
A Low-Cost Feature Interaction Fault Localization Approach
for Software Product Lines
HAINING WANG, South China University of Technology, China

YI XIANG, South China University of Technology, China

HAN HUANG, South China University of Technology, China

JIE CAO, iSOFT INFRASTRUCTURE SOFTWARE CO., LTD., China

KAICHEN CHEN, South China University of Technology, China

XIAOWEI YANG, South China University of Technology, China

In Software Product Lines (SPLs), localizing buggy feature interactions helps developers identify the root cause

of test failures, thereby reducing their workload. This task is challenging because the number of potential

interactions grows exponentially with the number of features, resulting in a vast search space, especially

for large SPLs. Previous approaches have partially addressed this issue by constructing and examining

potential feature interactions based on suspicious feature selections (e.g., those present in failed configurations

but not in passed ones). However, these approaches often overlook the causal relationship between buggy

feature interaction and test failures, resulting in an excessive search space and high-cost fault localization.

To address this, we propose a low-cost Counterfactual Reasoning-Based Fault Localization (CRFL) approach

for SPLs, which enhances fault localization efficiency by reducing both the search space and redundant

computations. Specifically, CRFL employs counterfactual reasoning to infer suspicious feature selections and

utilizes symmetric uncertainty to filter out irrelevant feature interactions. Additionally, CRFL incorporates

two findings to prevent the repeated generation and examination of the same feature interactions. We evaluate

the performance of our approach using eight publicly available SPL systems. To enable comparisons on

larger real-world SPLs, we generate multiple buggy mutants for both BerkeleyDB and TankWar. Experimental

results show that our approach reduces the search space by 51%∼73% for small SPLs (with 6∼9 features) and
by 71%∼88% for larger SPLs (with 13∼99 features). The average runtime of our approach is approximately

15.6 times faster than that of a state-of-the-art method. Furthermore, when combined with statement-level

localization techniques, CRFL can efficiently localize buggy statements, demonstrating its ability to accurately

identify buggy feature interactions.

CCS Concepts: • Software and its engineering→ Softwaremaintenance tools; •Theory of computation
→ Program reasoning.

Additional Key Words and Phrases: Software product lines, fault localization, counterfactual reasoning, feature

interaction

ACM Reference Format:
Haining Wang, Yi Xiang, Han Huang, Jie Cao, Kaichen Chen, and Xiaowei Yang. 2025. A Low-Cost Fea-

ture Interaction Fault Localization Approach for Software Product Lines. Proc. ACM Softw. Eng. 2, ISSTA,
Article ISSTA042 (July 2025), 23 pages. https://doi.org/10.1145/3728917

1 Introduction
The Software Product Line (SPL) is a highly effective technique for modern software development.

Numerous widely used software systems, including Linux and BerkeleyDB, have been developed

using this methodology [5, 47]. SPLs can be flexibly customized to meet user requirements through

Corresponding authors: Yi Xiang (xiangyi@scut.edu.cn), Han Huang (hhan@scut.edu.cn).

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTISSTA042

https://doi.org/10.1145/3728917

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0002-5281-6090
HTTPS://ORCID.ORG/0000-0003-2118-4825
HTTPS://ORCID.ORG/0000-0003-1617-4147
HTTPS://ORCID.ORG/0009-0001-7435-6080
HTTPS://ORCID.ORG/0009-0008-3368-0723
HTTPS://ORCID.ORG/0000-0002-1512-487X
https://doi.org/10.1145/3728917
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728917

ISSTA042:2 Wang, et al.

the adoption of the concept of features, where each feature represents a specific system functionality

[18]. A configuration (or product) is defined as a set of selected or deselected features. Generally,

there exist complicated constraints among features, which are usually captured by Feature Models
(FMs) [53, 60].

Features in SPLs can influence one another, leading to the so-called feature interaction problem

[14, 23]. Faults resulting from feature interactions can cause the system to exhibit unpredictable

behaviors [8], making it essential for developers to analyze and understand all feature interactions

within an SPL [7, 15]. Feature interaction faults can be categorized as either functional or non-

functional [12, 31, 56]. Functional feature interaction faults result in the software system failing

to provide the correct output specified by the intended functionality [12], typically due to buggy

statements influenced by feature interactions [34]. In contrast, non-functional faults do not cause

system failures but lead to issues such as increased response time, reduced throughput, and other

performance degradations. These non-functional faults are often caused by incorrect configurations

of features [41]. Regardless of the fault type, localizing buggy feature interactions is a critical step

in debugging SPLs [1, 20, 35, 39]. However, localizing potential feature interactions remains a

significant challenge, primarily because the number of possible interactions to consider increases

exponentially with the number of features [7, 50]. For instance, a system comprising 25 features

may have a total of

∑
25

𝑖=1
2
𝑖 ×𝐶𝑖

25
≈ 1.3 × 10

7
different feature interactions.

There have been numerous studies on non-functional feature interaction fault localization for

SPLs (e.g., [4, 20, 25, 26, 28, 38]), whereas studies on functional fault localization remain scarce. To

address functional fault localization for SPLs, Arrieta et al. [9] employed Spectrum-Based Fault

Localization (SBFL) to calculate and rank the suspiciousness of each feature interaction. However,

their approach overlooks the "curse of dimensionality" associated with the number of features.

In practice, faults are typically caused by only a few feature interactions, making it inefficient to

consider all interactions [45]. To more precisely identify buggy feature interactions, Nguyen et al.
[39] proposed a state-of-the-art (SOTA) method called VarCop. They observed that buggy feature

interactions could be identified by analyzing the feature selection differences between passing

and failing configurations, referred to as suspicious feature selections in this paper. In this manner,

potential feature interactions, which constitute the search space, can be generated from suspicious

feature selections. However, their approach neglects the causal effect of feature interaction faults on

test failures, potentially increasing the search space (an example of this is provided in Section 3.1).

Furthermore, as demonstrated by our experiments in Section 6.1, many feature interactions in

VarCop are redundantly generated and examined, leading to increased costs. Therefore, efficiently

and accurately localizing buggy feature interactions in a vast search space remains a significant

challenge.

This paper focuses on functional feature interaction faults and proposes a low-cost feature inter-

action fault localization approach, named CRFL. The proposed approach enhances the efficiency

of localizing buggy feature interactions in two key aspects. First, counterfactual reasoning and

symmetric uncertainty are employed to achieve more accurate and fewer potential feature interac-

tions, resulting in a smaller search space. Counterfactual reasoning [13, 20, 28] has demonstrated

significant advantages in root-cause localization, particularly due to its minimal data requirements,

which makes it well-suited for the problem addressed in this paper. In addition, symmetric un-

certainty, a widely adopted technique in high-dimensional feature selection problems [51, 52],

further filters out irrelevant feature interactions. Second, two key findings are utilized to avoid

duplicated suspiciousness examinations of potential feature interactions. The first finding is that

there exists an inclusion relationship among suspicious feature selections, which leads to repeated

generation of potential feature interactions. The second finding is that many identical potential

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:3

feature interactions are examined multiple times, resulting in repetitive computations. Based on

these findings, the efficiency of the proposed approach is further improved by avoiding redundant

generations and computations. We evaluate our approach using eight real-world SPL systems.

The experimental results show that CRFL reduces the search space by 51% to 73% for SPLs with

fewer than ten features and by 71% to 88% for larger SPLs. In terms of efficiency, CRFL is, on

average, 15.6 times faster than VarCop. Moreover, we demonstrate the accuracy of the suspicious

feature interactions identified by CRFL through statement-level localization. Compared to the four

state-of-the-art approaches, CRFL ranks buggy statements in the top 1 in 30% more mutants. The

main contributions of this paper are summarized as follows:

• A low-cost feature interaction fault localization approach
1
is proposed for SPLs.

• Counterfactual reasoning and symmetric uncertainty are used to effectively reduce the search

space for localizing buggy feature interactions.

• Two findings regarding the repetitive generation and examination of feature interactions

have been observed, and further utilized to reduce the cost of the approach.

• We propose a publicly available benchmark containing multiple buggy feature interaction

mutants for BerkeleyDB and TankWar to demonstrate the advantages of CRFL in large SPLs.

2 Preliminaries
In this section, we provide necessary preliminaries on SPLs, followed by a brief introduction to

counterfactual reasoning.

2.1 Software product lines (SPLs)
A software product line delineates a product family characterized by a shared foundational code

base, wherein a set of distinct products is systematically derived [18, 46]. Features are abstract
representations of functional modules in SPLs.

Generally, an SPL system can be seen as a 2-tuple Γ = ⟨F , 𝜑⟩, where F is a set of features in

Γ, and 𝜑 denotes all the constraints among features. For a feature set F = {𝑓1, 𝑓2, ..., 𝑓 | F | }, each
feature 𝑓𝑖 ∈ F (𝑖 = 1, 2, ..., |F |) has two states, selected (on) or deselected (off). The presence of

features in SPLs can be considered as if-then statements, such as the preprocessor directive

#ifdef. Different selections of all features define a 𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (or 𝑝𝑟𝑜𝑑𝑢𝑐𝑡), which can be

denoted as {±𝑓1,±𝑓2, ...,±𝑓 | F | }. Notably, each feature can be represented only as −𝑓 or +𝑓 , where
+𝑓 is simplified as 𝑓 . Apparently, each configuration can be represented by a binary set consisting

of ’0’ and ’1’. For example, {𝑓1,−𝑓2,−𝑓3, 𝑓4, 𝑓5} represents a configuration where features 𝑓1, 𝑓4 and

𝑓5 are selected, and 𝑓2 and 𝑓3 are deselected. Its binary set is {1, 0, 0, 1, 1}. A partial configuration
is any non-empty subset of a configuration, which is a manifestation of feature interactions. A
configuration that meets all the constraints in 𝜑 is called a valid configuration.

2.2 Causal inference and counterfactuals
Causal inference techniques have been demonstrated to trace root causes better than other tech-

niques (e.g., deep learning) [43]. Counterfactual reasoning is a widely used causal inference tech-

nique to analyze causal relationships by exploring hypothetical scenarios that diverge from actual

events. The key idea is to explore what the outcome would have been had a different action or

decision been made [24]. It’s like asking "What if?" questions to explore different possibilities and

understand cause-and-effect relationships [57]. For example, when evaluating the effectiveness of a

new teaching method, educational researchers compare the performance of students who use the

method with those who do not. This kind of thinking is counterfactual reasoning.

1
https://github.com/Songluhaining/CRFL.git

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:4 Wang, et al.

Counterfactual reasoning is particularly valuable for understanding cause-and-effect dynamics,

as it enables researchers to model and evaluate alternative outcomes by varying factors of interest.

For non-functional faults in feature interactions, counterfactual reasoning can be employed to assess

their observability (i.e., whether a feature interaction affects the validity of configurations) [58].

Specifically, determining whether a feature interaction 𝐹𝐼 is observable in invalid configurations

involves checking the presence of both a witness and a counter witness
2
. Inspired by their study,

we apply counterfactual reasoning to localize functional feature interaction faults.

3 A motivating example
In this section, we explain the challenge of detecting buggy feature interactions and our motivation

via an example.

3.1 An example of faults in SPLs
Fig. 1 illustrates an example of a functional feature interaction fault in a partial code snippet from

the Elevator SPL system [39]. The sampled products (configurations) and corresponding test

results are given in Fig. 2. Configurations 𝑐6 and 𝑐7 in Fig. 2 are failed tests because of the buggy

statement in line 30 of Fig. 1.

int maxWeight = 1000, maxPersons = 10,
 weight = 0;
// #ifdef Empty

void empty () { persons.clear();}
// #endif
void enterElevator (Person p) {
 persons.add(p);
 // #ifdef Weight

 weight += p.getWeight();
 // #endif
}
void leaveElevator (Person p) {
 persons.remove(p);
 // #ifdef Weight

 weight -= p.getWeight();
 // #endif
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

ElevatorState stopAtAFloor (int floorID) {
 ElevatorState state = Elev.openDoors;
 boolean block = false;
 for (Person p : new ArrayList<Person> (persons))
 if (p.getDestination() == floorID)
 leaveElevator(p);
 for (Person p : waiting) enterElevator(p);
 // #ifdef TwoThirdsFull

 if ((weight == 0 && persons.size() >=
 maxPersons*2/3 || weight >= maxWeight*2/3)
 block = true;
 // #endif

28

29

30

31

32

33

34

35

36

37

 // #ifdef Overloaded

 if (block == false) {
 if ((weight == 0 && persons.size() >=s
 maxPerson || weight == maxWeight)
 //Patch: weight >= maxWeight
 block = true;
 }
 // #endif
 if (block == true)
 return Elev.blockDoors;
 return Elev.closeDoors;
}

Fig. 1. An illustrative example of a variability bug in Elevator System.

P C Base Empty Weight TwoThirdsFull Overloaded

p1 c1 T F T F F

p2 c2 T T T F F

p3 c3 T T F F F

p4 c4 T F T T F

p5 c5 T F T T T

p6 c6 T T T F T

p7 c7 T F T F T

T: selected F:deselected

Fig. 2. Sampled configurations and corresponding test results.

2
A counter witness 𝜐 represents a valid configuration in which all features selected in the feature interaction 𝐹𝐼 are switched

relative to configuration 𝜐.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:5

In Fig. 1, the #ifdef directive represents a functionality within the system by controlling the

selection/deselection of features. There are five features: 𝐵𝑎𝑠𝑒 , 𝐸𝑚𝑝𝑡𝑦,𝑊𝑒𝑖𝑔ℎ𝑡 , 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 ,

and 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 . The 𝐵𝑎𝑠𝑒 feature controls basic functions, 𝐸𝑚𝑝𝑡𝑦 supports elevator operation

when it is empty,𝑊𝑒𝑖𝑔ℎ𝑡 controls elevator operation when it is loaded, and 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 and

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 control elevator operation when the loaded weight reaches two thirds of the maximum

limit or exceeds it. However, the statement weight==maxWeight in line 30 does not adhere to the

logic of the system design and should be replaced with weight>=maxWeight. This fault does not
cause failures in all configurations, as it is a variability bug. In other words, configurations may

fail only when 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is selected. The variable influencing the normal execution of line 30

is weight, which is governed by both𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , indicating that they interact

with 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 . Specifically, configurations will fail only when𝑊𝑒𝑖𝑔ℎ𝑡=T, 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙=F,

and 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑=T. It is important to note that 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 can be selected only if𝑊𝑒𝑖𝑔ℎ𝑡 is also

selected. Therefore, the actual buggy feature interaction is (-𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑), where

’-’ indicates that the feature is deselected.

In VarCop [37], potential feature interactions can be obtained by comparing the feature selection

differences (its definition is given in Section 3.2) between failed and passed configurations. However,

we further observe that, for each failed configuration, the feature selection differences generated

with dissimilar passed configurations may increase the size of search spaces. For example, the

feature selection difference between 𝑐3 and 𝑐7 is -𝐸𝑚𝑝𝑡𝑦, 𝑊𝑒𝑖𝑔ℎ𝑡 , 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 . The generated

feature interactions are (-Empty), (Weight), (Overloaded), (-Empty,Weight), (-𝐸𝑚𝑝𝑡𝑦, Overloaded),
(Weight, Overloaded), and (-Empty, Weight, Overloaded). It should be noted that feature interactions

containing −𝐸𝑚𝑝𝑡𝑦 are not the root cause of the failure of 𝑐6 and 𝑐7. Thus, the search space for

potential feature interactions generated remains large, especially when the number of features and

configurations is numerous.

c3

c2

c6 c7

c1

c5

c4

c3

c2

c6 c7

c1

c5

c4

r2

r1

Configuration space

Fig. 3. An illustrative example of our motivation.

Based on the key idea of counterfactual reasoning, a feature interaction may cause a configu-

ration 𝑐 to fail, depending on whether there is a counter witness for 𝑐 . However, modifying the

feature selections of failed configurations and retesting them is inefficient. Therefore, for a set

of configurations, the similarity in feature selection between passed and failed configurations

partially reflects the counterfactual nature of feature interactions, particularly their differences

in feature selection. In other words, the more similar the feature selections between two configu-

rations—one passing and the other failing—the higher the likelihood that their feature selection

differences indicate potential buggy feature interactions. For instance, the most similar passed

configuration to 𝑐6 is 𝑐2, where the 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 feature is deselected, leading to configuration

failure. Conversely, for 𝑐7, the most similar passed configurations are 𝑐1 and 𝑐5, where the selection

or deselection of 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 or 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 directly impacts the test outcome. Similarly, the

suspicious feature selection is 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 , resulting in potential feature interac-

tions of (𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙), (𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑), and (𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑). Thus, counterfactual

reasoning yields more suspicious and fewer feature interactions, thereby reducing the search space.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:6 Wang, et al.

As illustrated in Fig. 3, these configurations can be represented in a configuration space where

the similarity between two configurations can be measured using distances such as the Hamming

distance. Consequently, a search radius can be established for each failed configuration, allowing

for the identification of similar passed configurations.

Furthermore, we have observed in practice that the selection of each feature correlates with

the test results. For instance, 𝐵𝑎𝑠𝑒 ,𝑊𝑒𝑖𝑔ℎ𝑡 , 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , and 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 are more relevant

to the test results, whereas 𝐸𝑚𝑝𝑡𝑦 is not. In our study, we utilize symmetric uncertainty [44] to

quantify the correlation between each feature and the test results. This correlation is determined

based on the entropy and conditional entropy of the features with respect to the test results. The

value of symmetric uncertainty ranges from 0 to 1, with values closer to 1 indicating a stronger

correlation. Specifically, the symmetric uncertainties of 𝐵𝑎𝑠𝑒 , 𝐸𝑚𝑝𝑡𝑦, 𝑊𝑒𝑖𝑔ℎ𝑡 , 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 ,

and 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 with respect to the test results are 0.67, 0.00, 0.50, 0.50, and 0.50, respectively.

Consequently, irrelevant low-order feature interactions, such as (𝐸𝑚𝑝𝑡𝑦), can be filtered to further

reduce the search space.

3.2 Key definitions
We give the following key definitions used throughout the paper.

Definition 1. (Feature selection difference). For a failed configuration 𝑒 and a passed configura-

tion 𝑧, the feature selection difference refers to the features selected differently by 𝑒 relative to 𝑧. It

can be expressed as follows:

D(𝑒, 𝑧) = {𝑒𝑞 |𝑒𝑞 ≠ 𝑧𝑞, 𝑞 = 1, 2, ..., |F |}, (1)

where 𝑒𝑞 and 𝑧𝑞 are the 𝑞th values in the binary set of 𝑒 and 𝑧, respectively; and D(𝑒, 𝑧) represents
the feature selection difference between 𝑒 and 𝑧.

Example 1. In Fig. 2, 𝐸𝑚𝑝𝑡𝑦 and 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 are selected while 𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 is deselected for
𝑐6; 𝐸𝑚𝑝𝑡𝑦 and𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 are deselected while𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 is selected for 𝑐4. Therefore,D(𝑐6, 𝑐4)
is {𝐸𝑚𝑝𝑡𝑦, -𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 , 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑}.

Definition 2. (Suspicious feature selection). The suspicious feature selection is defined as the

union of the feature selection differences generated based on a failed configuration 𝑒 with respect

to a Passed Configuration Set (𝑃𝐶𝑆),

U(𝑒) =
⋃

𝑧∈𝑃𝐶𝑆
D(𝑒, 𝑧), (2)

whereU(𝑒) indicates a suspicious feature selection for 𝑒 .

Example 2. For 𝑐7 in Fig. 2, and a passed configuration set 𝑃𝐶𝑆 = {𝑐1, 𝑐5}, D(𝑐7, 𝑐1) and D(𝑐7, 𝑐5)
are {𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑} and {-𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 }, respectively. Therefore, the suspicious feature selection for 𝑐7

is {𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 , -𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 }.

Definition 3. (𝑛-way feature interaction). An 𝑛-way feature interaction is defined as any subset

of size 𝑛 within a suspicious feature selection.

Example 3. For {𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 , −𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙 }, 1-way feature interactions are (𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑) and
(−𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙), and 2-way feature interaction is (𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 , −𝑇𝑤𝑜𝑇ℎ𝑖𝑟𝑑𝑠𝐹𝑢𝑙𝑙).

It is worth noting that feature interaction faults typically involve no more than six features

[23, 32], therefore we only focus on 1∼7-way feature interactions, following the practice in [39].

Definition 4. (Suspicious feature interactions). A potential feature interaction (𝐹𝐼) being exam-

ined is considered a suspicious feature interaction if it satisfies both of the following properties

[37]:

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:7

• Bug-Revelation: Any configuration containing 𝐹𝐼 corresponds to a failed product.

• Minimality: There are no strict subsets of 𝐹𝐼 that satisfy the Bug-Revelation property.

4 Method
In this section, we provide a detailed description of the proposed CRFL. Specifically, Section 4.1 out-

lines the basic framework of the approach, while Sections 4.2 to 4.4 present detailed implementations

of the main components.

4.1 Basic framework
Fig. 4 presents the framework of CRFL, which consists of the following five parts: 1○ Obtaining

suspicious feature selections based on counterfactual reasoning; 2○ Filtering irrelevant feature

interactions based on symmetric uncertainty; 3○ Removing included suspicious feature selections

using inclusion relationships; 4○ Reducing duplicated feature interactions by utilizing a caching

mechanism; and 5○ Examining feature interactions for suspiciousness.

Obtain suspicious feature

selection for each failed product

Remove included suspicious

feature selections

Generate 1~7-way feature

interactions

In cache?

Examine and then

save suspicious

feature interaction

Output suspicious

feature interactions

Termination

conditions?

Enumerate each

feature interaction

Filter
Obtain the highly relevant

feature set based on the

sysmmetric uncertainty

Yes

No

Yes No

Add

Cache

Products and

test results

1 3

2

4

Input

5

Fig. 4. Framework of the proposed CRFL, which consists of five parts.

We provide the pseudo-code of the proposed CRFL in Algorithm 1. The input of CRFL is the

configuration-level test suite (TS) which includes configurations and the corresponding test

results. After examination using CRFL, the set of suspicious feature interactions (𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝐼𝑠𝑒𝑡𝑠)

is returned. Line 5 computes the radius of each failed configuration, while lines 6-13 aim to identify

potential feature interactions. Next, line 14 calculates the symmetric uncertainty of each feature

with respect to the test results, and obtains the set of features with high correlation. Finally, lines

17-28 remove duplicated feature interactions and perform a suspiciousness examination to obtain

the set of suspicious feature interactions.

4.2 Generate suspicious feature selection based on counterfactual reasoning
Lines 1-13 in Algorithm 1 generate suspicious feature selections with the following two steps, i.e.,

finding similar passed configurations for each failed configuration, and generating corresponding

suspicious feature selection.

Let all failed configurations be set to FC, and all passed configurations be set to PC. The first step
is to determine the set of passed configurations that are similar to each failed configuration. This

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:8 Wang, et al.

Algorithm 1: CRFL
Input: Configuration-level test suite TS=PC ∪ FC //PC, FC denote the sets of passed

and failed configurations, respectively

Output: 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝐼𝑠𝑒𝑡𝑠 //Suspicious feature interaction sets

1 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝐼𝑠𝑒𝑡𝑠 ← ∅;
2 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝑆𝑠𝑒𝑡𝑠 ← ∅ //Suspicious feature selection set;

3 for each 𝑐𝑖 ∈ F C do
4 𝑆𝑢𝑠𝐹𝑆𝑖 ← ∅ //The suspicious feature selection of 𝑐𝑖 ;

5 Calculate the radius 𝑟𝑖 of 𝑐𝑖 by Eq. 4;

6 for each 𝑐 𝑗 ∈ PC do
7 Calculate the distance 𝑑 𝑗 between 𝑐𝑖 and 𝑐 𝑗 by Eq. (3);

8 if 𝑑 𝑗 < 𝑟𝑖 then
9 𝑆𝑢𝑠𝐹𝑆𝑖 ← 𝑆𝑢𝑠𝐹𝑆𝑖 ∪ D(𝑐𝑖 , 𝑐 𝑗);

10 end
11 end
12 Add 𝑆𝑢𝑠𝐹𝑆𝑖 into 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝑆𝑠𝑒𝑡𝑠;

13 end
14 Calculate symmetric uncertainty of each feature with the test result set, and obtain the

highly relevant feature set 𝐻𝑅𝐹 (see Section 4.3);

15 Remove included suspicious feature selections;

16 𝐶𝑎𝑐ℎ𝑒 ← ∅;
17 for 𝑆𝑢𝑠𝐹𝑆𝑖 ∈ 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝑆𝑠𝑒𝑡𝑠 do
18 Generate 1∼7-way feature interactions of 𝑆𝑢𝑠𝐹𝑆𝑖 , denoted as 𝐹𝐼𝑆 ;

19 for 𝐹𝐼 𝑗 ∈ 𝐹𝐼𝑆 do
20 if 𝐹𝐼 𝑗 ∉ 𝐶𝑎𝑐ℎ𝑒 then
21 Add 𝐹𝐼 𝑗 into 𝐶𝑎𝑐ℎ𝑒;

22 if 𝐹𝐼 𝑗 ∩ 𝐻𝑅𝐹 ≠ ∅ then
23 Perform suspiciousness examination for 𝐹𝐼 𝑗 and save it to 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝐼𝑠𝑒𝑡𝑠

if 𝐹𝐼 𝑗 is suspicious;

24 end
25 end
26 end
27 end
28 return 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐹𝐼𝑠𝑒𝑡𝑠

goal can be achieved by using any distance metric to measure the similarity between configurations.

Considering that configurations can be represented by binary sets, we choose Hamming distance

in this paper. For a failed configuration 𝑒 ∈ F C and a passed configuration 𝑧 ∈ PC, their distance
can be calculated as:

𝐷𝑖𝑠 (𝑒, 𝑧) =
| F |∑︁
𝑞=1

|𝑒𝑞 − 𝑧𝑞 |. (3)

Example 4. As shown in Fig. 2, the distance from 𝑐6 to 𝑐2 is (0+0+0+0+0+1)=1, while the distances
to 𝑐1, 𝑝3, 𝑐4 and 𝑐5 are all 2.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:9

Two configurations are closer if their feature selections are more similar. Consequently, passed

configurations that are closer to 𝑒 are identified to calculate their feature selection differences.

Popular strategies for determining the closest passed configurations include the TopK strategy and

the Threshold strategy [16, 19]. The TopK strategy selects the 𝐾 nearest passed configurations to

the failed configuration. In contrast, the Threshold strategy selects a variable number of passed

configurations by setting a threshold, choosing those with distances less than the specified threshold.

In practice, determining the appropriate value for 𝐾 can be challenging, as the number of passed

configurations can vary widely—from over 20 in some mutants to just one in others. Therefore,

instead of adopting the TopK strategy, a radius is set for each failed configuration to identify similar

passed configurations. In our approach, this radius is defined as the average distance from 𝑒 to all

passed configurations. The radius for 𝑒 can be calculated as follows:

𝑟 =

∑
𝑧∈PC 𝐷𝑖𝑠 (𝑒, 𝑧)
|PC| , (4)

where 𝑟 is the radius of 𝑒 . When 𝐷𝑖𝑠 (𝑒, 𝑧) < 𝑟 , the feature selection difference between 𝑒 and 𝑧 is

calculated.

For a failed configuration 𝑒 , let 𝑃𝐶𝑆 denote the identified passed configurations. The suspicious

feature selection of 𝑒 is obtained based on Eq. (2), which calculates the union of the feature selection

differences between 𝑒 and each passed configuration in 𝑃𝐶𝑆 .

4.3 Correlation-based filtering for potential feature interactions
In our work, symmetric uncertainty is used to evaluate the correlation between the selection of each

feature and the test results. First, the selection vectors for each feature and the test result vector

are required to be constructed. Let the set of selection vectors be 𝑉𝐹𝑠 , and the vector of the test

results be 𝑅. For a feature 𝑓𝑖 , the 𝑗th dimension of its vector 𝑉𝐹𝑖 ∈ 𝑉𝐹𝑠 is ’1’ if 𝑓𝑖 is selected in the

𝑗 th configuration, and ’0’ otherwise. Similarly, the 𝑗 th dimension of 𝑅 is ’1’ if the 𝑗th configuration

passes the test and 0 otherwise.

Example 5. Considering the feature Empty in Fig. 2, its selection vector, based on its selection state
in each configuration, is represented as (0, 1, 1, 0, 0, 0, 1, 0). Similarly, the test result vector is (1, 1, 1, 1,
1, 0, 0).

Next, the selection vector for each feature can be calculated with the test results vector for

symmetric uncertainty, as follows.

𝑆𝑈 (𝑉𝐹𝑖 , 𝑅) = 2

𝐻 (𝑉𝐹𝑖) − 𝐻 (𝑉𝐹𝑖 |𝑅)
𝐻 (𝑉𝐹𝑖) + 𝐻 (𝑅)

, 𝑖 = 1, 2, ..., 𝑘, (5)

where 𝐻 (𝑉𝐹𝑖) and 𝐻 (𝑅) are the entropies of𝑉𝐹𝑖 and 𝑅; 𝐻 (𝑉𝐹𝑖 |𝑅) is the conditional entropy of𝑉𝐹𝑖
when 𝑅 is known. The sets 𝑝 (𝑣) and 𝑝 (𝑟) are the prior probabilities of 𝑉𝑏𝑖 and 𝑅, respectively. The
𝐻 (𝑉𝑏𝑖), 𝐻 (𝑅) and 𝐻 (𝑉𝑏𝑖 |𝑅) are calculated as follows.

𝐻 (𝑉𝐹𝑖) = −
∑︁
𝑣∈𝑉𝐹𝑖

𝑝 (𝑣)𝑙𝑜𝑔2𝑝 (𝑣), 𝑖 = 1, 2, ..., 𝑘, (6)

𝐻 (𝑅) = −
∑︁
𝑟 ∈𝑅

𝑝 (𝑟)𝑙𝑜𝑔2𝑝 (𝑟). (7)

𝐻 (𝑉𝐹𝑖 |𝑅) = −
∑︁
𝑟 ∈𝑅

𝑝 (𝑟)
∑︁
𝑣∈𝑉𝑏𝑖

𝑝 (𝑣 |𝑟)𝑙𝑜𝑔2𝑝 (𝑣 |𝑟). (8)

Finally, the selection of each feature can be calculated to correlate with the set of test results.

For a feature 𝑓𝑖 , its selection state is added to the high relevance feature set (denoted as 𝐻𝑅𝐹) if

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:10 Wang, et al.

its symmetric uncertainty is greater than 0. It is worth mentioning that the added feature states

should include both selected and deselected state. In our work, irrelevant feature interactions are
filtered based on the rule that buggy feature interactions much contain at least one highly relevant
feature. Therefore, as shown in Line 22 of Algorithm 1, if the intersection of a feature interaction

and 𝐻𝑅𝐹 is an empty set, it will be filtered out.

4.4 Minimize examination of potential feature interactions
Lines 16-27 in Algorithm 1 aim at avoiding duplicated potential feature interaction examinations in

two ways. First, for two suspicious feature selections generated based on any two failed config-

urations, one of them may be a subset of the other, namely, ∃𝑒𝑖 , 𝑒 𝑗 ∈ FP(𝑖 ≠ 𝑗),U(𝑒𝑖) ⊂ U(𝑒 𝑗)
or U(𝑒 𝑗) ⊂ U(𝑒𝑖). This relationship among suspicious feature selections is called the inclusion
relationship, and removing included suspicious feature selections can reduce the potential feature

interactions that are generated repeatedly. Second, any two suspicious feature selections that do

not have the inclusion relationship could produce the same potential feature interactions. That

is to say, for 𝑒𝑖 and 𝑒 𝑗 , ∃𝐹𝐼𝑘 ∈ U(𝑒𝑖), ∃𝐹𝐼𝑙 ∈ U(𝑒 𝑗), such that 𝐹𝐼𝑘 = 𝐹𝐼𝑙 , where 𝐹𝐼𝑘 and 𝐹𝐼𝑙 are

two potential feature interactions. This means that duplicated suspiciousness examinations are

performed for the same potential feature interactions. However, these two findings are ignored in

VarCop, and therefore its search efficiency is affected.

If there is an inclusion relation between any two different suspicious feature selections, the

included one should be removed. For example, there are three suspicious feature selections, D1 =

{𝑓1, 𝑓2, 𝑓3,−𝑓4}, D2 = {−𝑓1,−𝑓2, 𝑓3,−𝑓4}, and D3={−𝑓1, −𝑓2, 𝑓3, −𝑓4, −𝑓5}. Apparently, D3 includes

D2. As a result, D2 is removed to avoid duplicated feature interactions being generated. As will be

shown in Section 6.1, this phenomenon is common in our context.

Next, the 1∼7-way feature interactions of each suspicious feature selection are generated and

examined for suspiciousnes. However, we further observe that identical feature interactions are

generated based on different suspicious feature selections. For instance, the potential feature

interactions generated by D1 and D3 are {..., (𝑓2, 𝑓3), (𝑓3, −𝑓4), ...} and {..., (𝑓3, -𝑓4), (-𝑓4, -𝑓5), ...},
respectively. It is worth noting that we only use 2-way feature interactions as an example. D1

and D3 have common feature interactions {(𝑓3,−𝑓4)}, and it should be examined only once for

suspiciousness. Therefore, a caching mechanism which is implemented by the hash map is used to

avoid duplicated suspiciousness examination for feature interactions.

5 Experiment setup
This section details the experimental setup, encompassing research questions, datasets, baselines,

and evaluation metrics. The hardware specifications utilized for the experiments include a Linux-

based server equipped with an Intel Core i5-12450H CPU running at 2.00 GHz and 16.00 GB of

RAM.

5.1 ResearchQuestions
We aim to answer the following research questions (RQs).

RQ1: How much is the search space reduced in CRFL?
RQ2: How efficient is CRFL in comparison with the state-of-the-art approach?
RQ3: How effective is CRFL when extended for statement-level fault localization?
RQ4:Which component of CRFL contributes the most to efficiency gains?
To address RQ1, we count the number of the included suspicious feature selections and duplicated

feature interactions, to demonstrate how many redundant suspiciousness examinations can be

eliminated. In addition, we assess the size of the search space by quantifying the size of feature

interactions examined by CRFL, and then calculate the reduction rate (𝑅𝑎𝑡𝑒) relative to VarCop. To

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:11

answer RQ2, we compare CRFL with the state-of-the-art VarCop in terms of examination time. To

address RQ3, we extend our approach for statement-level fault localization by using the program

slicing and ranking techniques as in VarCop. To answer RQ4, we develop three variants of CRFL

by removing key components: CRFL without the symmetric uncertainty technique (CRFL-wSU),

CRFL without the two findings (CRFL-wTF), and CRFL without the counterfactual reasoning

technique (CRFL-wCR). We then compare these variants in terms of their runtime to determine

which component contributes the most to efficiency gains.

5.2 Dataset
CRFL is evaluated using eight real Java SPL systems, which are widely used in SPL studies [6, 37].

For each system, each sampled configuration has multiple buggy mutants, each of which has a

corresponding unit-level test suite. A configuration is failed whenever there is a failed test suite for

that configuration. The details of the dataset are presented in Table 1, whereN indicates the number

of single-bug mutants;M represents the number of multiple-bug mutants; |SC| is the size of the
sampled configurations; 𝐶𝑜𝑣 denotes the average statement coverage of unit-level test suites; and

𝐿𝑜𝐶 is the lines of code. This dataset encompasses 343 single-bug mutants and 1006 multiple-bug

mutants across eight systems. Note that mutants for BerkeleyDB and TankWar were generated by

ourselves following [37]. First, we sample a set of valid configurations using the SamplingCA 3

tool and then compose the corresponding product systems using the FeatureHouse 4
framework.

Subsequently, we seed some random bugs into these systems and generate the unit-level test suite

for each configuration using the Evosuite 5
tool. The unit-level test suites are then executed to

collect feature-level data, i.e., the configuration-level test suite. The remaining six systems are

sourced from [37].

Table 1. The statistics of the used eight Java SPL systems

System |F | N M |SC| 𝐶𝑜𝑣 𝐿𝑜𝐶

BankAccountTP 8 73 298 34 99.9 143

BerkeleyDB 99 0 2 17 73.6 58030

Email 9 36 55 27 97.7 439

ExamDB 8 49 214 8 99.5 513

Elevator 6 20 26 18 92.9 854

GPL 27 105 267 99 99.4 1944

TankWar 31 0 5 26 63.1 4845

ZipMe 13 55 139 25 42.9 3460

It is important to note that RQ1, RQ2, and RQ4 focus on feature-level validation, which is

independent of whether a mutant involves a single bug or multiple bugs. Therefore, we utilize the

multiple-bug mutants of BerkeleyDB and TankWar along with the single-bug mutants of the other

systems to validate these research questions. Furthermore, considering the phenomenon of false-

passing configurations, we only use the single-bug and multiple-bug mutants from BankAccountTP,
Email, ExamDB, Elevator, GPL, and ZipMe to address RQ3, as they are reported to include false-

passing configurations [40].

3
https://github.com/chuanluocs/SamplingCA.git

4
http://www.fosd.de/fh

5
https://www.evosuite.org/

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:12 Wang, et al.

5.3 Baselines
In our work, SBFL [2, 3, 30, 36, 42], S-SBFL [11, 33], FB [9], and VarCop [39] are selected as baselines.

They represent the state-of-the-art approaches in fault localization for SPLs, and a brief description

of them is provided below:

• SBFL [2, 3, 30, 36, 42], a classic fault localization technique that directly ranks code statements

based on the program spectrum.

• S-SBFL [11, 33], an improved SBFL approach based on the slicing technique. Therefore, it has

a more robust performance for fault localization.

• FB [9], a feature-based fault localization approach that utilizes SBFL to compute and rank the

suspiciousness of each feature interaction.

• VarCop [39], a novel variability fault localization technique leveraging feature interactions

and spectral information, achieving state-of-the-art performance.

5.4 Metrics
In our work, we evaluate the performance of fault localization in two aspects, i.e., efficiency and

accuracy. Metrics of efficiency are used to address RQ1 , RQ2, and RQ4, while metrics of accuracy

are used to address RQ3.

To evaluate efficiency, the runtime (𝑇𝑖𝑚𝑒) is employed as a critical metric. Given that each

system comprises multiple mutants, the stability of the approaches is assessed by calculating the

standard deviation (𝑆𝑇𝐷) of runtime across different mutants. Furthermore, the size of generated

potential feature interaction sets, which affects the size of the search space, serves as another

key metric for evaluating efficiency. In addition, to evaluate the validity of the two findings, two

metrics are designed based on the given configuration set: the inclusion rate, which quantifies the

proportion of suspicious feature selections from failed configurations that are incorporated into

other configurations, and the duplication rate, which measures the number of identical potential

feature interactions examined across different suspicious feature selections. The inclusion rate (𝐼𝑅)

is calculated as:

𝐼𝑅 =
|Υ|
|F C| , (9)

where |Υ| indicates the number of included suspicious feature selections, and FC is the set of failed

configurations. The duplication rate (𝐷𝑅) can be calculated as:

𝐷𝑅 =
|𝜀 |
|Θ| . (10)

where |𝜀 | denotes the number of duplicated potential feature interactions, and |Θ| is the total number

of 1∼7-way feature interactions.

To evaluate accuracy, we employ four widely-used metrics for statement-level fault localization:

𝑅𝑎𝑛𝑘 , 𝐸𝑋𝐴𝑀 , 𝐻𝑖𝑡@𝑋 , and 𝑃𝐵𝐿. Each of these metrics provides distinct insights into the accuracy

of the fault localization process. These are a brief description of these metrics.

• 𝑅𝑎𝑛𝑘 is the rank of the buggy statement among all suspicious statements. A lower 𝑅𝑎𝑛𝑘

indicates more accurate fault localization.

• 𝐸𝑋𝐴𝑀 denotes the percentage of the number of examined statements before detecting the

buggy statements [59].

• 𝐻𝑖𝑡@𝑋 indicates the number of mutants in which the first 𝑋 examinations are able to detect

the buggy statement. A higher number of mutants with a smaller 𝑋 means better fault

localization accuracy. In our work, we only focus on 𝑋 ∈ [1, 5].

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:13

• Proportion of Bugs Localized (𝑃𝐵𝐿) is a commonly used metric for evaluating multiple-bug

mutants, representing the proportion of buggy statements identified when a certain number

of statements are detected. A higher 𝑃𝐵𝐿 value indicates a more effective approach.

6 Results
This section presents a series of experimental results on the eight systems to address the research

questions.

6.1 RQ1: The reduced search space in CRFL
Fig. 5 shows, in the form of boxplots, the inclusion rate for all the buggy mutants on each of the

eight systems. In order to enhance the interpretation of the data in Fig. 5, we take 𝐵𝑎𝑛𝑘𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑇𝑃

as an example. From Table 1, this system has 73 single-bug mutants, for each of which the inclusion

rate can be calculated, resulting in 73 data points (shown in a boxplot). According to Fig. 5, most

systems have an average inclusion rate greater than zero, meaning that the inclusion relationship

indeed exists on these systems. Moreover, the average rates are relatively high (i.e., between 16.2%

and 57.3%) on BankAccountTP, Elevator, Email, GPL, and ZipMe. For the other three systems, the

inclusion rate is zero in most mutants. One possible explanation is that the inclusion rate is sensitive

to the size of sampled configurations. For BerkeleyDB, ExamDB, and TankWar, fewer configurations
are sampled than other systems. When the number of sampled configurations is small, the number

of suspicious feature selections also decreases, significantly reducing the likelihood of an inclusion

relationship among them.

BankAccountTPBerkeleyDB Elevator Email ExamDB GPL TankWar ZipMe

0.0

0.2

0.4

0.6

0.8

1.0

I
n

c
lu

s
io

n
 r

a
te

Systems

Fig. 5. Ratio of included suspicious feature selections across the eight systems.

Furthermore, the duplication rate all the buggy mutants across the eight systems is presented in

Fig. 6. The average duplication rate for most systems is greater than zero, indicating the presence

of a substantial number of duplicated potential feature interactions in suspicious feature selections.

Notably, a high duplication rate is observed in BankAccountTP, Elevator, Email, GPL, and ZipMe,
with average duplication rates of 47.9%, 54.9%, 44.5%, 43.6%, and 47.8%, respectively. In contrast,

the average duplication rate of BerkeleyDB and TankWar is less than 20%, because the excessive

number of features generates a huge potential feature interaction space. Additionally, most mutants

in ExamDB exhibit a duplication rate of zero. This is likely due to the sparse suspicious feature

selections generated from an extremely limited number of configurations, leading to a significantly

small number of potential feature interactions.

Finally, the average number of potential feature interactions (i.e., the size of search space) gen-

erated by VarCop and CRFL is presented in Table 2. It includes 1∼7-way feature interactions for

each system, along with the reduction rate (𝑅𝑎𝑡𝑒). Due to the large number of potential feature

interactions in BerkeleyDB, only 1∼4-way feature interactions are compared. From Table 2, it

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:14 Wang, et al.

BankAccountTPBerkeleyDB Elevator Email ExamDB GPL TankWar ZipMe

0.0

0.2

0.4

0.6

0.8

1.0

D
u

p
li

ca
ti

o
n

 r
a
te

Systems

Fig. 6. Duplication rate of feature interactions across the eight systems.

is evident that CRFL examines fewer 1∼7-way feature interactions on each system compared to

VarCop. In addition, the advantage of CRFL is more noticeable for larger systems. For systems

with fewer than ten features, such as BankAccountTP, Email, and ExamDB, CRFL reduces exami-

nations by 33.4%∼58.8% compared to VarCop. For larger systems, such as ZipMe, GPL, TankWar,
and BerkeleyDB, CRFL can reduce the search space by about 84%, 88%, 73% and 71% compared to

VarCop, respectively.

Table 2. The average number of 1∼7-way feature interactions examined by CRFL and VarCop

Systems 𝑛-way VarCop CRFL 𝑅𝑎𝑡𝑒 (%)

BankAccountTP

1-way 55.97 2.42 95.7

2-way 141.42 17.41 87.7

3-way 208.68 52.25 75.0

4-way 187.66 75.36 59.8

5-way 102.26 52.88 48.3

6-way 31.18 19.03 39.0

7-way 4.10 2.73 33.4

BerkeleyDB

1-way 856.00 183.00 78.6

2-way 40310.00 12364.00 69.3

3-way 1252994.50 410817.00 67.2

4-way 28919106.00 8833702.00 69.5

5-way - - -

6-way - - -

7-way - - -

Elevator

1-way 18.60 1.40 92.5

2-way 25.20 4.60 81.7

3-way 19.75 5.90 70.1

4-way 8.05 3.40 57.8

5-way 1.35 0.75 44.4

6-way 0.00 0.00 -

7-way 0.00 0.00 -

Email

1-way 64.86 3.67 94.3

2-way 165.28 20.64 87.5

3-way 266.61 57.33 78.5

4-way 285.31 86.39 69.7

5-way 203.19 74.86 63.2

6-way 92.94 38.25 58.8

7-way 24.75 10.81 56.3

Systems 𝑛-way VarCop CRFL 𝑅𝑎𝑡𝑒 (%)

ExamDB

1-way 7.61 4.69 38.4

2-way 20.18 10.90 46.0

3-way 32.02 15.31 52.2

4-way 31.41 14.29 57.8

5-way 18.67 8.39 54.5

6-way 6.18 2.76 55.3

7-way 0.88 0.39 55.7

GPL

1-way 432.50 9.10 97.9

2-way 4492.66 241.52 94.6

3-way 30989.59 2897.80 90.6

4-way 156563.35 21091.91 86.5

5-way 612209.61 101700.66 83.4

6-way 1917635.11 368773.49 80.8

7-way 4923805.55 1027440.15 79.1

TankWar

1-way 186.00 34.00 81.7

2-way 1692.40 461.60 72.7

3-way 9786.80 3136.40 68.0

4-way 40254.40 12796.00 68.2

5-way 125001.40 36024.40 71.2

6-way 303782.00 78203.00 74.3

7-way 591282.40 135145.80 77.1

ZipMe

1-way 66.20 3.71 94.4

2-way 195.04 23.29 88.1

3-way 403.49 69.36 82.8

4-way 622.65 121.45 80.5

5-way 727.91 143.36 80.3

6-way 642.78 122.29 81.0

7-way 421.20 76.75 81.8

It is essential to analyze the reasons behind the significant reduction in the search space observed

in CRFL. For low-way feature interactions (e.g., 1∼2-way), the average number of suspiciousness

examinations performed by CRFL is less than VarCop, with the average 𝑅𝑎𝑡𝑒 exceeding 71% across

the eight systems. This substantial reduction can be attributed to the highly relevant feature set

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:15

identified through symmetric uncertainty. Low-way feature interactions that are not in this set are

filtered directly. Consequently, irrelevant 1∼2-way feature interactions are effectively filtered, reduc-
ing computational overhead. For high-order feature interactions (e.g., 3∼7-way interactions), CRFL

examines fewer potential feature selections while achieving higher accuracy. This improvement

stems from CRFL’s ability to precisely identify suspicious feature selections through counterfactual

reasoning, enhancing its effectiveness in reducing unnecessary computations while maintaining

accuracy.

Therefore, we have the following answers to RQ1. Compared to the state-of-the-art VarCop, the
search space in CRFL is reduced above 71% on average. This reduction is achieved because CRFL
examines more suspicious and fewer potential feature interactions, avoiding the repeated generation
and examination of the same feature interactions.

6.2 RQ2: Efficiency of CRFL
Table 3 presents the average runtime (in seconds) of CRFL and VarCop across the eight systems,

along with the runtime ratio of VarCop to CRFL. In addition, the standard deviations (𝑆𝑇𝐷) are also

provided. A lower 𝑆𝑇𝐷 indicates a more stable approach. As shown in Table 3, CRFL outperforms

VarCop in both average runtime and 𝑆𝑇𝐷 . Furthermore, CRFL exhibits significantly lower 𝑆𝑇𝐷

values compared to VarCop, further highlighting its stability. It is noteworthy that CRFL runs

considerably faster than VarCop on all systems, with the speedup ratio ranging from 5.5 to 31.4.

Specifically, for smaller systems with fewer than ten features, such as BankAccountTP, Email,
ExamDB, and Elevator, CRFL is at least 17.6 times faster than VarCop. For larger systems, such as

GPL and BerkeleyDB, both approaches require more time due to the exponentially growing search

space. However, CRFL remains faster than VarCop. On average, CRFL is 22.2 times faster on smaller

systems and 8.9 times faster on larger ones. These results demonstrate the efficiency of CRFL as a

fault localization approach.

Table 3. Comparisons between CRFL and VarCop in terms of the average runtime (in seconds) and standard
deviation (𝑆𝑇𝐷)

Systems

VarCop CRFL

𝑅𝑎𝑡𝑖𝑜
Average 𝑆𝑇𝐷 Average 𝑆𝑇𝐷

BankAccountTP 3.17 1.61 0.18 0.07 17.6

BerkeleyDB 179425.64 8095.63 21551.35 16359.10 8.3

Email 16.34 8.79 0.89 0.42 18.4

ExamDB 2.83 0.97 0.09 0.03 31.4

Elevator 40.28 18.74 1.88 0.76 21.4

GPL 3590.49 3127.89 649.20 433.52 5.5

TankWar 96.95 63.81 15.91 10.35 6.1

ZipMe 1150.00 706.35 72.94 41.89 15.8

Therefore, the answer to RQ2 is clear. The proposed CRFL, which runs at least 5.5 times faster than
the state-of-the-art VarCop, is efficient and stable as a feature interaction fault localization approach
for SPLs.

6.3 RQ3: Localization accuracy of CRFL
In our work, 𝑅𝑎𝑛𝑘 , 𝐸𝑋𝐴𝑀 , and 𝐻𝑖𝑡@𝑋 are used for single-bug mutant evaluation, while 𝑃𝐵𝐿 is

used for multi-bug mutants. For the 𝐻𝑖𝑡@𝑋 and 𝑃𝐵𝐿 metrics, the most suitable ranking criteria

from the available 𝑅𝑎𝑛𝑘 metrics are selected for evaluation.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:16 Wang, et al.

The results of average 𝑅𝑎𝑛𝑘 and 𝐸𝑋𝐴𝑀 for CRFL and four baselines are presented in Table 4,

where the column “Metric” represents three popular ranking metrics used in SBFL. As shown in

Table 4, CRFL outperforms the baselines in terms of average 𝑅𝑎𝑛𝑘 and 𝐸𝑋𝐴𝑀 regarding the three

ranking metrics. Compared to SBFL and S-SBFL, CRFL demonstrates a clear advantage, particularly

on the Elevator and GPL systems. The localization accuracy of FB is significantly lower than that of

CRFL for both Rank and EXAM, as it does not extend to statement-level fault localization. Compared

to VarCop, CRFL shows a substantial improvement on GPL, while achieving similar or slightly

better performance on the other five systems. This can be attributed to the fact that larger systems

generally contain a greater number of suspicious statements, and CRFL, leveraging counterfactual

reasoning techniques, effectively isolates a smaller but more precise set of suspicious statements,

thereby enhancing localization performance.

Table 4. Comparison of average 𝑅𝑎𝑛𝑘 and 𝐸𝑋𝐴𝑀 between CRFL and baselines on the six systems

Metric Systems

𝑅𝑎𝑛𝑘 𝐸𝑋𝐴𝑀

CRFL VarCop S-SBFL SBFL FB CRFL VarCop S-SBFL SBFL FB

Dstar

BankAccountTP 3.73 3.81 4.03 3.92 20.52 4.86 4.98 5.26 5.11 26.84

Email 3.42 3.58 3.75 4.61 60.58 1.38 1.45 1.52 1.87 24.53

ExamDB 3.04 3.29 3.29 3.29 26.57 1.21 1.31 1.31 1.31 10.59

Elevator 4.25 4.25 4.00 8.30 92.05 0.95 0.95 0.89 1.85 20.55

GPL 5.50 6.72 9.80 9.09 47.97 0.57 0.70 1.01 0.94 4.97

ZipMe 12.82 12.82 14.71 18.20 452.87 0.55 0.55 0.63 0.78 19.52

Op2

BankAccountTP 3.47 3.51 3.71 3.58 19.77 4.52 4.58 4.84 1.80 25.84

Email 3.72 3.75 4.06 4.03 54.89 1.51 1.52 1.64 1.63 22.22

ExamDB 3.00 3.24 3.24 3.24 26.57 1.20 1.29 1.29 1.29 10.59

Elevator 3.70 3.70 4.15 4.25 91.10 0.83 0.83 0.93 0.95 20.33

GPL 5.52 6.74 8.90 11.48 136.27 0.57 0.70 0.92 3.15 21.79

ZipMe 10.96 10.96 12.38 12.67 447.44 0.47 0.47 0.53 0.55 19.29

Tarantula

BankAccountTP 3.74 3.84 4.25 5.49 28.64 4.88 5.01 5.54 7.17 37.52

Email 3.92 4.31 4.31 13.61 99.64 1.59 1.74 1.74 5.51 40.34

ExamDB 5.10 5.31 5.38 4.65 38.06 2.03 2.11 2.15 1.85 15.16

Elevator 6.10 6.15 6.75 18.40 102.25 1.36 1.37 1.51 4.11 22.82

GPL 5.79 7.20 9.61 10.36 63.12 0.60 0.75 0.99 1.07 6.53

ZipMe 13.82 13.82 15.62 23.73 542.62 0.60 0.60 0.67 1.02 23.39

Furthermore, regardless of the ranking metric used, CRFL consistently achieves high localization

accuracy across most mutants. The choice of ranking metric influences the localization accuracy

of both CRFL and the baseline methods. For instance, Dstar performs better on Email and GPL,
whereas Op2 is more effective for ZipMe. Overall, CRFL and all baseline approaches exhibit improved

localization performance when using the Op2 metric, suggesting that it is better suited for the

evaluated systems. This adaptability enhances the ability to accurately identify buggy statements.

Therefore, we further analyze 𝐻𝑖𝑡@𝑋 and 𝑃𝐵𝐿 using the Op2 metric.

Moreover, comparisons of 𝐻𝑖𝑡@1 ∼ 𝐻𝑖𝑡@5 among CRFL, SBFL, S-SBFL, and VarCop are pre-

sented in Fig. 7. Our approach is able to detect buggy statements on the first investigation in 35.5%

of all buggy mutants. In contrast, SBFL, S-SBFL, and VarCop rank buggy statements in the top 1 in

fewer than 30% of mutants. Furthermore, CRFL ranks buggy statements within the top 2 in over half

of the mutants, demonstrating a significant improvement over the other three approaches. CRFL

ranks buggy statements in the top 2 in more than half of the mutants, which is significantly better

than the other three approaches. The advantage of CRFL is particularly evident at 𝐻𝑖𝑡@4, where

developers using CRFL have a 76.6% probability of identifying buggy statements by examining

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:17

Hit@1 Hit@2 Hit@3 Hit@4 Hit@5

0.0

0.2

0.4

0.6

0.8

C
a

se
s(

%
)

 SBFL S-SBFL VarCop CRFL

Fig. 7. Comparison of 𝐻𝑖𝑡@1 ∼ 𝐻𝑖𝑡@5 for CRFL, SBFL, S-SBFL and VarCop.

only the top four suspicious statements. The results for 𝐻𝑖𝑡@1 ∼ 𝐻𝑖𝑡@5 further confirm that CRFL

provides more precise feature-level fault localization compared to the baselines.

Finally, for multiple-bug mutants, Fig. 8 presents the comparison results of 𝑃𝐵𝐿. Among the

evaluated approaches, SBFL exhibits the lowest fault localization accuracy, followed by S-SBFL.

VarCop and CRFL achieve comparable accuracy, as both employ the same program slicing and

statement ranking techniques. However, as shown in Section 6.1, CRFL demonstrates significantly

higher efficiency than VarCop. Therefore, CRFL not only preserves localization accuracy but also

substantially improves fault localization efficiency, making it a key advantage of the proposed

approach.

2 4 6 8 10

0

10

20

30

40

50

60

P
B

L
(%

)

The number of examined statements

 SBFL S-SBFL VarCop CRFL

Fig. 8. Comparison of 𝑃𝐵𝐿 among CRFL, SBFL, S-SBFL, and VarCop.

We can reach the following answers to RQ3. When extended for statement-level fault localization,
CRFL can examine at least 80% and 35% of buggy statements in single-bug and multi-bug mutants
during the first five examinations, respectively. Therefore, CRFL ensures effectiveness for statement-level
localization.

6.4 RQ4: Ablation analysis
Fig. 9 presents a comparison of the average number of 1∼7-way feature interactions examined by

the three variants of CRFL. Notably, CRFL-wSU and CRFL-wCR are excluded from the analysis

for BerkeleyDB due to the caching technique, which causes server memory overflow. The results

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:18 Wang, et al.

indicate that the two findings have the most significant impact on CRFL’s efficiency, as their removal

(CRFL-wTF) results in the largest number of examined feature interactions across most systems.

However, ExamDB and TankWar deviate from this trend. In ExamDB, the counterfactual reasoning
technique contributes the most to efficiency gains, likely because ExamDB has a lower inclusion rate

and duplication rate, reducing the effectiveness of the two findings. In TankWar, the two findings

are more effective for 1∼3-way feature interactions, while counterfactual reasoning technique is

more beneficial for 4∼7-way interactions, as duplicate feature interactions in TankWarmostly occur

at lower interaction levels. Generally, the same trend is observed in the average runtime results

shown in Fig. 10, where the two findings significantly enhance efficiency in most systems, while

the counterfactual reasoning technique plays a more critical role in TankWar.

1-way 2-way 3-way 4-way 5-way 6-way 7-way

101

102

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(a) BankAccountTP

1-way 2-way 3-way 4-way 5-way 6-way 7-way
101

102

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(b) Email

1-way 2-way 3-way 4-way 5-way 6-way 7-way

100

101

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(c) ExamDB

1-way 2-way 3-way 4-way 5-way 6-way 7-way
100

101

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(d) Elevator

1-way 2-way 3-way 4-way 5-way 6-way 7-way

102

103

104

105

106

107

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(e) GPL

1-way 2-way 3-way 4-way 5-way 6-way 7-way

102

103

104

105

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(f) TankWar

1-way 2-way 3-way 4-way 5-way 6-way 7-way
101

102

103

#F
Is

 (L
og

 S
ca

le
)

CRFL-wSU
CRFL-wTF
CRFL-wCR

(g) ZipMe

Fig. 9. The average number of 1∼7way feature interactions examined by three variants of CRFL.

CRFL-wSU CRFL-wTF CRFL-wCR

0.00

0.05

0.10

0.15

R
u

n
ti

m
e
(s

)

(a) BankAccountTP

CRFL-wSU CRFL-wTF CRFL-wCR

0.00

0.02

0.04

0.06

0.08

0.10

R
u

n
ti

m
e
(s

)

(b) Email

CRFL-wSU CRFL-wTF CRFL-wCR

0.000

0.005

0.010

0.015

0.020

R
u

n
ti

m
e
(s

)

(c) ExamDB

CRFL-wSU CRFL-wTF CRFL-wCR

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
u

n
ti

m
e
(s

)

(d) Elevator

CRFL-wSU CRFL-wTF CRFL-wCR

800

1600

2400

3200

4000

4800

R
u

n
ti

m
e
(s

)

(e) GPL

CRFL-wSU CRFL-wTF CRFL-wCR

0

20

40

60

80

100

R
u

n
ti

m
e
(s

)

(f) TankWar

CRFL-wSU CRFL-wTF CRFL-wCR

0.00

0.08

0.16

0.24

0.32

0.40

R
u

n
ti

m
e
(s

)

(g) ZipMe

Fig. 10. Comparison of runtime for three variants of CRFL on seven systems.

In summary, regarding RQ4, the two findings contribute most significantly to CRFL, particularly
in systems with high inclusion and duplication rates. Notably, both the counterfactual reasoning and
symmetric uncertainty techniques play equally essential roles in enhancing CRFL’s efficiency. The
synergy among these three components enables CRFL to identify buggy feature interactions more
effectively while reducing computational cost.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:19

6.5 Threats to Validity
In this section, we present a brief discussion on internal and external validity, and provide simple

views on how to mitigate these threats.

Internal validity. This type of threat may arise from potential errors in the implementation of

CRFL and the baselines used for comparison. To address this, we conducted extensive testing on

our code to identify and correct any errors. This included a thorough examination of the results

through a systematic analysis of small SPL systems. For the baselines used in the experimental

comparisons, we directly utilized the code provided by their authors.

External validity. A noteworthy limitation arises from our underlying assumption that buggy

configurations will invariably manifest detectable failures through test suites. While our empirical

evaluation demonstrates strong correlation between feature-level fault and test failures in the stud-

ied scenarios, we acknowledge the theoretical possibility of silent configuration faults—scenarios

where defective configurations do not trigger immediate test failures. This limitation is inherent

to any testing-based validation approach, as documented in prior work on configuration error

detection [40]. This threat is related to the dataset used for the experiments, i.e., to verify that the

accuracy of our approach is comprehensive. To mitigate this threat, we selected six SPL systems

containing false-passing configurations to evaluate our approach, and these systems are publicly

available [39].

6.6 Related work
In this section, related techniques are briefly described, including fault localization and counterfac-

tual reasoning.

Feature-level fault localization: Feature-level fault localization aims to examine buggy feature

interactions, which can help enhance fault comprehension and identification at an abstract level.

As a fundamental component of statement-level fault localization, it serves a complementary role,

together enabling a more comprehensive fault localization approach in configurable software

systems.

For non-functional feature-level faults, common solution techniques include search-based al-

gorithms [54], machine learning [48, 49, 55], and causal inference algorithms [20, 28, 35, 61]. For

example, Valle et al. [54] proposed a search-based method for automatically correcting incorrect

parameters. This method is designed to alleviate the tedious and time-consuming task of manually

configuring cyber-physical system parameters. Another way is to use machine learning techniques

to calculate the impact weight of each feature on the metrics, with higher weighted features

resulting in a higher probability of failure [48, 49, 55]. In particular, several recent studies have

concluded that causal techniques have a significant advantage in detecting the root cause of buggy

configurations [20, 28, 35, 61].

In contrast, there has been limited research on functional feature-level fault localization in SPLs.

Arrieta et al. [9] analyzed each failed configuration and calculated the suspiciousness of each feature
using the program spectrum technique. Their study confirms that single-system fault localization

techniques can be applied in SPL systems. Building on this idea, Nguyen et al. [39] proposed an

approach to examine suspicious feature interactions based on the relationship between partial

configurations and test results, along with a tool that combines program spectrum and program

slicing techniques to locate buggy statements.

It is worth noting that our approach is built upon VarCop, where feature-level fault localization

is achieved by enumeratively mining suspicious feature selections. In contrast, CRFL employs

counterfactual reasoning techniques to obtain more precise suspicious feature selections, thereby

reducing the search space. Furthermore, CRFL significantly enhances the efficiency of examining

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

ISSTA042:20 Wang, et al.

suspicious feature interactions by leveraging the two findings and symmetric uncertainty techniques.

Therefore, our approach improves both the efficiency and accuracy of statement-level localization

by narrowing the range of suspicious statements.

Counterfactual reasoning: Counterfactual reasoning has been used successfully in software

engineering, including single-system software [10, 21, 29], neural models [17, 22], and configurable

software [20, 27]. Counterfactual reasoning can be used in single-system software for program

analysis and fault localization. For example, Baah et al. [10] applied the probabilistic graphical

model to program dependency graphs and used counterfactual reasoning techniques to estimate

the effect of statements on test results. Compared to traditional single-system software, neural

models are a specific type of software within the deep learning category, and their faults are more

specialized, such as when the LOSS fails to converge. Gao et al. [22] proposed a counterfactual

reasoning-based framework to model and identify the impact of neural models. Their work explicitly

captures the misleading information of identifiers and reduces its impact. Similarly, some tasks in

configurable systems can be addressed using counterfactual reasoning. For instance, Clemens et al.
[20] employed counterfactual reasoning to achieve root cause localization of non-functional faults

in feature interactions within configurable systems.

Different from existing researches, we use counterfactual reasoning to efficiently detect functional

buggy feature interactions for SPLs.

6.7 Data availability
The source code of our tool CRFL and the benchmarks used in evaluations are available at

https://github.com/Songluhaining/CRFL.git.

7 Conclusions
This paper proposes a high-performing and low-cost approach for functional feature interaction

fault localization in SPLs by reducing the search space with counterfactual reasoning and eliminat-

ing redundant feature interaction examinations based on two key empirical findings. Extensive

experiments demonstrate that CRFL outperforms the state-of-the-art VarCop, achieving a smaller

and more precise search space while localizing suspicious feature interactions more efficiently. Fur-

thermore, when extended to statement-level localization, our approach accurately identifies buggy

statements in both single and multiple buggy mutants. These results highlight the effectiveness of

our approach in enhancing fault localization for functional feature interactions in SPLs.

Since CRFL requires only configurations and corresponding test results as input, it is independent

of specific programming languages and can be considered a general feature interaction fault

localization method. However, our current experiments focus on Java systems due to the availability

of Java-based datasets in the SPL fault localization domain. Additionally, when extending CRFL to

statement-level fault localization, we employ a Java-specific slicing technique.

To further enhance CRFL’s applicability, we plan to extend it to systems using other programming

languages, such as C. Moreover, statement-level fault localization in SPLs remains an important

research direction. We will further evaluate CRFL’s effectiveness at the statement level, especially in

systems with different programming languages. Finally, extending CRFL to identify non-functional

feature interaction faults in configurable systems is another promising avenue for future research.

Acknowledgments
This work is supported by the Guangdong Basic andApplied Basic Research Foundation (No. 2024A1-

515030022); the Fundamental Research Funds for the Central Universities (No. 2024ZYGXZR097);

the Research and Development Project on Key Technologies for Intelligent Sensing and Analysis of

Urban Events Based on Low-Altitude Drones(No. 2024BQ010011).

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:21

References
[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, et al. 2018. Testing autonomous cars for feature interaction

failures using many-objective search. In ASE’18. 143–154. doi:10.1145/3238147.3238192
[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of spectrum-based fault localization. In

TAICPART-MUTATION 2007. IEEE, 89–98. doi:10.1109/TAIC.PART.2007.13
[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based multiple fault localization. In ASE’09.

IEEE, 88–99. doi:10.1109/ASE.2009.25

[4] Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, et al. 2016. Tool demo: testing configurable systems with

featureIDE. In GPCE’16. 173–177. doi:10.1145/2993236.2993254
[5] Vander Alves, Nan Niu, Carina Alves, et al. 2010. Requirements engineering for software product lines: A systematic

literature review. Inf. Softw. Technol. 52, 8 (2010), 806–820. doi:10.1016/j.infsof.2010.03.014
[6] Sven Apel, Christian Kastner, and Christian Lengauer. 2009. Featurehouse: Language-independent, automated software

composition. In 2009 IEEE 31st International Conference on Software Engineering. IEEE, 221–231. doi:10.1109/ICSE.2009.
5070523

[7] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, et al. 2013. Exploring feature interactions in the wild: the new

feature-interaction challenge. In FOSD’13. 1–8. doi:10.1145/2528265.2528267
[8] Sven Apel, Hendrik Speidel, Philipp Wendler, et al. 2011. Detection of feature interactions using feature-aware

verification. In ASE’11. IEEE, 372–375. doi:10.1109/ASE.2011.6100075
[9] Aitor Arrieta, Sergio Segura, Urtzi Markiegi, et al. 2018. Spectrum-based fault localization in software product lines.

Inf. Softw. Technol. 100 (2018), 18–31.
[10] George K Baah, Andy Podgurski, and Mary Jean Harrold. 2010. Causal inference for statistical fault localization. In

ISSTA’10. 73–84. doi:10.1145/1831708.1831717
[11] Nazanin Bayati Chaleshtari and Saeed Parsa. 2020. SMBFL: slice-based cost reduction of mutation-based fault

localization. Empir. Softw. Eng. 25 (2020), 4282–4314.
[12] Thorsten Berger, Daniela Lettner, Julia Rubin, et al. 2015. What is a feature? a qualitative study of features in industrial

software product lines. In SPLC’15. 16–25.
[13] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, et al. 2013. Counterfactual Reasoning and

Learning Systems: The Example of Computational Advertising. J. Mach. Learn. Res. 14, 11 (2013).
[14] Muffy Calder, Mario Kolberg, Evan H Magill, et al. 2003. Feature interaction: a critical review and considered forecast.

Comput. Netw. 41, 1 (2003), 115–141.
[15] E Jane Cameron and Hugo Velthuijsen. 1993. Feature interactions in telecommunications systems. IEEE Commun.

Mag. 31, 8 (1993), 18–23.
[16] Pei Cao and Zhe Wang. 2004. Efficient top-k query calculation in distributed networks. In PODC’04. 206–215.
[17] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, et al. 2022. Counterfactual explanations for models of code. In

ICSE-SEIP’22. 125–134. doi:10.1145/3510457.3513081
[18] Paul Clements and Linda Northrop. 2002. Software product lines. Addison-Wesley Boston.

[19] Manoranjan Dash and Huan Liu. 1997. Feature selection for classification. Intelligent data analysis 1, 1-4 (1997),

131–156.

[20] Clemens Dubslaff, Kallistos Weis, Christel Baier, et al. 2022. Causality in configurable software systems. In ICSE’22.
325–337. doi:10.1145/3510003.3510200

[21] Carlo A Furia, Richard Torkar, and Robert Feldt. 2023. Towards causal analysis of empirical software engineering data:

The impact of programming languages on coding competitions. ACM Trans. Softw. Eng. Methodol. 33, 1 (2023), 1–35.
doi:10.1145/3611667

[22] Shuzheng Gao, Cuiyun Gao, Chaozheng Wang, et al. 2023. Two sides of the same coin: Exploiting the impact of

identifiers in neural code comprehension. In ICSE’23. IEEE, 1933–1945. doi:10.1109/ICSE48619.2023.00164
[23] Brady J Garvin and Myra B Cohen. 2011. Feature interaction faults revisited: An exploratory study. In ISSRE’11. IEEE,

90–99.

[24] Joseph Y Halpern and Judea Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. Br. J.
Philos. Sci. (2005).

[25] Xue Han and Tingting Yu. 2016. An empirical study on performance bugs for highly configurable software systems. In

ESEM’16. 1–10. doi:10.1145/2961111.2962602
[26] Md Abir Hossen, Sonam Kharade, Bradley Schmerl, et al. 2023. CaRE: Finding Root Causes of Configuration Issues in

Highly-Configurable Robots. IEEE Robot. Autom. Lett. (2023). doi:10.1109/LRA.2023.3280810
[27] Md Shahriar Iqbal, Rahul Krishna, MohammadAli Javidian, et al. 2021. CADET: Debugging and fixingmisconfigurations

using counterfactual reasoning. arXiv preprint arXiv:2010.06061 (2021).
[28] Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, et al. 2022. Unicorn: reasoning about configurable system

performance through the lens of causality. In EuroSys’22. 199–217.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1145/2993236.2993254
https://doi.org/10.1016/j.infsof.2010.03.014
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1145/3510457.3513081
https://doi.org/10.1145/3510003.3510200
https://doi.org/10.1145/3611667
https://doi.org/10.1109/ICSE48619.2023.00164
https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1109/LRA.2023.3280810

ISSTA042:22 Wang, et al.

[29] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal testing: understanding defects’ root causes. In

ICSE’20. 87–99. doi:10.1145/3377811.3380377
[30] Fabian Keller, Lars Grunske, Simon Heiden, et al. 2017. A critical evaluation of spectrum-based fault localization

techniques on a large-scale software system. In QRS’17. IEEE, 114–125. doi:10.1109/QRS.2017.22
[31] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, et al. 2017. On the relation of external and internal feature

interactions: A case study. arXiv preprint arXiv:1712.07440 (2017).
[32] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. 2004. Software fault interactions and implications for software

testing. IEEE Trans. Softw. Eng. 30, 6 (2004), 418–421.
[33] Xiangyu Li and Alessandro Orso. 2020. More accurate dynamic slicing for better supporting software debugging. In

ICST’20. IEEE, 28–38.
[34] Sonia Montagud, Silvia Abrahão, and Emilio Insfran. 2012. A systematic review of quality attributes and measures for

software product lines. Softw. Qual. J. 20 (2012), 425–486.
[35] Bryan J Muscedere, Robert Hackman, Davood Anbarnam, et al. 2019. Detecting feature-interaction symptoms in

automotive software using lightweight analysis. In SANER’19. IEEE, 175–185. doi:10.1109/SANER.2019.8668042
[36] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-based software diagnosis. ACM

Trans. Softw. Eng. Methodol. 20, 3 (2011), 1–32.
[37] Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, et al. 2021. Variability fault localization: a benchmark. In SPLC’21.

120–125. doi:10.1145/3461001.3473058

[38] Son Nguyen. 2019. Configuration-dependent fault localization. In ICSE-Companion’19. IEEE, 156–158. doi:10.1109/ICSE-
Companion.2019.00065

[39] Thu-Trang Nguyen, Kien-Tuan Ngo, Son Nguyen, et al. 2022. A Variability Fault Localization Approach for Software

Product Lines. IEEE Trans. Softw. Eng. 48, 10 (2022), 4100–4118. doi:10.1109/TSE.2021.3113859
[40] Thu-Trang Nguyen, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. 2023. Detecting false-passing products and

mitigating their impact on variability fault localization in software product lines. Information and Software Technology
153 (2023), 107080. doi:10.1016/j.infsof.2022.107080

[41] Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Discovering, reporting, and fixing performance bugs. In MSR’13. IEEE,
237–246. doi:10.1109/MSR.2013.6624035

[42] Spencer Pearson, José Campos, René Just, et al. 2017. Evaluating and improving fault localization. In ICSE’17. IEEE,
609–620. doi:10.1109/ICSE.2017.62

[43] Mattia Prosperi, Yi Guo, Matt Sperrin, et al. 2020. Causal inference and counterfactual prediction in machine learning

for actionable healthcare. Nat. Mach. Intell. 2, 7 (2020), 369–375. doi:10.1038/s42256-020-0197-y
[44] Guangzhi Qu, Salim Hariri, and Mazin Yousif. 2005. A new dependency and correlation analysis for features. IEEE

Trans. Knowl. Data Eng. 17, 9 (2005), 1199–1207. doi:10.1109/TKDE.2005.136
[45] Silva Robak and Bogdan Franczyk. 2001. Feature interaction and composition problems in software product lines. In

ECOOP 2001. Citeseer.
[46] SK Golam Saroar, Waseefa Ahmed, Elmira Onagh, and Maleknaz Nayebi. 2024. Github marketplace for automation

and innovation in software production. Information and Software Technology 175 (2024), 107522. doi:10.1016/j.infsof.

2024.107522

[47] Ramy Shahin, Murad Akhundov, and Marsha Chechik. 2022. Annotative Software Product Line Analysis Using

Variability-Aware Datalog. IEEE Trans. Softw. Eng. 49, 3 (2022), 1323–1341.
[48] Tanuja Shailesh, Ashalatha Nayak, and Devi Prasad. 2018. Performance Prediction of Configurable softwares using

Machine learning approach. In iCATccT’18. IEEE, 7–10.
[49] Norbert Siegmund, Alexander Grebhahn, Sven Apel, et al. 2015. Performance-influence models for highly configurable

systems. In FSE’15. 284–294. doi:10.1109/iCATccT44854.2018.9001957
[50] Larissa Rocha Soares, Pierre-Yves Schobbens, Ivan do Carmo Machado, et al. 2018. Feature interaction in software

product line engineering: A systematic mapping study. Inf. Softw. Technol. 98 (2018), 44–58. doi:10.1016/j.infsof.2018.
01.016

[51] Xianfang Song, Yong Zhang, Dunwei Gong, et al. 2022. Surrogate sample-assisted particle swarm optimization for

feature selection on high-dimensional data. IEEE Trans. Evol. Comput. (2022).
[52] Xian-Fang Song, Yong Zhang, Dun-Wei Gong, et al. 2021. A fast hybrid feature selection based on correlation-guided

clustering and particle swarm optimization for high-dimensional data. IEEE T. Cybern. 52, 9 (2021), 9573–9586.

doi:10.1109/TCYB.2021.3061152

[53] Chico Sundermann, Vincenzo Francesco Brancaccio, Elias Kuiter, Sebastian Krieter, Tobias Heß, and Thomas Thüm.

2024. Collecting Feature Models from the Literature: A Comprehensive Dataset for Benchmarking. In Proceedings of
the 28th ACM International Systems and Software Product Line Conference. 54–65. doi:10.1145/3646548.3672590

[54] Pablo Valle, Aitor Arrieta, and Maite Arratibel. 2023. Automated Misconfiguration Repair of Configurable Cyber-

Physical Systems with Search: an Industrial Case Study on Elevator Dispatching Algorithms. arXiv preprint

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1109/QRS.2017.22
https://doi.org/10.1109/SANER.2019.8668042
https://doi.org/10.1145/3461001.3473058
https://doi.org/10.1109/ICSE-Companion.2019.00065
https://doi.org/10.1109/ICSE-Companion.2019.00065
https://doi.org/10.1109/TSE.2021.3113859
https://doi.org/10.1016/j.infsof.2022.107080
https://doi.org/10.1109/MSR.2013.6624035
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1038/s42256-020-0197-y
https://doi.org/10.1109/TKDE.2005.136
https://doi.org/10.1016/j.infsof.2024.107522
https://doi.org/10.1016/j.infsof.2024.107522
https://doi.org/10.1109/iCATccT44854.2018.9001957
https://doi.org/10.1016/j.infsof.2018.01.016
https://doi.org/10.1016/j.infsof.2018.01.016
https://doi.org/10.1109/TCYB.2021.3061152
https://doi.org/10.1145/3646548.3672590

A Low-Cost Feature Interaction Fault Localization Approach for Software Product Lines ISSTA042:23

arXiv:2301.01487 (2023). doi:10.1109/ICSE-SEIP58684.2023.00042

[55] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, et al. 2021. White-box analysis over machine learning: Modeling

performance of configurable systems. In ICSE’21. IEEE, 1072–1084. doi:10.1109/ICSE43902.2021.00100
[56] Alexander Von Rhein, Alexander Grebhahn, Sven Apel, et al. 2015. Presence-condition simplification in highly

configurable systems. In ICSE’15, Vol. 1. IEEE, 178–188. doi:10.1109/ICSE.2015.39
[57] Tianxin Wei, Fuli Feng, Jiawei Chen, et al. 2021. Model-agnostic counterfactual reasoning for eliminating popularity

bias in recommender system. 1791–1800. doi:10.1145/3447548.3467289

[58] Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel. 2024. Blackbox Observability of Features and

Feature Interactions. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering.
1120–1132. doi:10.1145/3691620.3695490

[59] Eric Wong, Tingting Wei, Yu Qi, et al. 2008. A crosstab-based statistical method for effective fault localization. In

ICST’08. IEEE, 42–51. doi:10.1109/ICST.2008.65
[60] Yi Xiang, Han Huang, Yuren Zhou, et al. 2022. Search-based diverse sampling from real-world software product lines.

In ICSE’22. 1945–1957. doi:10.1145/3510003.3510053
[61] Yingnan Zhou, XueHu, Sihan Xu, et al. 2023. Multi-misconfigurationDiagnosis via Identifying Correlated Configuration

Parameters. IEEE Trans. Softw. Eng. (2023). doi:10.1109/TSE.2023.3308755

Received 2024-10-30; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA042. Publication date: July 2025.

https://doi.org/10.1109/ICSE-SEIP58684.2023.00042
https://doi.org/10.1109/ICSE43902.2021.00100
https://doi.org/10.1109/ICSE.2015.39
https://doi.org/10.1145/3447548.3467289
https://doi.org/10.1145/3691620.3695490
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1145/3510003.3510053
https://doi.org/10.1109/TSE.2023.3308755

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Software product lines (SPLs)
	2.2 Causal inference and counterfactuals

	3 A motivating example
	3.1 An example of faults in SPLs
	3.2 Key definitions

	4 Method
	4.1 Basic framework
	4.2 Generate suspicious feature selection based on counterfactual reasoning
	4.3 Correlation-based filtering for potential feature interactions
	4.4 Minimize examination of potential feature interactions

	5 Experiment setup
	5.1 Research Questions
	5.2 Dataset
	5.3 Baselines
	5.4 Metrics

	6 Results
	6.1 RQ1: The reduced search space in CRFL
	6.2 RQ2: Efficiency of CRFL
	6.3 RQ3: Localization accuracy of CRFL
	6.4 RQ4: Ablation analysis
	6.5 Threats to Validity
	6.6 Related work
	6.7 Data availability

	7 Conclusions
	Acknowledgments
	References

