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Abstract—Hierarchical Text Classification (HTC) is an es-
sential and challenging task due to the difficulty of modeling
label hierarchy. Recent generative methods have achieved state-
of-the-art performance by flattening the local label hierarchy
into a label sequence with a specific order. However, the order
between labels does not naturally exist and the generation of
the current label should incorporate the information in all other
target labels. Moreover, the generative methods usually suffer
from the error accumulation problem. To this end, we propose
a new framework named sequence-to-label (Seq2Label) with a
random generative way to learn label hierarchy for hierarchical
text classification. Instead of using only one specific order,
we shuffle the label sequence by a Label Sequence Random
Shuffling (LSRS) mechanism so that a text will be mapped
to several different order label sequences during the training
phase. To alleviate the error accumulation problem, we further
propose a Hierarchy-aware Negative Sampling (HNS) strategy
with a negative label-aware loss to better distinguish target labels
and negative labels. In this way, our model can capture the
hierarchical and co-occurrence information of the target labels of
each text. The experimental results on three benchmark datasets
show that Seq2Label achieves state-of-the-art results.

Index Terms—Hierarchical text classification, label sequence
random shuffling, error accumulation, hierarchy-aware negative
sampling.

I. INTRODUCTION

IERARCHICAL text classification (HTC) is an impor-

tant subtask of a multi-label text classification (MLC)
[1], which is widely used in the news classification [2],
advertising systems [3], information retrieval [4], fine-grained
entity typing [5], etc. Different from MLC, HTC aims to assign
each document to one or more node-paths from a taxonomic
hierarchy structure. The taxonomic hierarchy structure is al-
ways represented as a tree or a directed acyclic graph [6], as
depicted in Figure 1.

Modeling the label hierarchy is crucial for improving model
performances in HTC [7]-[10]. The ideal label representation
should incorporate the hierarchical information and the co-
occurrence information of labels, which allows models to
learn better label representations. Most of the existing work in
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Input Text: Arich and captivating novel set amid the witty, high-spirited
literary society of 1850s New England, offering a new window on Herman
Melville’s lly charged relationship with Nathaniel Hawthorne a-
nd how it transformed his masterpiece, Moby-Dick...

_________________________________

+“Taxonomy
Hierarchy

1

Classics

Fiction

Fantasy

Fiction  Nonfiction
Classics  Classics

O Labels

O Ground-Truth Label

Historical
Fiction

Literary
Fiction

o Wrongly Predicted Label S

Fig. 1. A hierarchical text classification example. The figure shows a
common problem in HTC: wrongly predicting a label node usually leads
to its descendant nodes are also wrongly predicted.

HTC focuses on modeling global label hierarchy and utilizes
encoders, such as Tree-LSTM/GCN [7], and Graphormer [10]
to learn label representations. The global label hierarchy con-
tains all labels in the dataset, which can be divided into target
(ground-truth) and non-target (wrong) labels of a text. These
methods [7]-[10] utilize the same label hierarchy information
for each text, and cannot distinguish the target and non-target
labels for a specific text. However, the non-target labels are
irrelevant and noisy information [9], which may hurt model
performance. Another strand of research utilizes the local
label hierarchy, which refers to modeling the target labels
of each text independently. In order to model the local label
hierarchy, some researchers [11]-[15] formulated HTC as a
sequence generation problem and applied the sequence-to-
sequence (Seq2Seq) framework to predict label sequences,
which have achieved great success.

In the Seq2Seq frameworks for HTC, the target labels of
each text will be flattened to a linear label sequence with a
specific order via sorting [11], Depth-First Search (DFS) [14]
or Breadth-First Search (BFS) [15]. In each step of prediction
phase, these methods generate the next label based on the
text sequence and labels previously generated. Therefore, the
model can easily capture the level and path dependency
information among labels [15]. For example, in Figure 1, the
target labels (yellow color) can be flattened to a label sequence
[“Fiction” “Literary Fiction” “Historical Fiction”] by BFS



strategy. After the label “Fiction” is generated, the probability
of predicting “Literary Fiction” in the next decoding step
will be higher. The reason is that the generative model learns
the specific order to generate label sequences during training.
However, the order between labels does not naturally exist.
Intuitively, solely learning label representations in a fixed
order cannot fully explore the mutual dependencies among
labels. On the one hand, the target labels at the same level
(e.g., “Literary Fiction” and “Historical Fiction”) exhibit co-
occurrence relationships and are equal in priority. On the
other head, for enhanced label representation learning, a node
should encompass hierarchical information from its ancestor
and descendant nodes. However, in Figure 1, when predicting
“Fiction”, the model can not utilize the information and
clues from the subsequent child labels (“Literary Fiction”
and “Historical Fiction”). Although Kervy et al [13] try
to introduce the reverse order of the BFS sequence as an
auxiliary synthetic task to conduct bi-directional dependency
of labels, the performance improvement is not significant.
Essentially and intuitively, we claim that the generation of
the current label needs to incorporate the hierarchical and
co-occurrence information of all other target labels, which
is neglected by the existing generative methods.

Moreover, the generative methods usually suffer from the
error accumulation problem [16], i.e., if the preceding labels
are not correct, they will have negative impacts on the subse-
quent predictions. In other generation tasks such as machine
translation and text summarization, the error accumulation
always causes degenerate behaviors such as repetition, a lack
of diversity, dullness, and incoherence [17]. In HTC, the error
accumulation problem may cause the model to further predict
the descendant nodes of a wrong label after the wrong label
node is predicted. In other words, the wrongly predicted labels
predicted by generative HTC models usually correspond to at
least one subpath or node-path in the global label hierarchy.
For instance, in Figure 1, the wrongly predicted labels “Clas-
sics” and “Fiction Classics” correspond to one node-path. As
the non-target label “Classic” is predicted, the prediction of the
following label will incorporate the information of the label
“Classics” and will likely be predicted to be the descendant
label “Fiction Classics” of “Classics”.

To address the above-mentioned issues, we propose a new
framework named sequence-to-label (Seq2Label) with a ran-
dom generative way to learn label hierarchy for HTC. Instead
of flattening target labels into a sequence with a specific
and static order, we design a Label Sequence Random
Shuffling (LSRS) mechanism to capture the hierarchical
and co-occurrence information of target labels of each text.
Specifically, for each epoch in training, we randomly shuffle
the order of the label sequence, which means a text will
be mapped to several different label sequences during the
training phase. In this way, each label in the sequence has
a certain probability of appearing at an arbitrary position in
the sequence. For a label [ in target labels, the subsequence
before it is random in each epoch of training. The subsequence
not only may contain labels that are hierarchically dependent
on [, but it may contain labels that are unrelated to [. For
example, in Figure 2, the local label hierarchy can be flattened

into different label sequences. For label [o, the subsequences
before it can be “Ig” (the first row) or “l1l5l3l;” (the second
row), in which /5 is hierarchically dependent on it and [, I3,
l7, lg are unrelated to it. Therefore, all target labels beside [y
contribute to the learning of the label representation of /5. And
the label representation of /5 can incorporate both hierarchical
and co-occurrence information with other target labels.

In addition, we propose a Hierarchy-aware Negative
Sampling (HNS) strategy to alleviate the error accumulation
problem. The principal idea is to give more punishments to
the non-target labels with the same parent or the same level
as target labels, and we call these non-target labels negative
labels. Firstly, for a label sequence, we construct its negative
label sequence. Specifically, for a label in the label sequence,
we randomly sample a negative label from its non-target
sibling label set or non-target label set with the same level.
Then, we propose a negative label-aware loss to give more
punishments to the negative label. In this way, our model can
better distinguish the target and the negative label.

The main contributions of our work can be summarized as
follows:

« We propose a sequence-to-label (Seq2Label) framework,
in which the LSRS mechanism is a better way to model
the hierarchical and co-occurrence information between
the target labels in each text than the way with a specific
order. This demonstrates the order does not matter.

« To alleviate the error accumulation problem, we propose
an HNS strategy with a negative label-aware loss to better
distinguish target labels and negative labels.

« We conduct experiments on three datasets and show
that our method achieves state-of-the-art performances in
HTC. Additionally, our visualizations of label represen-
tations show how the LSRS mechanism captures label
hierarchical information.

II. RELATED WORK
A. Hierarchical Text Classification

Hierarchical text classification (HTC) is a challenge task due
to its large-scale, imbalanced, and structured label hierarchy
[18]. Existing work of HTC can be divided into two categories:
discriminative methods and generative methods.

1) Discriminative Methods: The discriminative methods
also can be divided into local and global methods [7]. Most
of the local methods [19]-[21] tend to build multiple local
classifiers and integrate the results of classifiers to get the final
classification results. Some works [22], [23] transfer the parent
classifier to binary classifiers at lower levels and fine-tune it on
the child category classification task. Different from the local
methods, global methods construct only one classifier. Early
global methods regard HTC as a flat multi-label classification
problem [24] while neglecting the label hierarchy. Recent
state-of-the-art approaches focus on incorporating text and
the global labels representation. Zhou et al. [7] proposes an
effective hierarchy-aware global model that extracts label-
wise text features with hierarchy encoders based on prior
hierarchy information. Chen et al. [8] considers the text-
label semantics matching relationship and formulates HTC as



a semantic matching problem. Wang et al. [10] constructs
apositive text sample with label hierarchy and proposes a
Hierarchy-Guided Contrastive Learning to obtain hierarchy-
aware text representation for HTC. Later on, considering the
huge gap between pretrained masked language model BERT
[25] and classification tasks with sophisticated label hierarchy,
Wang et al. [26] designed a hierarchy-aware prompt tuning
(HPT) method to sovle it.

2) Generative Methods: The generative methods consider
modeling the local label hierarchy and utilize a sequence-
to-sequence framework to generate label sequence with a
specific order in an autoregressive manner [11]-[15]. Yang
et al. [11] firstly views the multi-label classification task as
a sequence generation problem, and flattens the local label
hierarchy into a label sequence via sorting. However, they
neglect the dependence of hierarchical labels. Later on, Yu et
al. [14] and Huang et al. [15] flatten the local label hierarchy
using DFS and BFS to capture the hierarchical information,
respectively. Nonetheless, these generative methods ignore that
the prediction of a label needs to incorporate the information
of all target labels, and also suffer from the error accumulation
problem. We propose a Label Sequence Random Shuffling
mechanism and a Hierarchy-aware Negative Sampling strategy
to solve the above-mentioned issues.

B. Sequence-to-Sequence Framework

The sequence-to-sequence (Seq2Seq) framework has been
long studied in the natural language generation (NLG) field to
tackle various tasks, such as machine translation [27], [28],
speech recognition [29], text summarization [30], dialogue
generation [31] etc. Some researchers also use Seq2Seq to
conduct various natural language understanding (NLU) tasks,
including aspect-based sentiment analysis [32], named entity
recognition [33], multi-label text classification [11]. On the
basis of the tremendous success of the Seq2Seq model in NLU,
we transform HTC into a hierarchical label sequence gener-
ation problem and propose a sequence-to-label (Seq2Label)
framework for HTC. In this paper, we use the pre-trained
sequence-to-sequence model BART [34] as our backbone. The
BART-Base model contains a 6-layer bidirectional encoder and
a 6-layer autoregressive decoder. It is worth noting that other
sequence-to-sequence pre-trained models such as T5 [35] can
also be applied in our architecture.

III. PROBLEM DEFINITION
HTC tasks can be formulated as:

F(X,T) =L (1)

where X = {X1,..., X} is a text set, X, is a text sequence,
T = (V,€) is a taxonomic hierarchy predefined by dataset,
L = {Ly,..., Ly} is the aligned sequence of target label
set of X. The taxonomic hierarchy 7 contains a set of
labels (nodes) V' and parent-child relationships £ between
nodes, where the latter satisfies asymmetric, anti-reflexive, and
transitive [6]. Given a text sequence X = [z1,...,%,], the
goal is to learn the best model to predict the target label set
L = {ly,...,l} efficiently, where x; is a word, n is the
number of words and & is the number of target labels.

IV. METHODOLOGY

In this section, we will describe the details of our sequence-
to-label (Seq2Label) model. Figure 2 shows the overall ar-
chitecture of our proposed model. We ignores the start-of-
token “<s>" and end-of-token “</s>" in our equations for
simplicity.

A. Hierarchical Label Sequence Generation

The label sequence of HTC can be generated as follow:
k

PY | X)=]]Pw|X V<) )
t=1

where X = [z1,...,x,] is the input text sequence, ¥ =
[y1,-..,yx] is the target labels sequence. We use BART [34]
model as the backbone of our framework, which consists of
two components: Text Sequence Encoder and Label Sequence

Decoder.
Text Sequence Encoder is applied to encode the input text
sequence X into matrix H*®, which is represented as follows:

H® = Encoder(X) 3)

where H® € R"*4, n is the length of the input sequence and
d is the dimension of the hidden state.

Label Sequence Decoder is an autoregressive decoder
which is to get the label probability distribution p; =
P (y: | X,Y<+) for each step, and the last hidden state at step
t can be calculated by:

h¢ = Decoder(H®; Y_;) 4)

where h¢ € R? and Yo, = (91,72, --,0t—1] is the label
sub-sequence that has been predicted before step ¢. Then the
last hidden state hf is fed into a linear layer, and a softmax
function is used for calculating the probability distribution.

z; = Wh{ )
pt = softmax (z;) (6)

where W¢ € R™*? is linear layer learnable parameters, z; €
R™ is the output of the linear layer.

During the inference, we use an autoregressive manner to
generate the target label sequence. Considering the efficiency
of decoding, we choose greedy search as the decoding strategy
of our model. Greedy search simply selects the label with the
highest probability as its next label:

Yp = arg manP(y|Xv Y<t) (N

The decoding procedure will end when the token “</s>" oc-
curs. The phase of training will be discussed in Section [V-D2.

B. Label Flattening

In this section, we will flatten a local label hierarchy into
a label sequence. It is very crucial to retain the hierarchical
information of labels in the flattening process. Yu et al. [14]
and Huang et al. [15] have proved that a label sequence with
a specific order is beneficial for incorporating hierarchical
information. To this end, we first sort the label sequence with
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and “<pad>" are the predefined start-of-sentence, end-of-sentence and padding tokens in BART, respectively. The original label sequence is firstly converted
to a shuffled label sequence by random shuffling and then input to the BART decoder. A negative label sequence is obtained by the Hierarchy-aware Negative
Sampling strategy and is appended to a negative label-aware loss for the model optimization.

a specific order which can represent hierarchical information
directly. A simple way is to utilize Breadth-First Search (BFS)
[36] to convert local label hierarchy to a label sequence.
However, BFS doesn’t make use of the label relationships ef-
fectively. More specifically, when generating high-level labels,
the information of low-level labels can not be utilized. We give
an example in Figure 2 for demonstration. The local label
hierarchy is flattened as a label sequence “l1l5l3l5l7ls” by
BFS. When predicting label “I3”, the information of previously
generated labels can be captured to facilitate the prediction,
but the information of labels after I3 is ignored due to the
autoregressive generation manner. In this paper, we just use
BFS for label sequence initialization. And we will use the
backbone with BFS for later comparison.

C. Label Sequence Random Shuffling

To model local label hierarchy and capture the hierarchical
and co-occurrence relationships between the corresponding
labels of each text sample, we randomly shuffle the input label
sequence. For example, in Figure 2, the input label sequence
is shuffled as “Iglslyl7l3l5”. It is worth noting that the same
input of label sequence may obtain shuffled lable sequence
with different order after shuffling randomly, as depicted in
Figure 2. The process of random shuffling can be formulated
as:

Y = Shuffle(Y) (8)

where Y is a label sequence. For a text sample, we define
the length of its corresponding label sequence is N, and there
are N! different permutations, which means that we have N!
different <text, label sequence> pairs for training. Actually,

the methods Kervy et al. [13] proposed can be viewed as a
special case of our random shuffling strategy, which includes
both BFS and its reversed permutations.

D. Hierarchy-aware Negative Sampling

To address the error accumulation problem, we expect to
avoid predicting the non-target labels, which label information
will lead to more prediction errors. For each label in the label
sequence, to distinguish target labels and non-target labels, the
straight way is to give all non-target labels more punishment.
However, we empirically find that there is a parent-child or
sibling relationship between the incorrectly predicted labels
and the target labels. Therefore, it is more effective to penalize
those non-target labels that have a parent-child or sibling
relationship with the target labels.

1) Negative Label Sequence Constructing: Specifically,
given a label sequence Y = [y1,...,yx], we construct a
negative label sequence Y9 = [y“Y, ...y ], where y,"*
is a negative label which represents a non-target label with
similar hierarchical semantics to target label y;. For each label
y in label sequence Y, it has a sibling label set Y9
and a level label set Y,/*"*!. Each label in Y, "*'"9 has the
same parent node label as y. Each label in Y/**“! has the
same level as y in the taxonomic hierarchy. We randomly
sample a negative label for y from its non-target sibling label
set Y,re9-sibling or jts non-target the same level label set
Yy"eg—level, where these two sets are defined as:

Set(Y)
Set(Y)

g

Yn(’g_szblzng _ Yszblzng

level
ylevel

(©))

Yneg_level (10)



Algorithm 1 Hierarchy-aware Negative Sampling Strategy

Input: Target label sequence Y = [y1,y2, - - ., Yk)
Qutput: Negative sample label sequence Y ™9 =
i sy

1: Initialization: ¢ = 1, Y% =[]

2: while : < k do

3:  Use Equation (9)(10)
Yineg‘level respectively
if Y—ineg_sibling 7£ & then

neg_sibling
Y 9

to compute Y]

4
5. y;zeg — Sample (}/ineg_siblhzg)
6: Y9 append(y, )

7. else if Y"9-“""! £ & then
] y;zeg _ Sample Yvineg_level)
9: Y ™9 append(y; “’)

10:  else

11: Y "¢9 append(<pad>)

12:  end if

13: i=1+1

14: end while
15: return Y ™9

where Set(Y") is target label set. We present the negative label
sequence construction method in Algorithm 1. For example,
in Figure 2, the Yl?eg-le”el = @, so the negative label of [;
is “<pad>”. The Y/;egﬁiblmg = & and the Y/;eg'le”ez =
{lg,l10}, so the negative label of l; is ljo sampled from
{lg, l 10}.

2) Negative label-aware Loss: After constructing the nega-
tive label sequence, we will prevent the target label from being
predicted as its negative label during the optimization process.
During the training phase, most generation tasks feed the last
hidden state into a linear layer, and a softmax function is used
for calculating the probability distribution:

. ezi
P = softmax (z%) =

s ol (11)
where zf; is the value of the i-th dimension of z; and py;
is the probability of label ¢ at step . However, such function
treats each label equally, which cannot represent the difference
between negative labels and other non-target labels. To more
penalize the negative label, we introduce a hyperparameter A
to reformulate the softmax function:

zlt
I et
pt = ey

Sy et et

12)

where I, is the index of label y; in label set . After obtaining
the probability distribution, we use the teacher forcing to train
our model and the negative log-likelihood to optimize the
model.

| MK ;
loss = i Z Zlog (pit’)

=1 t=1

(13)

where K is the length of the label sequence, and pfg is the
probability of the target label at step ¢ of the i-th text.

V. EXPERIMENTAL SETTINGS
A. Dataset

To evaluate the classification effect of our model, we exper-
iment on three widely used datasets for HTC, including Web
Of Science (WOS) [20], RCV1-V2 [2], BlurbGenreCollection
(BGC)'. The description of the three datasets is illustrated in
the Supplementary Material.

B. Evaluation Metrics

To facilitate the comparison with the experimental results of
other methods, we use standard evaluation metrics [37] Micro-
F1 and Macro-F1 to measure the experimental results. The
Micro-F1 computes a global average F1 score by counting
the sums of the true positives (TP), false negatives (FN), and
false positives (FP), while the Macro-F1 score is computed by
taking the arithmetic mean of all the per-class F1 scores.

C. Comparison Methods

The experimental results are compared with other start-of-
the-art models including discriminative methods: HAN [38],
TextCNN [39], TextRCNN [40], TextRNN [41], HR-DGCNN-
3 [42], HFT(M) [22], Htrans [23], HMCN [43], HILAP-RL
[18], HE-AGCRCNN [44], HIAGM [7], HiMatch [8], HTClIn-
foMax [9], HGCLR [10], HPT [26], and generative methods
SGM [11], Seq2Tree [14], PAAM-HiA-TS [15], BART [34].
The description of the main comparison models are listed in
the Supplementary Material.

D. Implement Details

The backbone pre-trained model we adopt is BART-base
[34]. The maximum length of the token inputs of the encoder
is set as 800, and the maximum length of the label sequence
of the decoder in WOS, RCV1-V2, and BGC are 6, 20, and
16, respectively. For each dataset, we create a label vocab
to replace the vocab of the BART decoder, where the label
vocab contains all labels in the taxonomic hierarchy, sequence
start token “<s>”, sequence end token “</s>" and padding
“<pad>". The batch size is set to 16, and the epoch of training
is set to 100. The hyperparameters A in WOS, RCV1-V2, and
BGC are set to 9, 5, and 9, respectively. We optimize the
model with AdamW [45] with a learning rate of 2e-5. For
training, we train the model with a training set and evaluate
it with the validation set in each epoch. We update the model
if the validation set achieves better Micro-F1 or Macro-F1
scores. For validation and inference, we use greedy search to
generate label sequences. Our experiments are all conducted
on a RTX 3090 GPU.

VI. RESULTS AND DISCUSSIONS
A. Main Results

The main experimental results on WOS, RCV1-V2 and
BGC compared to other state-of-the-art models are shown
in Table I, Table II and Table III, respectively. Compared

!The dataset is obtained from https://www.inf.uni-hamburg.de/en/inst/ab/1t/
resources/data/blurb- genre-collection.html



TABLE I
THE EXPERIMENTAL RESULTS ON WOS COMPARED TO OTHER
STATE-OF-THE-ART MODELS

Model Micro-F1  Macro-F1
Discriminative Model
TextRNN 77.94 69.65
TextCNN 82.00 76.18
TextRCNN 83.55 76.99
HiAGM 85.82 80.28
HiMatch 86.20 80.53
HTClInfoMax 85.58 80.05
BERT (Vanilla Fine Tuning) 86.26 80.58
BERT+HiAGM 86.04 80.19
BERT+HTCInfoMax 86.30 79.97
BERT-+HiMatch 86.70 81.06
HGCLR 87.11 81.20
HPT 87.16 81.93
Generative Model
SGM-T5 85.83 80.79
Seq2Tree 87.20 82.50
PAAM-HiA-T5 90.36 81.64
BART+BFS 86.70 81.23
Seq2Label (T5-based) 87.15 81.89
Seq2Label (Ours) 87.31 81.86

TABLE 11
THE EXPERIMENTAL RESULTS ON RCV1-V2 COMPARED TO OTHER
STATE-OF-THE-ART MODELS

Model Micro-F1  Macro-F1
Discriminative Model
TextCNN 76.60 43.00
TextRCNN 81.57 59.25
HR-DGCNN-3 76.18 43.34
HFT(M) 80.29 51.40
Htrans 80.51 58.49
HMCN 80.80 54.60
HAN 75.30 40.60
HiLAP-RL 83.30 60.10
HIAGM 83.96 63.35
HTClInfoMax 85.58 80.05
HiMatch 84.73 64.11
BERT (Vanilla Fine Tuning) 85.65 67.02
BERT+HiAGM 85.58 67.93
BERT+HTCInfoMax 85.53 67.09
BERT-+HiMatch 86.33 68.66
HGCLR 86.49 68.31
HPT 87.26 69.53
Generative Model

SGM 77.30 47.49
SGM-T5 84.39 65.09
Seq2Tree 86.88 70.01
PAAM-HiA-T5 87.22 70.02
BART+BFS 86.43 68.81
Seq2Label (T5-based) 87.03 70.17
Seq2Label (Ours) 87.35 70.60

with BART, a strong baseline that builds the level dependency
by BFS, Seq2Label outperforms it on three datasets with a
significant improvement, which validates that the improvement
of our method is mainly brought by our design on the
framework rather than BART.

Compared with all discriminative models with or without

TABLE III
THE EXPERIMENTAL RESULTS ON BGC COMPARED TO OTHER
STATE-OF-THE-ART MODELS

Model Micro-F1 Macro-F1
Discriminative Model
HMC-Capsule 74.37 -
HiAGM 77.22 57.91
HiMatch 76.57 58.34
BERT-+HiMatch 78.89 63.19
Generative Model
SGM-T5 77.84 60.91
Seq2Tree 79.72 63.96
BART+BFS 79.59 65.12
Seq2Label (T5-based) 80.61 66.44
Seq2Label (Ours) 80.54 66.76

pretrained model, Seq2Label achieves new state-of-the-art
results on all three datasets. This is because Seq2Label learns
only the information between the target labels and ignores the
noisy information of the non-target labels. Table V shows that
BERT-based models such as BERT+HiAGM, BERT+HiMatch
have slightly more parameters than Seq2Label, which means
the comparison between BERT-based methods and Seq2Label
is fair.

Generative methods have been proven effective for HTC
due to their powerful ability to model the local label hierarchy.
On the simple dataset WOS, Seq2Label achieves competitive
results. Although our model does not outperform T5-based
models Seq2Tree and PAAM-HiA-T5, its Micro-F1 score
and Macro-F1 score are better than Seq2Tree and PAAM-
HiA-T5, respectively. Specially, for each text in the WOS
dataset, the length of its label sequence is 2 so that the
permutations of target labels are only 2!. Therefore, compared
with two more complex datasets, our proposed strategies do
not achieve significant improvement on this dataset. Moreover,
the parameters of Seq2Label are 37% less than T5-based
models, which means that there is an advantage in the speed
of inference of our model. On more complex datasets RCV1-
V2 and BGC, Seq2Label achieves state-of-the-art results.
Specifically, the Macro-F1 score on BGC improves by 4.4%.
This demonstrates our method is more effective at modeling
complex local label hierarchy. For each text sample on RCV1-
V2 or BGC, our LSRS strategy provides more different <text,
label sequence> pairs for training due to the number of
target labels permutations is always greater than 3!, in which
permutations include the label sequence obtained by BFS,
DFS and other orders. Therefore, Seq2Label captures not only
the hierarchical information between labels, but also the co-
occurrence information between labels.

B. Ablation Analysis

The ablation study results on three datasets are shown in
Table IV, the details are as follows:

“w/o LSRS & HNS”: Baseline BART, the local label
hierarchy is flattened by BFS. It’s also called “BART+BFS”.

“w/o HNS”: Not using the hierarchy-aware negative sam-
pling strategy. It’s also called “BART+LSRS”.



TABLE IV
ABLATION STUDY

WOS RCV1-V2 BGC
Ablation Models Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
w/o LSRS & HNS 86.70 81.23 86.43 68.81 79.59 65.12
w/o HNS 87.21 81.57 87.19 69.62 80.34 66.17
w/o LSRS 86.92 81.51 86.85 69.50 80.14 66.39
r.p. Random Sample 87.06 81.72 87.33 70.30 80.37 66.49
Full Model 87.31 81.86 87.35 70.60 80.54 66.76
TABLE V
NUMBER OF PARAMETERS OF COMPARABLE MODELS maustril ([N oss (| oot oot oot
Performance || 0.05 - 080 || 0.02 | 0.02
Model Parameters Accounts | | 0.05 B oo I o< |1 oos
BERT+HIAGM 143M Others || 0.03 | 005 | 0.03 | 003
BERT+HiMatch 153M e | 002 I oot I o
T5-based model 220M Step 1 Step 2 Step3 Step4
Seq2Label 139M (a) BART+BFS
“w/o LSRS”: Not using the label sequence random shuffling maustrial | [ 02 0oL | 002 oot
hani performance | [l 0.30 ﬁ 0.47 | 0.02 | 002
mechamsm. . Accounts | [l 032 B ox I oss || o0s
“r.p. Random Sample”: Replace the hierarchy-aware nega- others || 003 I oos | 003 | 003
tive sampling with random negative sampling the non target <> || ooz | oas I oos ] o
Step 1 Step 2 Step 3 Step 4

labels.

1) Ablation Study and Analysis on Label Sequence Random
Shuffling: It is evident that “w/o HNS” greatly outperforms
the “w/o LSRS & HNS” both in Micro-F1 and Macro-F1
on three datasets. Compared with “w/o LSRS & HNS” on
BGC, “w/o HNS” boosts Micro-F1 by 0.9% and achieves a
significant 1.6% improvement in Macro-F1. In addition, In the
case of joining HNS, Seq2Label also outperforms “w/o LSRS”
in two metrics. These results suggest that LSRS is powerful
in modeling local label hierarchy. More detail on the effect of
LSRS will be discussed in Section VI-C and Section VI-D.

2) Ablation Study and Analysis on Hierarchy-aware Nega-
tive Sampling: “wl/o LSRS” greatly increases Micro-F1 and
Macro-F1 especially in Macro-F1 compared with “w/o LSRS
& HNS”. In the case of joining LSRS, Seq2Label also out-
performs “w/o HNS” in two metrics. With the introduction of
HNS, the Macro-F1 scores improve significantly on the RCV1-
V2 and BGC datasets, while only slightly on the WOS dataset.
The reason is that HNS alleviates the error accumulation
problem leading to accuracy degradation of low-level sparse
labels. The effect of HNS was more pronounced on samples
with more complex local hierarchy. Due to Macro-F1 equally
weighting all labels and being more sensitive to lower-level
sparse labels, the improvement of the Macro-F1 score is more
significant than the Micro-F1 scores on the RCV1-V2 and
BGC datasets, respectively. More detail on the effect of HNS
will be discussed in Section VI-E and Section VI-F.

C. Effect of Label Sequence Random Shuffling

Table VI shows the comparison of experimental results
of baseline BART with different orders on RCV1-V2. The
“Random”, “BFS” and “DFS” are strategies for label sequence
initialization, and label sequences obtained by these strategies
remain in the training phase. The hierarchical initialization
strategies “BFS” and “DFS” outperform “Random” by a huge

(b) BART+LSRS

Fig. 3. Comparison between the outputs probability distribution of the (a)
“BART+BFS” and the (b) “BART+LSRS”.

TABLE VI
COMPARISON OF EXPERIMENTAL RESULTS OF BASELINE WITH DIFFERENT
ORDER ON RCV1-V2

Model Micro-F1 Macro-F1
BART+Random 85.54 67.00
BART+BFS 86.43 68.81
BART+DFS 86.69 68.78
BART+LSRS 87.19 69.62

margin in Micro-F1 and Macro-F1 due to the success of build-
ing the level dependency and capturing the hierarchical infor-
mation [14], [15]. Compared with models with specific order
“BART+BFS” and “BART+DFS”, “BART+LSRS” achieves
significant improvement in two metrics, which experimentally
demonstrates the order does not matter. The counter-intuitive
view that “the order of the labels does not matter” is based on
the intuitive idea that “the generation of the current label needs
to incorporate the hierarchical and co-occurrence information
of all other target labels”, and the improvement proves that
this intuitive idea is effective. As illustrated in Section IV-C, a
text sample with IV target labels can potentially generate /V!
different <text, label sequence> pairs for training, including
but not limited to “BFS” and “DFS” pairs. Therefore, com-
pared with “Random”, LSRS helps the model capture not only
the hierarchical information between labels, but also the co-
occurrence information between labels. Based on the above
analysis, LSRS could be viewed as a special form of data
augmentation. The specificity is discussed in Supplementary
Material.

To further analyze the effect of LSRS, we show the probabil-
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Fig. 4. T-SNE visualization of the label representation on the WOS dataset. “x” means the most top level labels in the taxonomy hierarchy. “e”

means all

labels except the top-level labels. Dots have the same color as a star means the star is the primogenitor of these dots.

ity distributions of “BART+BFS” and “BART+LSRS” in each
decoding step in Figure 3. When using BFS, the probability
of the label predicted at each decoding step is significantly
higher than others. When introducing LSRS, however, the
probabilities of the target labels yet to be predicted at each
decoding step are comparable and much higher than other
labels. For example, in decoding step 2 of Figure 3b, the prob-
abilities of the target labels “Performance” and “Accounts” to
be predicted are relatively close to each other and much higher
than the probabilities of “Industrial”, “Others” and “</s>".
Note that “Others” denotes other labels in the hierarchy which
do not appear in Figure 3. The main reason is that shuffling
the sequence order encourages each label to appear at each
position in the sequence. After multiple training epochs, LSRS
helps the model learn the co-occurrence relationships between
target labels.

D. T-SNE Visualization of Label Sequence Random Shuffling

The LSRS mechanism seems counter-intuitive in raising the
performance of a hierarchy, as it does not seem to make use
of the hierarchical information of the target labels explicitly.
We claim that LSRS incorporates hierarchical information
implicitly. We view weight matrix Wy as label representations
and plot their T-SNE projections in different versions of
our model in Figure 4. Since a label and its father label
should be classified simultaneously, the representation of a
label and its father should be similar [10], which means that
labels with the same father should be clustered towards the
father label. Comparing with Figure 4a and Figure 4b, the
label representation of “BART+BFS” is scattered, whereas
“BART+LSRS” are clustered, which demonstrates that our
LSRS can learn a hierarchy-aware representation implicitly.
The comparison of Figure 4b and Figure 4c shows that HNS
does not have a negative effect on LSRS.

E. Effect of Hierarchy-aware Negative Sampling Strategy

To further illustrate the effect of the hierarchy-aware neg-
ative sampling strategy, we replace the negative sampling
strategy in HNS with random negative sampling. As shown
in Table IV, the results of “r.p. Random Sample” and the
full model on two metrics are better than “w/o HNS”, which
demonstrates the negative sampling strategy is an effective
strategy for HTC. Compared with “r.p. Random Sample”, the

Level-based Macro-F1
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B Full Model
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Fig. 5. Macro-F1 scores of label clusters grouped by depth in the hierarchy
on (a) RCV1-V2 and (b) BGC.

4 (16)

full model gets better scores of two metrics on three datasets,
which demonstrates hierarchy-aware negative sampling is a
better negative sampling strategy. The reason is that HNS gives
more punishment to those non-target labels that have a parent-
child or sibling relationship with the target labels, as Section
IV-D mentioned.

To illustrate how HNS alleviates the error accumulation
problem, we analyze performance on different label clusters
grouped by depth in the hierarchy for “w/o HNS” and the
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Fig. 6. An RCV1-V2 example generated in two ways. Labels (nodes) with
the same color are generated by the same way.

full model on RCV1-V1 and BGC, as shown in Figure 5.
For BGC in Figure 5b, compared with “w/o HNS”, the
full model achieves performance improvement on all levels,
especially on the lower level (level 4). However, for RCV1-
V2 in Figure 5a, the Macro-F1 score of level 4 has almost
no improvement, which is counter-intuitive. Note that the
number of labels in level 4 is only one and the label is
called “C1511”. We find that the number of training samples
containing the “C1511” label is 1.7% (371/20833) of the
total number of training samples, which is sufficient for the
model to learn the label representation of “C1511”. In level
2 and level 3, the full model improves by 1.1% (71.49/70.68)
and 2.0% (67.14/65.85) Macro-F1 scores, respectively, which
means fewer or shorter error branches are generated during
testing. This demonstrates that HNS can alleviate the error
accumulation problem.

F. Case Analysis

In Figure 6, we select a case to further illustrate the effect
of HNS. The text is entered into the input of the model w/ and
w/o HNS, and two sets of label generation results are obtained.
However, without HNS, the model predicts “Industrial” with
similar hierarchical semantics to “Economics” or “Social”,
leading to the prediction of “Industrial”’s descendant labels
“Facilities”. The model with HNS achieves the same results
as target labels. The reason is that when generating labels with
the same level as the not-target label “Industrial”, HNS gives
“Industrial” more punishment during the training phase, thus
avoiding the generation of the descendant labels “Facilities”
of “Industrial”.

VII. CONCLUSION

In this paper, we propose Seq2Label to learn label hierarchy
for HTC. Seq2Label shows a new counter-intuitive view that
the order of the labels does not matter. Instead of using
only one specific order, we propose a LSRS mechanism, a
better way to model the hierarchical and co-occurrence mutual
dependency relationships between the target labels in each
text. Moreover, we propose an HNS strategy, which effectively
alleviates the error accumulation problem. Compared with ex-
isting methods, Seq2Label achieves significant improvements
on three datasets. In future work, we plan to extend our model
to the few-shot or zero-shot learning scenario.
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