology-driven Reconstruction of 
Transcriptomic States), a method that predicts single-cell and 
spatially resolved transcriptomics from pathological images. 
Unlike previous approaches, PRTS is uniquely designed to pre-
dict the sparse, nucleus-focused transcriptome captured by plat-
forms. This fundamental distinction necessitates a different 
technical implementation, as predicting a spot’s aggregate signal 
relies on a distinct set of histological components compared to 
predicting single-cell expression.

   PRTS is primarily trained using the publicly available Visium 
HD ST data and corresponding histological images from mouse 
brain coronal sections. The framework remarkedly predicts 
single-cell-level ST data (1,820 different genes) in similar types 
of histological images (Fig.  1 A). Our method has established a 
more precise correlation between transcriptomes and economic 
histological images, which may greatly advance research on the 
organization of cells and their molecular basis.        

   As an expandable methodological framework, this study, 
although using the mouse brain coronal section as an example, 
enables researchers to apply our method to different Visium 
HD samples for training. We also leveraged cancer sections to 
explore the algorithm’s potential in pathological conditions. 
This flexibility aims to accelerate the large-scale application of 
spatial-related research across diverse biological scenarios.   

Results

Training and evaluation process of PRTS
   An overview of PRTS is shown in Fig.  1 B. PRTS employs hier-
archical histological image feature fusion architecture that aims 
to capture the fine-grained cell characteristics and microenviron-
ment features of local cell populations. Due to the high sparsity 
of the expression matrix in a Visium HD dataset with a single-cell 
resolution, it is difficult to distinguish between zero-valued ele-
ments and low-valued elements. Thus, we designed a double-
output neural network model that simultaneously determines 
whether a gene is expressed and predicts its expression level.

   We used the publicly available Visium HD dataset of mouse 
brain coronal section as the training dataset. First, we per-
formed cell segmentation on high-resolution hematoxylin-and-
eosin-stained (H&E-stained) histological images (Fig.  S1 a to 
d) and obtained the gene expression patterns of each cell pixel 
region (Fig.  S1 e to g).

   We performed quality control on the results of cell segmen-
tation, and poorly segmented tiles were removed at this step to 
ensure the accuracy of cell tiles. Specifically, we excluded cell 
tiles with abnormally large nuclear areas, as well as segmented 
regions with very low nuclear unique molecular identifier 
(UMI) counts. The former likely represented aggregates of mul-
tiple cells, while the latter were likely nonnuclear regions. Such 

tiles accounted for only a very small fraction of the total (Fig. 
 S1 e and f). A total of 56,761 cells (Fig.  S1 h to l) and 1,820 highly 
variable genes (HVGs) were used for training (Table  S1 ; for 
selection criteria, see Methods).

   Through the above training paradigm, PRTS can recognize 
individual cells and predict the gene expression levels at their 
locations when new mouse brain coronal section H&E images 
are provided. The predicted results are presented in the form 
of a cell × gene expression matrix (Fig.  1 C). Thus, PRTS not 
only meets the needs of ST analysis but is also compatible with 
popular single-cell RNA sequencing analyses, such as cell clus-
tering, cell annotation, and functional enrichment analysis.

   To assess the accuracy of PRTS in single-cell-resolved gene 
expression prediction, we applied it to another publicly available 
mouse brain section dataset from Visium HD. A total of 77,602 
cell spots were used for validation. First, we numerically evalu-
ated the performance of our model. The model achieved an 
accuracy of 81.39% in the binary-classification task of determin-
ing whether a gene is expressed (Table  S2 ). Taking into account 
the various methods used to prepare the slices, this accuracy 
demonstrates PRTS’s consistency across multiple samples.   

PRTS-inferred expression patterns highly agree with 
actual tissue structures
   Firstly, we explored whether gene expression patterns (Table  S1 ) 
are reliably predicted by PRTS. For the prediction of the global 
patterns, we evaluated the total counts and number of features 
for each cell. There are distinct variations in the total counts and 
number of features across various spatial locations, demonstrat-
ing the intrinsic biological complexity among different tissue 
structures [ 3 ,  10 –  12 ]. In slices from the validation set (Fig.  2 A), 
almost all cells in the hippocampus region exhibited higher total 
counts and feature numbers. In contrast, only scattered cells in 
the cortical and striatal regions showed a high level of expression, 
whereas cells in the meninges, corpus callosum, and ventricular–
subventricular zone displayed relatively lower total counts and 
feature numbers. These distribution characteristics agrees with 
the ground truth measured by Visium HD (Fig.  2 B).        

   We further focused on predicting key genes in neuroscience 
studies, including 4 genes with differential spatial and cellular 
expression (Kcnma1, Plp1, Ptgds, and Ttr), as well as the 
Alzheimer’s disease-related gene Apoe [  13 ]. Virtually all PRTS-
predicted expression distribution characteristics matched the 
ground truth. In general, the expression levels of specific genes 
are higher in regions enriched with their corresponding cell types 
(Fig.  2 C to H). Kcnma1 was enriched in neurons within the lat-
eral habenula region (Fig.  2 D and Fig.  S3 ) [  14 ]; Plp1, in oligo-
dendrocytes within the subventricular zone and external capsule 
(Fig.  2 E and Fig.  S3 ) [  15 ]; Ptgds, in the pia mater region (Fig.  2 F 
and Fig.  S3 ) [  16 ]; and Ttr, in choroid plexus epithelial cells within 
the lateral ventricle region (Fig.  2 G and Fig.  S3 ) [  17 ]. Notably, 
﻿Apoe is widely expressed in the central nervous system, including 
astrocytes, microglia, vascular wall cells, and choroid plexus epi-
thelial cells [  18 ], and PRTS predicted higher Apoe expression 
levels in the ventricular–subventricular zone, lateral ventricle, 
and meningeal regions, where these cells are enriched (Fig.  2 H 
and Fig.  S3 ). This highlights our model’s generalizability across 
various cell types. We applied consecutively cut tissue sections 
to H&E staining and immunohistochemistry (IHC), and the 
expression features from IHC highly agreed with the predicted 
results with H&E images (Fig.  2 I and J and Fig.  S4 ). Moreover, 
we present the predicted expression patterns of 36 other key 
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Fig. 1. Overview of PRTS (Pathology-driven Reconstruction of Transcriptomic States). (A) The application of PRTS. PRTS bridges histological imaging and transcriptomics by 
predicting gene expression from hematoxylin and eosin (H&E) staining coronal sections. Based on coronal H&E images of the mouse brain, PRTS can predict the gene expression 
profiles of individual cells within the tissue. These predictions can be further utilized in downstream transcriptomic analyses, thereby bridging histological imaging, single-cell 
transcriptomics, and spatial transcriptomics. (B) General workflow and architecture of PRTS. (C) User input for PRTS. PRTS takes 2 inputs: a coronal H&E staining image and 
cell coordinates derived from cell segmentation of the same image (see Methods). The output is an .h5ad file containing a cell-by-gene expression matrix, which can be used 
for downstream analysis in Python packages such as Scanpy. UMI, unique molecular identifier; ST, spatial transcriptomics; MLP, multilayer perceptron.
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functional genes (Figs.  S5  and  S6  and Table  S3 ) [  19 ] to illustrate 
the broad predictive capabilities of PRTS.

   Interestingly, the brain slices from the validation set were 
not fully sequenced. There is a small part on the left side of the 
slices that falls outside the spot-covered area (Fig.  2 B). However, 
since PRTS only requires the histological images to generate 
the ST data, the predicted result has full coverage of complete 

slices, showing its capability of complementing the sequencing 
data under a real context.   

PRTS predicts single-cell ST data from  
histological images
   Since the smallest spatial unit for gene expression data generation 
is a single cell, the model enables us to directly extract single-cell 

Fig. 2. Performance of PRTS in predicting gene expression. (A) H&E staining image of the validation section, obtained from the publicly available Visium HD demo dataset (10x 
Genomics). (B) Prediction of total counts and number of features across the tissue. Top panels show ground truth from the dataset; bottom panels show model predictions. In the 
total counts map, each dot represents a cell, with darker blue indicating higher total counts. In the features map, darker red indicates a higher number of features. (C) Localization 
of selected subregions for gene visualization. Red box, Kcnma1; green, Plp1; blue, Ptgds; yellow, Ttr and Apoe. (D to H) Local regions used to compare predicted and ground truth 
gene expressions. For each gene expression map, color gradients from black to red indicate low to high expression levels. For panels (D) to (F): left, H&E staining image; middle, 
ground truth expression from Visium HD data; right, PRTS-predicted expression. Highlighted regions indicate cells with high expression levels. For panels (G) and (H), the same 
H&E image is shared in the top panel; bottom left, ground truth expression; bottom right, predicted expression. Expression of (D) Kcnma1, (E) Plp1, (F) Ptgds, (G) Ttr, and 
(H) Apoe. (I and J) Immunohistochemistry (IHC) validation of PRTS predictions. From left to right: H&E staining image, predicted Ptgds expression, Ptgds IHC result, predicted 
Apoe expression, and Apoe IHC result. (I) Lateral ventricle region; (J) pia mater region.
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subtypes from the predicted results. In this case, we have extracted 
21 subtypes of cells in total, with a silhouette coefficient of 0.0952 
and an adjusted rand index of 0.1424 (Fig.  3 A and Table  S5 ). They 
were annotated as one of the following types: neurons, astrocytes, 
oligodendrocytes, choroid plexus epithelial cells, vascular and men-
ingeal cells, or glutamatergic astrocytes (Fig.  3 A to C). Predicted 

results show agreement with the manual annotation (Fig.  3 D). Cell 
annotation was performed by comparing the highly expressed genes 
of each virtual cell subtype with curated single-cell marker data-
bases, including PanglaoDB [  20 ] and CellMarker [  21 ] (Table  S5 ).        

   In the predicted results, different cell subtypes illustrated dis-
tinctive gene expression patterns (Fig.  3 B). For neurons, we 

Fig. 3. Single-cell RNA sequencing (scRNA-seq) data predicted by PRTS. (A) Uniform manifold approximation and projection (UMAP) visualization of cell clusters generated by 
PRTS based on the H&E image. Cell types include the following: Neu, neurons; OLG, oligodendrocytes; AC, astrocytes; CPEC, choroid plexus epithelial cells; GAC, a subpopulation 
similar to glutamatergic astrocytes; and VLM, vascular and leptomeningeal cells. (B) Dot plot showing the expression of marker genes across cell subtypes generated by PRTS. 
(C) Spatial distribution of manually annotated cell subtypes based on PRTS. (D) Spatial distribution of manually annotated cell subtypes based on ground truth sequencing 
data. (E) Localization of selected regions used for detailed visualization in (F) to (H). (F to H) Local distribution of PRTS-predicted cell subtypes in specific regions. Red lines 
delineate boundaries between distinct cell zones. (F) Cortex region. (G) Lateral ventricle region. (H) Hippocampus region. (I) Proportion of each cell subtype. Top, predicted 
data; bottom, ground truth data. (J) Proportion of major cell types. Left, predicted data; right, ground truth data. (K) Confusion matrix based on cell categories.
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scored the marker gene sets for each subtype and found that the 
scores for different subtypes exhibited spatially specific distribu-
tions, clearly identifying anatomical structures such as the hip-
pocampus and striatum. This suggests that the clustering results 
of neurons might be based on spatially differential gene expres-
sion across the anatomic structures (Fig.  S7 ). The predictions for 
other cell subtypes even showed more typical expression features 
compared to neurons. Three oligodendrocyte subtypes univer-
sally exhibited high expression of the myelin-associated proteins 
﻿Mog and Mobp, as well as the key transcription factors Sox10 and 
﻿Myrf [  22 ]. Astrocytes were characterized by the elevated expres-
sion of Sparc [  23 ] and Vim [  24 ]. Choroid plexus epithelial cells 
are marked by high expression of Ttr [  25 ]. Vascular and menin-
geal cells were annotated by the high expression of Ptgds [ 16 ]. 
Interestingly, a specific cell subpopulation exhibited gene expres-
sion patterns characteristic of both neurons and astrocytes (Fig. 
 3 B and Fig.  S8 ). This profile is consistent with recently reported 
glutamatergic astrocytes [  26 ] but could also potentially represent 
tissue tiles where astrocytes are co-located with neurons.

   Cell subtypes have specific spatial distributions that can be 
identified in both predicted results and ground truth measured 
by Visium HD (Fig.  3 C to H). In the cortical region, different cell 
subtypes populated in specific regions and formed horizontal 
layers (Fig.  3 F). In the external capsule and lateral ventricle 
regions, we captured an enriched population of oligodendrocytes 
and the presence of choroid plexus epithelial cells (Fig.  3 G). In 
the hippocampal region, we identified the gradient distribution 
of various neuron subtypes (Fig.  3 H), with Neu_01 predomi-
nantly enriched in the CA1 region and Neu_02 primarily enriched 
from the CA2 region to the dentate gyrus. The regional specifica-
tion of cell subtypes has been verified by multiple ST atlases of 
the mouse brain [  27 ,  28 ]. This agreement suggests that PRTS is 
able to annotate brain tissue structures at subtype-level resolution. 
Quantitative comparisons further demonstrated near-identical 
proportions of neurons and rare subtypes relative to manual 
annotations, validating the framework’s accuracy in cell-type 
quantification (Fig.  3 I and J). Due to differing cell clustering strat-
egies, direct one-to-one correspondence between subpopulations 
was hindered. Therefore, we aggregated the subpopulations into 
broader categories and generated a confusion matrix. The results 
indicated an overall classification accuracy of 53.9% at the broad 
category level (Fig.  3 K). We observed that the model exhibited 
suboptimal performance in identifying astrocytes, which may be 
attributed to their highly intricate morphological structure [  29 ].   

PRTS improves the resolution of a spot-level  
ST method
   Traditional spot-based ST technologies suffer from limited 
resolution and fail to resolve cellular heterogeneity. PRTS over-
comes this limitation by generating transcriptomic profiles at 
single-cell resolution directly from histological images. In 2 
spot-based ST datasets (2,298/2,234 spots), PRTS reconstructed 
transcriptomes for 62,711 and 60,259 cells, respectively, repre-
senting an approximately 27-fold increase in spatial resolution 
(Fig.  4  and Fig.  S9 ).        

   It should be emphasized that, due to the limitations of cur-
rent cell segmentation algorithms, the reported number may 
exceed the true number of cells as a result of artifacts and mis-
segmentation. Therefore, quality control of the generated data 
is essential, such as removing certain cell subpopulations with 
only a small number of aggregated cells, which are likely to be 
mis-segmented tiles.

   Building on PRTS’s ability to improve predictive accuracy, 
we further validated its performance on spot-based ST datasets. 
Overall, the predicted total cell counts and features aligned with 
actual spot distribution (Fig.  4 B and C). For the prediction of 
individual genes, we visualized the same set of genes as in Fig. 
 2 . The areas of high expression in the predicted images matched 
those in the ground truth (Fig.  4 D and E).

   Next, we assessed PRTS’s capability for single-cell annota-
tion of brain tissues. All extracted cells were clustered into 19 
subtypes, annotated as one of the following: neurons, oligoden-
drocytes, astrocytes, choroid plexus epithelial cells, vascular 
and meningeal cells, or glutamatergic astrocytes (Fig.  4 H to L). 
Spot-based ST, on its own, cannot achieve single-cell annota-
tion without cell composition inference algorithms.

   It is well known that in spot-based ST methods, tissue struc-
tures can be divided into different tissue domains based on the 
gene expression pattern difference between spots [  30 ]. We 
found that the predicted results can still reflect the distribution 
characteristics of tissue domains by identifying the enriched 
regions of different cells. The hippocampus is divided into 3 
domains based on real sequencing data, namely, CA1, CA2 to 
CA3, and DG (Fig.  4 G). In the predictions, the hippocampus 
was primarily occupied by Neu_08 (orange cluster), Neu_03 
(green cluster), and Neu_02 (brown cluster), respectively (Fig. 
 4 H). Similarly, both the measured and predicted data captured 
structural changes in multiple layers between the cortex and 
corpus callosum (Fig.  4 H), highlighting the accuracy of PRTS. 
What sets PRTS apart is its finer, single-cell-level resolution, 
which allows us to zoom into local structures to identify cell 
distribution within tissue domains (Fig.  4 K), offering deeper 
insights into the cellular microenvironment of specific regions.   

PRTS maintains robustness in cancer scenarios
   Although we demonstrated the feasibility of PRTS in generating 
data from mouse brain samples, it remains necessary to evalu-
ate its differences from existing algorithms and its potential 
applicability in broader contexts. One of the most important 
applications of ST and H&E imaging is cancer research and 
diagnosis, and many ST data generation algorithms have been 
developed specifically for cancer. To this end, we applied the 
PRTS framework to human breast cancer and lung cancer 
Visium HD datasets to assess its robustness in complex patho-
logical tissues.

   First, we aimed to evaluate the regression accuracy of gene 
expression prediction across multiple tissue types. For breast 
cancer sections, a single slice was partitioned into different 
regions for independent model training and validation. For lung 
cancer sections, 2 consecutive slices were used separately for 
training and validation. In addition, we obtained a third fresh-
frozen mouse brain section to further test predictive perfor-
mance in the brain. We calculated the Pearson correlation 
coefficient (PCC) and root mean square error (RMSE) between 
predicted and true values—metrics commonly employed for 
evaluating predictive performance in similar algorithms. The 
results showed that across the mouse brain, lung cancer, and 
breast cancer, the mean PCC values for PRTS were 0.330, 0.270, 
and 0.204, respectively, while the mean RMSE values were 0.194, 
0.227, and 0.259 (Fig.  5 A). A complete list of PCC and RMSE 
values for each predictable gene is provided in Table  S6  to facili-
tate detailed inspection of gene-level prediction performance.        

   It should be noted that although our algorithm, like many 
others, focuses on gene prediction, to the best of our knowledge, 
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all mainstream ST prediction methods have been developed for 
conventional spot-level data rather than the single-cell-level ST 
used in our study. In other words, those algorithms generate RNA 
counts for entire spot regions, which include nuclear RNA, cyto-
plasmic RNA, extracellular RNA, and others, whereas our 
method quantifies only nuclear RNA. Previous studies have 
reported that nuclear RNA abundance does not directly corre-
spond to total cellular RNA. For example, in the MIN6 pancreatic 
β-cell line, most genes were found to have more transcripts in 
the cytoplasm than in the nucleus [  31 ]. Therefore, our algorithm 
cannot be directly compared on the same scale with other meth-
ods. To better contextualize performance in the gene regression 
task, we reviewed the predictive values reported in the literature. 

For average PCC, most reported values across samples fall 
between 0.1 and 0.4 [ 8 , 9 ,  32 –  34 ]. Given that single-cell ST data 
are inherently more sparse and present greater challenges for 
numerical prediction, we consider the performance of PRTS in 
this task to be comparable to, and acceptable within, the range 
of existing methods.

   Next, we conducted ablation experiments to evaluate the 
contributions of the local and global modules in complex tissue 
prediction. Specifically, we used the complete model as the 
baseline and systematically removed the features extracted 
from local pixel patches and global pixel patches, ensuring that 
the observed performance changes were attributable to the 
removed component. The results showed that removing either 

Fig. 4. Analysis of spot-level spatial transcriptomics data predicted by PRTS. (A) Histological image corresponding to the spatial transcriptomics dataset (10x Genomics 
demo data). (B) Ground truth distribution of total counts (left) and number of detected features (right) across spatial transcriptomics spots. Each bright dot represents 
a spot. (C) PRTS-predicted total counts (left) and number of features (right) across the tissue section. For panels (B) and (C), red boxes highlight regions with high values, 
and a green line separates areas with contrasting value distributions. (D) Ground truth expression of selected genes across spatial transcriptomics spots. From left to right: 
Kcnma1, Plp1, Ptgds, Ttr, and Apoe. (E) PRTS-predicted gene expression at the single-cell level, for the same set of genes shown in panel (D). Each dot represents a cell. For 
panels (D) and (E), red boxes highlight high-expression regions, and a red line separates zones with contrasting expression patterns. (F) UMAP visualization of spot clusters. 
CTX, cortex; TH, thalamus; CC, corpus callosum; AMY, amygdala; VLM, vascular and leptomeningeal cells; HIP, hippocampus; PIR, piriform cortex; STR, striatum; CPm, medial 
caudate putamen; CPI, lateral caudate putamen; VL, lateral ventricle; DG, dentate gyrus; LHb, lateral habenula; L2/3, cortical layer 2/3; L3, layer 3; L4/5, layers 4/5; L6, layer 
6. (G) Spatial distribution of spot clusters across the tissue section. (H) PRTS-predicted spatial distribution of cell subtypes across the section. Blue and red lines delineate 
distinct cellular zones within the cortex and hippocampus, respectively. (I) PRTS-predicted UMAP visualization of cell clusters. Neu, neurons; OLG, oligodendrocytes; AC, 
astrocytes; CPEC, choroid plexus epithelial cells; VLM, vascular and leptomeningeal cells; GAC, glutamatergic astrocytes. (J) Marker gene expression across predicted cell 
subtypes. (K) Regional views illustrating PRTS-predicted cell-type distributions. Each pair of panels shows a region of interest, with the left panel displaying the ground truth 
H&E staining image and the right panel showing the corresponding PRTS-predicted cell-type assignments. Regions from left to right: hippocampus, amygdala and adjacent 
meninges, lateral ventricle and corpus callosum. (L) Proportions of major predicted cell types.
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component led to a decline in predictive performance (Fig.  5 B), 
demonstrating the overall effectiveness of our architectural 
design.

   Finally, using lung cancer as an example, we further illus-
trated the mapping of normalized data within tissue sections 
(Fig.  5 C to E). We presented the predicted expression patterns 
of the IGLC1, VIM, and JCHAIN genes in selected regions (Fig. 
 5 D), all of which exhibited expression characteristics consistent 
with tissue structure. We observed the localization of cell sub-
populations clustered around the bronchus region. Similar 
spatial clustering patterns were noted for both the ground truth 
and predicted data (Fig.  5 E). However, due to the complexity 
of cell subtypes within the tumor microenvironment, detailed 
functional annotation of these subpopulations remains chal-
lenging. It should be emphasized that, unlike normal tissues 
with well-defined spatial organization, cancer tissue slices 
exhibit a more disordered cellular arrangement. Therefore, 
incorporating additional cancer tissue slices for training will 
likely be necessary in future work to uncover novel spatial 

structures and gene expression features in such complex patho-
logical contexts.    

Discussion
   Subcellular-resolution ST data enable a more accurate and com-
prehensive interpretation of spatial heterogeneity at the cellular 
level. Hence, we developed PRTS, a novel method that utilizes 
easily accessible H&E images to effectively predict large-scale 
ST data, addressing the scarcity of high-resolution ST data. 
Furthermore, by comparing prediction results from different 
samples, we can facilitate the identification and screening of 
potential spatial discrepancies. This approach may diminish 
the necessity for expensive sequencing experiments, thereby 
decreasing experimental expenditures and advancing spatially 
contextualized biomedical research.

   Most existing methods rely on spot-level ST data, whereas 
PRTS is designed for single-cell-level modeling, creating a fun-
damental distinction from established prediction algorithms 

Fig. 5. Performance of PRTS across different tissues. (A) Performance of PRTS on fresh-frozen mouse brain sections, human lung adenocarcinoma, and human breast cancer 
datasets. (B) Results of ablation experiments for PRTS on fresh-frozen mouse brain, human lung adenocarcinoma, and human breast cancer datasets. (C) Local regions selected 
for gene prediction in human lung adenocarcinoma. Red box, IGLC1; green, VIM; blue, JCHAIN. (D) Local prediction performance of PRTS in human lung adenocarcinoma. From 
left to right: IGLC1, VIM, and JCHAIN. For each gene, expression from the ground truth data (top panel) and the model prediction (bottom panel) are shown. Input data were 
normalized for model prediction. (E) Localized distribution of predicted cell subpopulations in human lung adenocarcinoma. Top: ground truth distribution, defined by one cell 
subgroup. Bottom: distribution predicted by PRTS, defined by 2 subgroups. PCC, Pearson correlation coefficient; RMSE, root mean square error.
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such as iStar, HiST2ST, and IGI-DL. PRTS predicts nuclear 
RNA, while these other methods capture total RNA signals 
within a region, making their outputs difficult to align both 
numerically and biologically. Moreover, single-cell-level data 
differ markedly from conventional ST in terms of dimensional-
ity, sparsity, and value range, further complicating direct com-
parisons. We attempted comparisons at the super-pixel level, 
but inconsistencies in measurement units and data aggregation 
strategies prevented meaningful alignment of data points across 
algorithms. Nevertheless, we reported the PCCs of PRTS along-
side published results to provide researchers with a clearer 
understanding of the relative strengths and limitations of the 
method.

   By benchmarking the accuracy of predicted gene expression 
level and cell annotation with ground truth dataset, we showed 
that PRTS is capable of generating accurate subcellular ST data 
with real histological images. The performance of PRTS for brain 
slices is consistent with those in existing studies [ 27 , 28 ,  35 ,  36 ]. The 
algorithm can only predict ST data based on HVGs. The number 
of such genes is substantially lower than the total number of genes 
measurable by high-throughput sequencing platforms, which may 
result in incomplete or missing coverage of certain biologically 
relevant pathways. This limitation arises because most genes 
exhibit weak spatial associations that may not be reflected in image 
structures, and including an excessive number of genes would intro-
duce tremendous computational burdens and exacerbate high-
dimensional sparsity. In future work, we plan to employ approaches 
such as module detection to shift from predicting the expression 
of individual genes to inferring the activity of gene modules or 
biological pathways with coordinated functions, thereby enhanc-
ing the biological interpretability of the predictions.

   We also recognize that further experimental validation, such 
as quantitative comparisons with IHC results, is still lacking. True 
IHC images may display diffuse positivity, making direct com-
parisons with predicted images challenging. Moreover, positivity 
criteria vary across methods, making quantitative analysis of 
such comparisons difficult. In particular, gene expression values 
at the single-cell level are distributed continuously, and defining 
positivity based on arbitrary thresholds can introduce observer 
subjectivity.

   The predictive workflow in this study is built upon accurate 
single-cell segmentation. However, segmentation algorithms 
inherently produce errors, which may contribute to prediction 
inaccuracies—for example, splitting a single cell into multiple 
tiles or misclassifying artifacts as cells. As a result, the number 
of segmented cell tiles may exceed the true number of cells. To 
mitigate the impact of segmentation errors, we performed qual-
ity control by excluding abnormal tiles such as multicell aggre-
gates. In the future, we plan to compare different segmentation 
algorithms to identify the most suitable approach for various 
tissue types [  37 ]. Importantly, the PRTS framework itself is not 
dependent on any specific segmentation method; its core pre-
dictive module requires only cell images and coordinate infor-
mation as input. Thus, the framework is inherently flexible and 
compatible with future advances in segmentation algorithms.

   Moreover, early ST technologies had poor resolution for 
mixed expression information from multiple cells within each 
sequenced spot [  38 ]. Therefore, methodologies such as decon-
volution are necessary to annotate cell subtypes within indi-
vidual spots [  39 ,  40 ]. Given the variability in performance 
among different deconvolution methods, the precision of cell-
type annotation remains moderate [  41 ].

   Our current results demonstrate that PRTS can directly gen-
erate data at single-cell resolution and numerically impute values 
for regions that are difficult to sequence, thereby contributing to 
practical research applications. Nevertheless, we also observed 
that the average silhouette coefficient of the virtual subpopula-
tions was relatively low. Although this is consistent with the 
inherent characteristics of single-cell clustering—such as high-
dimensional sparsity and the continuous or transitional nature 
of cell states—where silhouette coefficients are often low even 
for real single-cell subpopulations [  42 ,  43 ], we remain cautious 
and plan to further optimize the algorithm to improve model 
performance. Furthermore, we found that the model’s ability to 
identify astrocytes was compromised. This limitation may be 
attributed to the complex morphology of astrocytes and their 
frequent close proximity to neurons [  44 ]. Therefore, further vali-
dation with large-scale training datasets is required to improve 
the identification of specific and rare cell types.

   In terms of data expansion, beyond mouse brain tissue, this 
study also incorporated human breast cancer and lung cancer 
Visium HD datasets. The results showed that PRTS maintained 
robust performance across different tissue types, providing 
preliminary evidence of its ability to capture the intrinsic ana-
tomical features of diverse tissues. However, models trained 
from single sections still require validation in larger cohorts to 
confirm their generalizability. While PRTS was able to identify 
the gradient distributions and nuclear gene expression patterns 
of cells, this currently serves only as proof of concept. Drawing 
conclusions about novel spatial structures based on such lim-
ited data would lack robustness. Future studies will therefore 
focus on integrating multisample, large-scale ST datasets to 
build comprehensive models capable of systematically uncover-
ing spatial functional units and heterogeneous patterns that are 
blurred in low-resolution ST data.

   In addition, unavoidable technical deformations arise dur-
ing tissue section preparation. The mouse brain sections used 
in this study were obtained through different preparation meth-
ods, including the formalin-fixed paraffin-embedded (FFPE) 
process, frozen fixation, and fresh-frozen processing. The mor-
phological differences among these sections are far greater than 
those between simple consecutive sections, providing prelimi-
nary evidence that the algorithm exhibits a degree of tolerance 
to tissue deformation. Nevertheless, further evaluation is needed 
to assess the performance of PRTS across a wider range of section 
preparation conditions.

   The biggest limitation is that, despite being a state-of-the-
art ST technology, Visium HD has a limited number of slices 
available for training. Based on the current data scale, PRTS 
is not yet sufficient to support highly variable cross-species or 
cross-platform analyses. Different slice preparation techniques 
may lead to substantial morphological variation, impairing 
the high-accuracy prediction capability of PRTS. Expanding 
the types and scope of Visium HD sequencing, optimizing 
cell segmentation algorithms, and increasing the scale of 
training datasets are all crucial for developing a generic predic-
tion model. More importantly, we have provided a framework 
for the development of single-cell-level ST data generation 
models.

   Our team is actively collecting large cohorts of ST sections 
for single diseases such as lung cancer, through both mining of 
public datasets and prospective sequencing efforts. These cohorts 
encompass data from multiple platforms, including Xenium and 
Stereo-seq. The goal is to leverage the diversity of these sections 
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to overcome the limitations of cross-sample heterogeneity, 
thereby constructing a clinically oriented, generalizable PRTS 
framework and further exploring its potential applications in 
tumor spatial biology.   

Methods

Transcriptomics data preprocessing
   All Visium HD datasets used in this study come from publicly 
available datasets provided by 10x Genomics ( https://www. 
10xgenomics.com/datasets?configure%5BhitsPerPage%5D=
50&configure%5BmaxValuesPerFacet%5D=1000&query
=HD ). The FFPE slides of the coronal region of the C57BL/6 
mouse brain were downloaded as our training dataset, while 
the validation dataset consists of frozen-fixed slides of the 
coronal region of the C57BL/6 mouse brain. We extracted the 
2 × 2-μm filtered barcode matrix, parquet tissue position 
matrix, and high-resolution histology feature images of the 
slices from all datasets.

   To create nucleus masks for each cell in the slices, we began 
by performing cell segmentation on the high-resolution H&E 
images corresponding to the sequencing data. Images were sub-
jected to percentile normalization before generating the nuclei 
segmentation masks. Cell segmentation was performed with 
StarDist2 [  45 ], which identifies cell boundaries and generates 
polygon masks. We converted the results into GeoDataFrame 
using the GeoPandas package (v0.12) to record the spatial coor-
dinates of each cell [  46 ]. After the segmentation, we counted the 
sum of the unique barcodes within the nuclei regions. Cells meet-
ing the following criteria were retained. For a single cell, (a) the 
value is less than 2,000, (b) the UMI count is greater than 20, and 
(c) the mitochondrial gene amount is below 15%. Finally, 56,761 
cells in total were used for training. For the validation dataset, 
the same filtering criteria were applied, resulting in 77,602 cells.

   Notably, when analyzing the new histological images, cell seg-
mentation must be performed to obtain nucleus masks necessary 
for generating gene expression data. Since the current model was 
developed based on hemisection images, the full-brain H&E 
image was manually split prior to prediction. Our cell segmenta-
tion strategy and workflow were based on the analysis guidelines 
provided by 10x Genomics. See details at  https://www.10xgenomics.
com/analysis-guides/segmentation-visium-hd .

   To understand the overall features of the cells in the training 
dataset, we performed dimensionality reduction and clustering 
on the dataset using Scanpy (v1.9.8) [  47 ]. We identified 2,000 
HVGs using the highly_variable_genes function. The top 50 
principal components (PCs) were calculated using the pca 
function. Based on these principal component analysis (PCA) 
components, we constructed a neighborhood graph with the 
neighbors function and performed Leiden clustering on this 
graph (resolution = 0.6). Uniform manifold approximation and 
projection (UMAP) was used for dimensionality reduction.

   Through the clustering process, we identified a total of 20 
cell clusters. Differential gene expression analysis was carried 
out using the rank_genes_groups function in Scanpy. The 
results were tested with the Wilcoxon rank-sum test. We 
retained only genes with P.adjust < 0.01 and |log2FC| ≥ 1 for 
training, which resulted in a total of 1,820 genes. The motiva-
tion of identifying differentially expressed genes is to establish 
the correlation between the gene expression profiles and spa-
tially morphological features of cells, which provides potential 
biomarkers for studying functional heterogeneity in cells.

   Based on typical marker genes, we classified the cell clusters 
into 4 main types: neurons (Snap25, Camk2n1, Ncdn, and 
﻿Atp1b1), oligodendrocytes (Plp1, Mbp, and Mobp), astrocytes 
(Apoe and Aldoc), and choroid plexus epithelial cells (Clu, Ttr, 
and Enpp2). Meanwhile, we also noticed a few cell clusters lack-
ing distinct gene expression patterns. Given that subtypes with-
out distinct expression profiles are commonly observed in both 
ST and single-cell RNA sequencing studies [  48 ], these subtypes 
may represent a cluster of misidentified or low-quality cell 
spots. Thus, these clusters were included during the training 
process. When analyzing new slices, cells lacking distinct 
expression features tend not to be classified into any major cell 
types, instead forming separate clusters, making them easy to 
exclude.

   In addition to the mouse brain datasets, lung and breast 
cancer tissue sections were processed using the same pipeline 
to assess generalizability. Following differential gene expression 
analysis and filtering, 1,656 genes were retained for the lung 
cancer model and 1,147 for the breast cancer model.   

Cellular gene expression prediction with  
histological images
   To facilitate the processing of histological images with different 
resolutions, we first rescaled each image so that the size of each 
pixel is 0.5 × 0.5 μm2. This rescaling ratio ensures that a 16 × 
16-pixel tile corresponds to an area of 8 × 8 μm2, which is about 
the size of a single cell [ 8 ]. Then, based on the cell masks 
obtained from cell segmentation, we drew a minimum bound-
ing rectangle to the adjacent polygons to extract individual cell 
regions and extracted a 256 × 256-pixel tile from the histologi-
cal image to serve as the cell’s neighboring spatial region. 
Additionally, for each cell, we divided the 256 × 256-pixel tile 
into 16 × 16-pixel patches.

   The 16 × 16-pixel images primarily capture the fine-grained 
cellular structures, such as cell morphology and subcellular com-
ponents, whereas the 256 × 256-pixel images reflect the global 
tissue structure. Let  X ∈ ℝ

M×N×3    be the RGB-channel histologi-
cal image with a height  M    and a width  N   . For each cell, a 256 × 
256-pixel image tile centered on its spatial location was extracted 
and used as input to a pre-trained vision transformer (ViT) 
model [  49 ]. Specifically, we employed a ViT-256/16 model pre-
trained using the self-supervised DINO framework [  50 ], pro-
cessing the image by dividing it into a sequence of 16 × 16 
patches (tokens). The final hidden state of the dedicated [CLS] 
token serves as a holistic representation of the entire image tile, 
which we used as the global feature vector  C2   .

   To represent fine-grained cellular morphology, the local fea-
ture  C1    was derived from the patch tokens whose 16 × 16 regions 
overlapped with the cell nucleus. As a single cell typically spans 
multiple patches, their feature vectors were aggregated by average 
pooling to generate a unified  C1    vector. The local feature  C1    and 
the global feature  C2    were then concatenated to form a compre-
hensive histology feature vector ﻿zx ∈ ℝ

C1+C2   . In our implementa-
tion, the feature dimensions were set to  C1 = 192    and  C2 = 384   .

   In gene expression prediction tasks, the prevalence of zero 
values and sparse counts makes it challenging for conventional 
regression models to distinguish between low-value gene expres-
sion and zero expression. To address this, we designed a dual-
output neural network model to simultaneously determine 
whether a gene is expressed and predicts its expression level. 
Given the class imbalance problem in transcriptomics datasets, 
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where most genes are in a silent state and positive samples (active 
genes) are much fewer than negative samples (silent genes), we 
introduce class weights into the loss function to enhance the 
model’s capacity.

   To express the loss function, let  ̂yi    be the gene expression 
prediction for gene  i    and  yi    be the observed gene expression 
for gene  i   . Then, the class weighting coefficient  �i    could be 
expressed numerically as

﻿﻿   

   Then, the weighted loss function is
﻿﻿  

where  d    is the number of genes to predict, and the classification 
loss  Lbin    is calculated based on binary-classification labels of 
whether a gene is expressed or not. Then, the total loss function 
﻿Loss    is a weighted sum of these 2 losses:
﻿﻿   

   The hyperparameters  �p   ,  �n   ,  �1   , and  �2    were determined 
through grid search on the validation set to optimize perfor-
mance. In this study, we set  �n = 1   ,  �p = 5   ,  �1 = 1   , and  �2 = 20    
based on the optimal validation results.

   After model training, the predicted gene expression for gene 
﻿i    at cell  x    is

﻿﻿  

where  fMLP(⋅)i    is the  ith    dimension of the output vector from 
the neural network model and  zx ∈ℜ576    is the histology feature 
vector of cell  x   . The predicted expression values obtained for 
all cells were denormalized and integrated into a gene expres-
sion matrix, which was then exported as an .h5ad file for down-
stream analysis.

   For the network architecture, we used a feed-forward neural 
network consisting of 4 hidden layers with 512, 512, 1,024, and 
1,024 nodes, respectively. Each hidden layer employed a leaky 
rectified linear unit as the activation function, followed by a 
batch normalization layer to accelerate training and a dropout 
layer (rate = 0.1) to prevent overfitting. The output layer was a 
linear layer with the number of nodes equal to the number of 
predicted genes.

   The model was trained using the AdamW optimizer with a 
learning rate of 0.01 and a weight decay of 0.05. Training was 
conducted on an NVIDIA GeForce RTX 4060 graphics processing 
unit with a batch size of 256 for 100 epochs, with early stopping 
applied if the validation loss did not improve for 10 consecutive 
epochs. The total number of model parameters was approximately 
4.0 million. The entire analytical workflow, from histological 
image input to generation of the gene expression matrix, was com-
pleted within 100 min for a single dataset. Detailed runtimes for 
training and prediction are reported in Table  S6 .   

Evaluation criteria for gene expression prediction
   To assess the accuracy of predicted gene expressions at the cel-
lular level, we compared the predicted values with ground truth 

measurements for each gene across all cells. Both ground truth 
and predicted values were normalized using the log1p trans-
formation. Prediction accuracy was evaluated using 2 primary 
metrics: RMSE and PCC.

   RMSE was calculated by treating ground truth and predicted 
expression values as vectors and computing their euclidean 
distance. This metric provides a straightforward measure of the 
overall prediction error. However, because RMSE does not 
reflect the strength of linear associations, we also employed 
PCC to evaluate how well predicted expression levels captured 
the relative patterns of gene activity across cells.

   PCC quantifies the linear correlation between 2 variables, 
offering insight into the model’s ability to rank expression levels 
across cells even when systematic differences in absolute value 
exist. In the context of cellular-resolution prediction, RMSE 
and PCC provide complementary perspectives: RMSE mea-
sures the magnitude of absolute error, while PCC assesses the 
consistency of relative patterns.

   To examine the contribution of the multiscale features, we 
conducted an ablation study. Specifically, we compared the full 
model (incorporating both the local feature,  C1   , and global fea-
tures,  C2   ) against 2 reduced models: one using only local fea-
tures ( C1   ) and another using only global features ( C2   ).   

Model visualization of gene expression patterns
   We computed key quality metrics such as the total counts and 
the number of features for each cell spot using the pp.calculate_
qc_metrics function in Scanpy. Image registration was applied 
to map the spatial location of cells with their coordinates as well 
as the quality metrics of the expression matrix. To visualize the 
spatial heterogeneity of total counts and features, we plotted a 
3-panel figure using Matplotlib (v3.7.3), showing the original 
tissue slice, the heatmap of UMI counts, and the heatmap of the 
number of features [  51 ]. We used the 99th percentile to set the 
color range to eliminate the influence of outliers. Similarly, we 
used the same aforementioned spatial mapping algorithm to 
label the individual gene expression intensity with the microana-
tomical structure. For multigene scoring, we utilized Scanpy’s 
built-in score_genes method to integrate and score target gene 
sets (the top 5 marker genes for each neuronal subtype) and 
labeled these scores with the microanatomical structure.   

Preparation of validated immunohistochemical 
sections
   All relevant procedures involving animal experiments presented 
in this study were compliant with ethical regulations regarding 
animal research and were conducted under the approval of the 
Experimental Animal Ethics Committee of the South China 
University of Technology (license number AE-2025083).

   Mouse brains were dissected from 6- to 10-week-old C57BL/6J 
male mice. The mice were housed at a relative humidity of 45% ± 
15% and a room temperature of 23.0 ± 1.5 °C in the SPF Laboratory 
Animal Research Center of the South China University of 
Technology. Following the dissection, the brain tissues were fixed 
in 4% paraformaldehyde and incubated for 24 h at room tempera-
ture. The brain tissues were washed by phosphate-buffered saline 
(PBS) buffer to remove the excess paraformaldehyde and trans-
ported to Wuhan Servicebio Technology for paraffin embedding, 
H&E staining, and subsequent IHC.

   To prepare FFPE samples, mouse brain tissue samples were 
fixed and trimmed, followed by graded ethanol dehydration, 

(1)𝜔i =

{

𝜔p if yi>0

𝜔n if yi=0
where 𝜔p > 𝜔n
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xylene clearing, and paraffin infiltration. The samples were then 
embedded using a paraffin embedding station. The FFPE blocks 
were sliced into 4-μm sections, flattened out in a 40 °C water 
bath, and dried at 60 °C.

   Then, paraffin-embedded tissue sections were deparaffinized 
twice in xylene (20 min each), hydrated in pure ethanol (5 min), 
hydrated again in 75% ethanol (5 min), and gently washed in 
the water. The tissue sections on the slide were stained with 
hematoxylin and incubated for 3 to 5 min at room temperature. 
The slides were then treated with differentiation and bluing 
buffer. After dehydration in 85% and 95% ethanol (5 min each), 
the slides were stained with eosin for 5 min. Final dehydration 
and clearing were performed using pure ethanol 3 times (5 min 
each) and xylene twice (5 min each). Slides were mounted with 
neutral resin and imaged with a microscope.

   For IHC, paraffin-embedded tissue sections were deparaf-
finized 3 times (10 min each), followed by rehydration for 3 
times (5 min each), and then rinsed with distilled water. Antigen 
retrieval was performed under conditions specified in Table  S4 , 
followed by 3 washes with PBS (pH 7.4) for 5 min each. Endo
genous peroxidase activity was blocked with 3% H2O2 for 25 
min, followed by PBS wash and blocking with 3% bovine serum 
albumin for 30 min. Primary antibodies were applied and incu-
bated overnight at 4 °C. After washing with PBS, slides were 
incubated with horseradish peroxidase-conjugated secondary 
antibodies at room temperature for 50 min. 3,3′-Diaminobenzidine 
was used for chromogenic development, followed by hematoxy-
lin staining. Slides were dehydrated through a gradient alcohol 
(75% ethanol → 85% ethanol → pure ethanol for twice → 
﻿n-butanol → xylene, 5 min each). The slides were mounted with 
neutral resin, examined, and imaged under a microscope.   

Cell annotation and spatial mapping
   This study employed a systematic ST analysis workflow to anno-
tate the predicted data. First, the raw data matrix generated by 
PRTS was normalized using the Scanpy framework (including 
total count normalization and log1p transformation). After filter-
ing with the highly_variable_genes function, 800 HVGs were 
retained. The top 50 PCs were computed using the pca function. 
A neighborhood graph based on PCA components was gener-
ated using the neighbors function, followed by Leiden clustering 
with a resolution of 0.6. When annotating the ground truth data-
set, the resolution for Leiden clustering was increased to 1.8 to 
ensure a comparable number of clusters. UMAP was employed 
for dimensionality reduction. In the annotation process, only cell 
clusters with a cell count of 1,200 or greater were retained. This 
step helped remove low-quality and misidentified image tiles. 
For the retained cell subtypes, differential expression analysis 
was performed using the Wilcoxon rank-sum test to identify 
subtype-specific marker genes. A threshold of |log2FC| ≥ 0.25 
was used for screening. For the subsequent annotation step, 
only the top 25 most differentially expressed genes were 
included. Cell types were annotated based on the biological 
functions and spatial differential expression patterns of the 
marker genes.

   We primarily referenced 2 databases: PanglaoDB and Cell
Marker. PanglaoDB evaluates the expression of specific genes 
across different cell types using 1,368 single-cell transcriptome 
datasets, whereas CellMarker provides manually curated markers 
for 9,148 cell types across various mouse tissues. For most virtual 
subpopulations, the highly expressed genes we identified could 
be supported by evidence from these databases.

   For gene enrichment analysis, we selected genes with |log2 
(FoldChange)| > 0 and converted the selected gene list from gene 
symbols to UniProt. Gene Ontology enrichment analysis was 
performed using goatools (v1.4.12) with a P value set to 0.2 [  52 ]. 
The Benjamini–Hochberg method was used to control the false-
positive rate, and biological processes, molecular functions, and 
cellular components were analyzed separately.

   In the validation slices, we performed further clustering and 
annotation on the cell clusters generated from the ground truth 
dataset. The methods and parameters used for clustering were 
kept the same as those for the predicted data, except for the 
resolution of the Leiden clustering.

   In the quantitative analysis, we used Seaborn (v0.13.2) to 
plot horizontal bar charts that display the proportion of each 
cell subtype relative to the total cell count [ 51 ]. Pie charts were 
utilized to visualize the proportion of major cell types out of 
the total cell population.

   To evaluate performance at the broad cell category level, the 
21 annotated cell subpopulations were consolidated into 4 
major classes when generating the confusion matrix: all neu-
ronal subpopulations (including the putative GAC subpopula-
tion due to its distinct glutamatergic expression profile) were 
grouped under “Neurons”, oligodendrocyte subpopulations 
were aggregated into “Oligodendrocytes”, astrocyte subpopula-
tions were combined as “Astrocytes”, and cells such as choroid 
plexus epithelial cells (CPEC) and vascular and leptomeningeal 
cells (VLM) were merged into “Stromal Cells”.

   Based on the characteristics of the lung cancer data, the 
following adjustments were made during annotation: for the 
original data, the resolution parameter for Leiden clustering 
was set to 0.5, and clusters containing fewer than 2,000 cells 
were removed; for the predicted data, the resolution was set to 
0.6, and clusters with fewer than 1,200 cells were filtered out.   

Standard analysis of spot-level ST
   The spot-level ST data used in this study come from 2 publicly 
available 10X Visium datasets provided by 10x Genomics. All 
datasets consist of coronal sections of mouse brains prepared by 
the FFPE process. We extracted the filtered expression matrices in 
HDF5 format and the corresponding spatially resolved images for 
standard ST analysis. Additionally, we extracted high-resolution 
histological images for generating prediction results.

   The standard ST analysis pipeline was implemented in R 
(version 4.2.1) using Seurat (v5.1.0) to analyze the extracted 
data [  53 ]. A spot was retained for further analysis if it met the 
criteria: a total gene count between 1,000 and 100,000 and a 
number of expressed genes between 200 and 10,000. After fil-
tering, the 2 datasets retained 2,298 (Fig.  4 ) and 2,234 (Fig.  S9 ) 
spots, respectively.

   We normalized the ST data using the SCTransform method 
and performed PCA with the RunPCA function. The Find
Neighbors function was employed to construct a neighborhood 
graph based on the PCA components. For the 2-dimensional 
visualization of spot clusters, the RunUMAP function was used 
to create a UMAP plot. The top 30 PCs were filtered for comput-
ing the embeddings. Ultimately, we identified 18 and 16 spot 
clusters in 2 datasets (Fig.  3  and Fig.  S8 ), respectively.   

Analysis of spot-level ST using PRTS
   We began with converting the high-resolution histological 
images corresponding to TIFF format and then followed the 
same method and parameters as outlined in the “Transcriptomics 
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data preprocessing” section to perform cell segmentation. It is 
important to keep the H&E images used for actual prediction 
as similar as the images in the training dataset, so we must select 
images that are complete hemisphere slices and follow an iden-
tical orientation for slice placement, with the hippocampal area 
located at the top right corner of the overall tissue image.

   Once the cell segmentation results were loaded into PRTS 
and the output cell X gene expression matrices were obtained, 
we evaluated the accuracy of the predicted gene expression 
values and cell annotations following the same steps as for slices 
in the validation datasets. In terms of gene expression, we used 
Scanpy to compute the total counts and number of features for 
each cell spot, labeling this information with the spatial coor-
dinates of the cells. Similarly, we employed the same spatial 
mapping algorithm to label single-gene expression intensities 
with the microanatomical structure. For cell annotation, we 
first performed normalization on the raw data matrix and 
retained 600 HVGs using the highly_variable_genes function. 
The top 50 PCs were computed with the pca function. We used 
the neighbors function to plot neighborhood graphs based on 
these PCA components and performed Leiden clustering with 
a resolution of 0.6 on them. Similarly, only clusters with 1,200 
or more cells were retained.

   At this resolution, we identified 19 and 17 cell subtypes in 2 
datasets, respectively (Fig.  4  and Fig.  S9 ). Differential expression 
analysis was performed using the Wilcoxon rank-sum test, with 
|log2FC| ≥ 0.25 as the threshold. The top 25 most differentially 
expressed genes were used for cell annotation.   

Statistical analysis
   The statistical analysis was implemented in R, RStudio, and 
Python. Differences were considered significant when P < 0.05.

   The code of PRTS is available at  https://github.com/
morkwok/PRTS .    
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