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Abstract 

Fundamental research and economic analysis of hydrate-based carbon dioxide (CO2) sequestration play a key role 
in developing the industrialization of oceanic CO2 sequestration. Therefore, this review deals with recent progress 
in hydrate-based CO2 sequestration from the thermodynamics and kinetics as well as their energy consumption 
and cost. The first section provides an overview of the thermodynamics of CO2 hydrate formation in both pure 
water and sea water, establishing a relationship between the enthalpy change of the hydrate formation reaction 
and the hydrate structure. Subsequently, a comparison of the kinetics of CO2 hydrate formation in pure water and sea 
water is presented, with further insight into the formation kinetics obtained through hydrate nucleation and growth 
models. The process of liquid CO2 forming hydrates is summarized, serving as a critical part of the fundamental 
research for oceanic CO2 sequestration. Finally, energy consumption and cost of CO2 capture methods are compared, 
and the whole sequestration process cost of CO2 capture-storage-transport-injection is comprehensively analyzed. 
The new understanding of this review is conducive to further commercial and industrial development of hydrate-
based CO2 sequestration.
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1  Introduction
With the advancement of human society and indus-
try, fossil fuel use has led to significant carbon dioxide 
(CO2) emissions, reaching approximately 143 million 
metric tons of carbon emissions [1]. CO2 concentration 
in the atmosphere has been increasing constantly, rising 
to 413.8 ppm with 2.4 ppm/year increase by 2021 [2, 3]. 
As a major greenhouse gas, the substantial release of CO2 
has triggered a range of climate and environmental chal-
lenges, such as global warming [4] and sea level rise [5]. 
Since pre-industrial times, the global temperature has 
already increased by 1.0 °C, which has prompted the Paris 
Agreement’s goal to limit global warming to 1.5 °C above 

pre-industrial levels [6]. Thus, CO2 capture and seques-
tration to mitigate emissions is increasingly urgent. Com-
pared to conventional CO2 sequestration approaches, 
hydrate technology offers a novel approach, which can 
stabilize it as solid CO2 hydrate in the ocean. In regions 
deeper than 300 m, CO2 can be stably isolated through 
seabed disposal using hydrate technology [7–11]. Theo-
retical assessments indicated that hydrate-based oceanic 
CO2 sequestration could reach 100 trillion tons, vastly 
exceeding terrestrial storage potential. A comprehen-
sive understanding of the thermodynamics and kinetics 
of CO2 hydrate formation, coupled with an economic 
analysis, is essential for advancing the industrialization of 
hydrate-based CO2 sequestration.

The phase equilibrium temperature and pressure for 
CO2 hydrate formation are influenced by the presence of 
salt ions in seawater, as well as the state of CO2 and water. 
The presence of salt ions shifted the phase equilibrium 
line to the left, necessitating higher pressure for hydrate 
formation at the same temperature [12]. Once CO2 was 
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liquefied, the phase equilibrium pressure for hydrate for-
mation increased linearly [13]. Furthermore, the pres-
ence of salt ions reduced the enthalpy change of the CO2 
hydrate formation reaction by affecting the solubility of 
CO2 [12]. The Clausius–Clapeyron equation provided a 
means to calculate the enthalpy change associated with 
hydrate formation [14]. In the presence of additives, the 
hydrate might transition to the sII-type structure, sig-
nificantly increasing the enthalpy change of the hydrate 
formation reaction [15]. The enthalpy change is closely 
related to the type of hydrate [14, 15], so it is neces-
sary to understand the thermodynamics of CO2 hydrate 
formation.

Furthermore, the understanding of CO2 hydrate for-
mation is critical in developing hydrate-based CO2 
sequestration, as the rate and stability of hydrate forma-
tion directly impact the feasibility of sustained injection, 
as well as the sealing capacity and long-term stability 
of hydrate reservoirs. Yamasaki et  al. [16–19] applied 
a seabed burial method to manage CO2 emissions from 
Jiang’s power plants, and their experimental and simula-
tion results demonstrated that CO2 could be fully con-
verted to hydrate on the seabed, with hydrate particles 
capable of long-distance transport in the ocean [16]. A 
large-scale field test of CO2 hydrate sequestration was 
also conducted in Monterey Bay [20, 21] and off the cen-
tral coast of California [22]. In these tests, 40.0% of CO2 
gas was converted to hydrates at depths of 1000–1300 m 
under temperatures of 3.3–3.9 °C. The salt ions present 
in seawater significantly decreased both the gas storage 
capacity and the growth rate of CO2 hydrates [23, 24]. 
Consequently, several techniques to enhance hydrate 
formation have been developed. Additionally, economic 
analysis is the critical in developing the industrial devel-
opment of oceanic CO2 sequestration. Through eco-
nomic comparisons, more cost-effective sequestration 
methods can be identified, encompassing optimal strate-
gies for CO2 capture, storage, transportation, and injec-
tion into the seafloor.

Currently, most research has focused on the poten-
tial of hydrate-based oceanic CO2 sequestration and the 
fundamental studies of CO2 hydrate formation [25–34]. 
These fundamental studies are primarily oriented toward 
applications such as CO2 capture and separation, as well 
as CH4-CO2 replacement, and are predominantly focused 
on gaseous-phase CO2 [27–34]. However, during the 
process of hydrate-based oceanic CO2 sequestration, salt 
ions in seawater significantly affect hydrate formation, 
and in marine environments, when water depth exceeds 
450 m, CO2 undergoes a phase transition from gas to 
liquid. Therefore, it is critical to investigate the process 
of hydrate formation from liquid CO2. There is a lack of 
comparative analysis between the thermodynamics and 

kinetics in seawater and pure water, as well as an absence 
of economic analysis regarding the industrialization of 
this technology. To further develop hydrate-based CO2 
sequestration and avoid the problem caused by the pro-
cess of CO2 injection, fundamentals and economic analy-
sis in CO2 capture and sequestration have become a hot 
research field and have attracted more attention. This 
review will focus on three topics: (1) Thermodynamics 
of CO2 hydrate formation in seawater and pure water; (2) 
Kinetics of CO2 hydrate formation involving liquid CO2; 
(3) Energy consumption and cost of hydrate-based CO2 
sequestration.

2 � Thermodynamics of CO2 hydrate formation
2.1 � Thermodynamics of CO2 hydrate formation in pure 

water and sea water
CO2 hydrates are non-stoichiometric, ice-like crystals 
formed by CO2 and water molecules under high-pres-
sure, low-temperature conditions, with CO2 molecules 
encapsulated in cage-like cavities formed by hydrogen 
bonds between water molecules. CO2 hydrates form 
cubic sI crystal structures, and their structural unit con-
sists of six tetrakaidecahedrons (51262: 12 pentagonal 
and 2 hexagonal faces) and two dodecahedrons (512: 12 
pentagonal faces) [35]. CO2 preferentially occupies the 
large cages in hydrate cages [36, 37]. The hydrate forma-
tion process is significantly influenced by the phase states 
of CO2 and water, which can lead to variations in the 
enthalpy change associated with hydrate formation. The 
process of CO2 hydrate formation can be regarded as a 
pseudo-chemical reaction as follows:

where CO2

(

g
)

 represents gas CO2, nH2O(s) represents 
solid ice, CO2 • nH2O(s) represents solid hydrate, CO2(l) 
represents liquid CO2, nH2O(l) represents liquid water.

When the temperature falls below the freezing point, 
gaseous CO2 and solid ice can combine to form solid 
hydrates, with the enthalpy changes of the hydration 
reaction ranging from 23.0 to 24.0 kJ/mol, as illustrated 
in the Fig. 1. At the freezing point, a unique point of four-
phase equilibrium, Q1(V-H-I-Lw), emerges. The region 
to the left of the blue phase equilibrium curve represents 
the stability zone of CO2 hydrates, while the region to the 
right indicates their instability. As indicated by Eqs. 1 and 
2, the presence of liquid water necessitates the transi-
tion to ice, significantly increasing the enthalpy change of 
hydrate formation. The enthalpy change associated with 

(1)CO2 g + nH2O(s) → CO2 • nH2O(s)

(2)CO2 (g) + nH2O(l) → CO2 • nH2O(s)

(3)CO2(l)+ nH2O(l) → CO2 • nH2O(s)
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each mole of liquid water converting into ice was 6.0 kJ/
mol [38]. Therefore, the enthalpy change associated with 
the transformation of ice into hydrates was lower than 
that associated with the transformation of liquid water 
into hydrates. When temperature decreased below 225 
K, the activation energy for permeation of CO2 molecules 
fell to 19.0 kJ/mol, which showed that ice was conductive 
to CO2 hydrate formation [39]. Once ice fully was tran-
sitioned into liquid water, the equilibrium pressure pro-
gressively increased with temperature, while the enthalpy 
changes of the hydration reaction exhibit a declining 
trend. Within the temperature range of 273.2–282.1 K, 
the enthalpy change varied between 75.4 and 56.9 kJ/
mol [40]. Another four-phase equilibrium point, Q2(V-
LCO2-H-Lw), involves gas CO2, liquid CO2, solid hydrate, 
and liquid water, which is attributed to CO2 being in 
a gas–liquid equilibrium state. Once CO2 is fully lique-
fied, the equilibrium pressure of the hydrate shows a lin-
ear increase. Notably, as the temperature increased from 
283.1 K to 283.2 K, the pressure experienced a sharp rise 
from 4.65 MPa to 9.43 MPa, which was attributed to CO2 
liquefaction causing a rapid increase in phase equilib-
rium pressure [13]. For gaseous CO2, an increase in pres-
sure raises the phase equilibrium temperature, thereby 
enhancing the temperature driving force for hydrate 
formation. However, once CO2 has liquefied, further 
pressure increases do not affect the phase equilibrium 
temperature, and thus do not enhance the temperature 
driving force. In contrast to gaseous CO2, liquid CO2 

cannot promote hydrate formation by increasing pres-
sure. Furthermore, compared to liquid water, the direct 
transformation of ice into a hydrate releases significantly 
less heat, thereby reducing the energy consumption of 
hydrate technology [41].

In addition to the phase states of liquid CO2 and water, 
the presence of salt ions in seawater also influences 
the phase equilibrium of CO2 hydrates and alters the 
enthalpy change associated with hydrate formation. The 
presence of salt ions not only shifts the phase equilibrium 
of CO2 hydrate to the left but also reduces the enthalpy 
change of the hydrate formation reaction by lowering the 
enthalpy of CO2 dissolution, as shown in Fig.  2. At the 
same phase equilibrium temperature, the phase equilib-
rium pressure of CO2 hydrates in seawater was 0.4–0.5 
MPa higher than that in pure water [12]. At 277.5 K, the 
hydrate phase equilibrium pressure of pure water was 
2.13 MPa, whereas that of seawater was 2.53 MPa. As 
the temperature increased, the difference in the enthalpy 
changes of the hydrate formation reaction between pure 
water and seawater became more pronounced. At 277.5 
K, the enthalpy change of hydrate formation in pure 
water was 56.9 kJ/mol, which was higher than 53.2 kJ/
mol in seawater. At 278.7 K, the enthalpy change in pure 
water was 56.1 kJ/mol, compared to 49.7 kJ/mol in sea-
water. Therefore, it can be observed that in seawater, the 
heat released during the hydrate formation process is 
lower, which leads to a reduction in the energy consump-
tion required for heat removal. However, salt ions hinder 

Fig. 1  Phase equilibrium pressure and temperature of CO2 hydrates and corresponding enthalpy changes of hydrate reaction (V: Gas CO2; H: 
Hydrate; I: Ice; Lw: Liquid water; LCO2: Liquid CO2) [13, 38, 40]
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the formation of CO2 hydrates, meaning that, at the same 
experimental temperature, higher pressures are required 
in seawater compared to pure water to form hydrates.

The enthalpy changes of the CO2 hydrate forma-
tion reaction can be derived from the hydrate dissocia-
tion enthalpy, which can be measured using calorimetry 
[42–45] or the Clausius–Clapeyron equation [38, 46, 47]. 
Calorimetry is a direct measurement technique, typically 
performed with a calorimeter or differential scanning 
calorimeter (DSC). In contrast, the Clausius–Clapeyron 
equation provides an indirect method for calculating the 
enthalpy change. This equation describes the differential 
pressure change (dP) that accompanies a differential tem-
perature change (dT) in a phase equilibrium system, and 
is calculated using Eq. 4 [38].

where P represents the phase equilibrium pressure, T  
represents the corresponding temperature, �Hdis rep-
resents the hydrate dissociation enthalpy, �V  repre-
sents the volume change for reaction. When 1 mol of 
hydrate decomposes, n moles of water are produced, and 
nx(CO2) dissolves in the water. The volume change for 
reaction �V  is calculated by Eq. 5 [38].

(4)
dP

dT
=

�H

T�V
=

�Hdis

T�V

(5)�V /

(

m
3/mol

)

= 1−nx(CO2)l−x(CO2)V (CO2)+n

(

1.8× 10
−5

+ 2.04 × 10
−5

x(CO2)

)

−1.389×10
−4

where n represents the moles of water, x(CO2) represents 
the molar fraction of CO2 dissolves in the water, V (CO2) 
represents the volume of CO2.

A comparison using the Clausius–Clapeyron equation 
also revealed that the presence of salt ions in seawater 
decreased the solubility of CO2 in water, thereby influ-
encing the phase volume change and leading to a lower 
enthalpy of hydrate formation reaction in seawater com-
pared to pure water.

2.2 � Thermodynamics of CO2 hydrate formation 
with additives

To enable the formation of CO2 hydrates under milder 
temperature and pressure conditions, thermodynamic 
additives present a viable solution. The various structures 
of CO2 hydrates in the presence of different additives are 
depicted in Fig. 3. CO2 can also form face-centered cubic 
sII hydrate with compounds including cyclopentane 
(CP) [35], cyclopentanone (CP-one) [48], cyclopentanol 
(CP-ol) [48], 1,4-dioxane (DXN) [49], tetrahydrofuran 
(THF) [49], and methylcyclopentane (MCP) [50]. The sII 
hydrate structural unit consists of eight hexakaidecahe-
drons (51264: 12 pentagonal and 4 hexagonal faces) and 
sixteen dodecahedrons (512: 12 pentagonal faces). The 
cages (51264) are occupied by additives, and the cages 

Fig. 2  Phase equilibrium pressure and temperature of CO2 hydrates and corresponding enthalpy changes of hydrate reaction in pure water 
or seawater [12]
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(512) are occupied by CO2 molecules. CO2 can also 
form hexagonal sH hydrate with 3,3-dimethyl-1-butanol 
(DMB) [51, 52] or neopentane (NH) [53]. The structural 
unit of sH hydrate includes one icosahedron (51268: 12 
pentagonal and 8 hexagonal faces), three dodecahedrons 
(512: 12 pentagonal faces), and two irregular dodeca-
hedrons (4351263: 3 quadrilateral, 12 pentagonal, and 3 
hexagonal faces). The cages (51268) are occupied by addi-
tives, and the cages (512 and 4351263) are occupied by CO2 
molecules. CO2 also forms tetragonal and orthorhombic 
semi-clathrate hydrates with additives such as tetrabu-
tylammonium bromide (TBAB), tetrabutylammonium 
chloride (TBAC), and tetrabutylammonium fluoride 
(TBAF) [54–58]. The orthorhombic semi-cage hydrate 
unit consists of six dodecahedrons (512), four tetrakaidec-
ahedrons (51262), and four pentakaidecahedrons (51263). 
The cages (51262 and 51263) are occupied by tetrabutylam-
monium ions (TBA⁺), and the cages (512) are occupied by 
CO2 molecules. The presence of salts exhibits negligible 
impact on the overall crystal structures of structure I (sI), 
structure II (sII), and semi-clathrate hydrates [59, 60]. In 
aqueous NaCl solutions ranging from 3.6 to 10.0 wt%, the 
Raman spectral peaks of CO2 hydrates closely resembled 
those observed in pure water systems, suggesting that 
the sI hydrate structure was preserved despite the pres-
ence of salt ions [59]. When tetrahydrofuran (THF) was 
added, THF molecules occupied the large cages while 
CO2 occupied the small cages, leading to the formation 
of sII hydrates. In addition, the incorporation of LiCl 
did not alter the melting temperature of CO2 hydrates, 
provided that sufficient free water was available to fully 
hydrate the LiCl [60].

After the addition of additives, the change in CO2 
hydrate structures can influence the hydrate formation 
temperature and pressure, and corresponding enthalpy 
change, as shown in Fig.  4. Three ammonium-based 
ionic liquids (tetramethylammonium chloride (TMACl), 
tetraethylammonium hydroxide (TEAOH), and tetrapro-
pylammonium hydroxide (TPrAOH)) all inhibited CO2 
hydrate formation, shifting the phase equilibrium line 

to the left [61]. The inhibitory effect increased with the 
concentration of the ionic liquids. Specifically, TEAOH, 
TMACl and TPrAOH decreased the hydrate formation 
temperature by 1.7 K, 1.6 K, and 1.2 K. However, the 
average enthalpy changes for hydrate formation reac-
tion with these ionic liquids ranged from 63.0 to 64.0 kJ/
mol, which were very close to that of the pure water in 
the absence of ionic liquids, indicating that these ionic 
liquids did not participate in the formation of the CO2 
hydrate structures. Therefore, based on the enthalpy 
changes, it could be inferred that only the sI CO2 hydrate 
structure was formed. In contrast, sII-type hydrates in 
the presence of THF and CP were formed, and these not 
only shifted the phase equilibrium line significantly to 
the right but also increased the average enthalpy change 
of hydrate formation to between 120.0 and 160.0 kJ/mol 
[14]. For 6.0 mol% CP, the phase equilibrium tempera-
tures were 287.39–292.10 K at pressures ranging from 
1.08 to 2.92 MPa. In the aqueous solution with 2.6 mol% 
THF, the phase equilibrium temperatures ranged from 
285.18 to 290.30 K at pressures between 1.01 and 3.06 
MPa. When the hydrate structure transitioned from sI 
hydrate to sII hydrate, the enthalpy changes of hydrate 
formation approximately doubled. After the addition of 
TBAC and TBAB, the phase equilibrium pressure of CO2 
hydrate formation decreased significantly, and the aver-
age enthalpy change of hydrate formation exceeded 200.0 
kJ/mol, nearly three times higher than in the system 
without additives [14, 15, 62]. In the aqueous solution 
of 3.3 mol% TBAC, the phase equilibrium tempera-
tures ranged from 292.2 to 293.0 K at pressures between 
2.05 and 3.53 MPa, with an average enthalpy change of 
336.3 kJ/mol [62]. In the aqueous solution with 1.7 mol% 
TBAB, the phase equilibrium temperatures ranged from 
286.84 to 290.33 K at pressures between 0.90 and 3.01 
MPa, with a corresponding enthalpy change of 205.8 kJ/
mol [14]. After the addition of thermodynamic promot-
ers, hydrate formation releases more heat, necessitating 
continuous heat removal to ensure the ongoing growth 
of the hydrates. Compared to the semi-clathrate and sII 

Fig. 3  Structures of CO2 hydrates: sI hydrate, sII hydrate, sH hydrate and semi-clathrate hydrate
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hydrates, sI hydrates release less heat during their forma-
tion process. To prevent the generation of excess heat, 
kinetic promoters can be used as an alternative to ther-
modynamic promoters to form sI hydrates.

3 � Kinetics of CO2 hydrate formation
3.1 � Kinetics of CO2 hydrate formation in pure water 

and sea water
CO2 hydrate formation is a dynamic process: initially, 
CO2 dissolves into water, where it and water construct 
the hydrate nucleus of critical size, which subsequently 

develops into hydrate cages that continue to grow. For sI 
hydrates, CO2 hydrate formation requires the tempera-
ture or pressure driving force. The gas storage capacity of 
CO2 hydrates and the hydrate growth rate are commonly 
used kinetic parameters to assess the kinetics of hydrate 
formation, as presented in Table 1. All experiments were 
performed in a high-pressure stainless-steel reactor. 
The CO2 hydrate formation is influenced by pressure, 
temperature, and salt ions in seawater. As the tempera-
ture decreases or the pressure increased, the gas stor-
age capacity of CO2 hydrates gradually increases, which 

Fig. 4  Phase equilibrium pressure and temperature of CO2 hydrates and corresponding enthalpy changes of hydrate reaction in the aqueous 
solution with different additives
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is attributed to the increase of the driving force to pro-
mote CO2 hydrate growth [63]. When the temperature 
driving force increased from 3.2 to 8.3 K, the gas storage 
capacity of CO2 hydrates increased from 6.4 V/V to 11.2 
V/V. Similarly, growth rate of CO2 hydrates increased 
due to the increase of temperature or pressure driving 
force. When the temperature driving force increased 
from 3.2 to 8.3 K, the hydrate growth rate increased from 
0.077 mmol CO2/(mol H2O•min) to 0.130 mmol CO2/
(mol H2O•min) [63]. In the presence of sodium chlo-
ride (NaCl), salt ions inhibited hydrate nucleation and 
decreased the gas storage capacity of the hydrates [23, 63, 
64]. As the concentration of salt ions increased from 1.0 
wt% to 5.0 wt% at 273.2 K and 3.55 MPa, the gas storage 
capacity in the aqueous solution decreased from 9.2 V/V 
to 5.7 V/V [63], and the hydrate growth rate decreased 
from 0.110 mmol CO2/(mol H2O•min) to 0.099 mmol 

CO2/(mol H2O•min), which showed the inhibition ability 
of hydrate growth became more significant with higher 
salt concentration. When the concentration of NaCl was 
below 500 mmol/L, the hydrate growth rate followed 
an opposite trend to the change in gas storage capacity, 
and it did not decrease progressively with the increase 
of NaCl concentration [23]. Upon the addition of 5 wt% 
NaCl, the gas storage capacity of the hydrates decreased 
from 97.3 V/V to 77.8 V/V, and the hydrate growth rate 
declined from 0.782 mmol CO2/(mol H2O•min) to 0.417 
mmol CO2/(mol H2O•min) [64]. This pronounced inhibi-
tion at higher salt concentrations is likely due to a reduc-
tion in the temperature driving force as well as structural 
disruption of hydrate cages caused by ionic interactions. 
The presence of clay was found to mitigate the inhibitory 
effect of NaCl, possibly due to ion adsorption on the clay 
surface, which reduced the effective salt concentration 

Table 1  A summary of hydrate formation conditions and kinetic parameters including gas storage capacity of CO2 hydrates and 
hydrate growth rate in pure water and aqueous solution of NaCl

System Equipment NaCl concentration T/K P/MPa Driving 
force/K

Gas storage capacity 
of CO2 hydrate/(V/V)

Hydrate growth 
rate/(mmol CO2/
(mol H2O·min))

Ref

Water 90 cm3 stainless steel 
reactor

0 wt% 273.2 3.55 8.3 11.2 0.130 [63]

275.2 3.55 6.3 9.9 0.120

277.2 3.55 4.3 8.2 0.110

273.2 3.05 7.2 9.0 0.110

275.2 3.05 5.2 8.0 0.096

277.2 3.05 3.2 6.4 0.077

1 wt% 273.2 3.55 7.8 9.2 0.110

275.2 3.55 5.8 6.0 0.120

3 wt% 273.2 3.55 6.9 7.8 0.100

275.2 3.55 4.9 4.4 0.089

5 wt% 273.2 3.55 6.0 5.7 0.099

275.2 3.55 4.0 2.0 0.072

0–0.6 mm particle-size 
sand

700 cm3 stainless steel 
reactor

3.3 wt% 274.0 4.00 6.9 41.4 0.974 [24]

277.0 4.00 3.9 18.8 1.798

0.6–0.8 mm particle-
size sand

274.0 4.00 6.9 66.7 29.778

277.0 4.00 3.9 29.9 1.176

0.8–2.0 mm particle-
size sand

274.0 4.00 6.9 51.1 9.790

277.0 4.00 3.9 40.3 10.452

Water 450 cm3 stainless steel 
reactor

0 mmol/L 274.7 3.45 7.8 42.0 0.140 [23]

50 mmol/L 274.7 3.45 7.8 57.9 0.097

100 mmol/L 274.7 3.45 7.7 37.3 0.100

250 mmol/L 274.7 3.45 7.6 33.8 0.110

350 mmol/L 274.7 3.45 7.5 24.8 0.120

500 mmol/L 274.7 3.45 7.3 21.8 0.110

Water 140 cm3 stainless steel 
reactor

0 wt% 273.2 3.40 7.7 97.3 0.782 [64]

3 wt% 273.2 3.40 6.4 86.8 0.456

5 wt% 273.2 3.40 5.5 77.8 0.417

Clay 0 wt% 274.2 3.00 7.5 96.8 0.778

3 wt% 274.2 3.00 6.2 94.1 0.756
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in the bulk phase [64]. Likewise, quartz sand can inter-
act with salt ions at its surface, influencing the nucleation 
and growth dynamics of CO2 hydrates. Under experi-
mental conditions of 274.0 K and 4.00 MPa, the optimal 
particle size for promoting hydrate formation was identi-
fied to be in the range of 0.6–0.8 mm [24]. At this parti-
cle size, the gas storage capacity increased to 66.7 V/V, 
and the hydrate growth rate was significantly enhanced 
to 29.778 mmol CO2/(mol H2O•min). In conclusion, 
although the presence of salt ions reduces the driving 
force for CO2hydrate formation, the addition of quartz 
sand and clay can partially alleviate the inhibitory effect 
of salinity on CO2 hydrate formation.

Various kinetic models have been developed to further 
analyze CO2 hydrate nucleation and growth. Based on 
crystal theory, the nucleation model proposed by Nata-
rajan et al. [65] described the transition from disordered 
water molecules to critical crystal nuclei. According to 
phase field theory, the nucleation rate of CO2 hydrate was 
related to the nucleation barrier of all orientations and 
the hydrate formation temperature, which is calculated 
using Eq. (6) [66].

where JSS represents the rate of steady state nucleation; 
J0 represents the nucleation factor, which represents also 
used as the prefactor in kinetic model of classical nuclea-
tion; W ∗ represents the work of the nucleus formation. 
The degree of supercooling, as a driving force, further 
simplified the nucleation model, which is calculated 
using Eq. (7) [67].

where J  represents the nucleation rate, �se represents 
the dissociation entropy of a hydrate building unit at the 
equilibrium temperature, k represents the Boltzmann 
constant, �T  represents the supercooling temperature, 
T  represents the temperature, A represents the kinetic 
parameter, and B represents the thermodynamic param-
eter. Considering the fractal surface with a fractal dimen-
sion to characterize the roughness of CO2 hydrate, the 
nucleation behavior of CO2 gas hydrates was elucidated. 
The nucleation barrier �� for the nucleation of CO2 
hydrate is calculated using Eq. (8) [68].

where Ve represents the volume of the nucleus, P repre-
sents the pressure inside the nucleus, Pl represents the 
liquid pressure, �surf  represents the nucleation barrier 
due to the creation and destruction of interface.

(6)JSS = J0e
−W ∗

/kT

(7)J = Ae�se�T/kT e−Bt/T�T 2

(8)�� = Ve�g + Ve(Pl − Pi)+�surf

The hydrate growth is influenced by hydrate reaction, 
heat transfer, and mass transfer processes. The agitation 
was used to eliminate effect of mass and heat transfer and 
the intrinsic kinetic reaction model was proposed as Eq. 
(9) [69].

where Ry(t) represents the macroscopic reaction rate, kr 
represents the intrinsic rate constant, µ2 represents the 
second moment of the particle size distribution, f  repre-
sents the fugacity of the dissolved gas, feq represents the 
fugacity of the three-phase equilibrium.

For the growth of the hydrate film, temperature was 
the primary factor influencing the growth rate of the 
film. Therefore, heat transfer was proposed as the rate-
determining step. By coupling conductive or convective 
heat transfer, the overall growth rate is calculated using 
Eq. (10) [70].

where v represents the propagation rate of CO2 hydrate 
film, L represents the latent heat of the hydrate forma-
tion, � represents the thermal conductivity of the sur-
rounding phases, ρh represents the mole density of the 
hydrate, rc represents the curvature of the hydrate film, 
�T  represents the temperature difference.

When the growth process of CO2 hydrates was domi-
nated by mass transfer in a tubular reactor, the CO2 con-
centration served as the driving force to calculate the 
hydrate growth rate, as expressed in Eq. (11) [71].

where G represents the mass growth rate of CO2 
hydrates, kl represents the mass transfer coefficient of 
CO2 gas from bulk liquid to the crystal interface, ρsol 
represents the density of the solution, Ah represents the 
internal hydrate layer area where crystals grow on, xCO2

b  
represents the mole fraction of CO2 in the bulk liquid 
phase, xCO2

int  represents the mole fraction of CO2 in the 
liquid–crystal layer in equilibrium. Lee et al. [64] meas-
ured the kinetic parameters of CO2 hydrate growth in the 
presence of 1–5 wt% NaCl, and CO2 and H2O saturation 
were affected by the pressure distribution, which is calcu-
lated in Eq. (12).

where nCO2 is the mole of the carbon dioxide, nH2O,0 is the 
mole of the water,α is an adjustable parameter, K  is the 
overall reaction rote constant, fexp is the fugacity of the 
carbon dioxide in the vapor phase at the experimental 

(9)Ry(t) = πkrµ2(f − feq)

(10)v�−1
= (Lρhrc)

−1�T

(11)G = klρsolAh

(

x
CO2

b − x
CO2
int

)

(12)
nCO2

nH2O,0
=

α

5.75
[1− exp

(

−5.75K
(

fexp − feq
)

t
)

]
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temperature and pressure conditions, feq is the fugacity 
of the carbon dioxide in the hydrate-liquid water–vapor 
three-phase equilibrium at the temperature condition, t 
is the lime minute.

In the presence of salt ions, the activity of water is 
affected by the salt ions, which in turn influences the 
growth of the hydrate, as shown in Eq. (13) [72].

where ngg ,H represents the number of moles of guest gas 
in the hydrate phase, Ae represents the effective reaction 
surface area, �µ represents the driving force, and K  rep-
resents the temperature-dependent rate constant. The 
driving force for the gas hydrate kinetics is considered as 
a function of the chemical potentials of water in the filled 
hydrate and the liquid phase. The chemical potentials 
of water in the liquid phase ( �µL

w(T ,P) ) is estimated by 
Eq. 14 [73].

where T0 represents the temperature of a reference point, 
�µ0

w(T , 0) represents the difference in standard chemi-
cal potential of water for gas hydrate at reference tem-
perature and absolute zero pressure, �hLw represents the 
enthalpy difference between empty hydrate cavities and 
liquid water, P represents the operating pressure, �VL

w 
represents the difference between molar volume of the 
water in hydrate and liquid phase, and αw represents the 
absolute activity of water in aqueous phase. The activ-
ity of water in aqueous phase includes the activity of 
water associated with the guest gas, the activity of water 
associated with porous media the activity of water that 
accounts for the influence of the salt ions.

(13)
dngg ,H

dt
= KAe�µnH2O,L

(14)�µL
w(T ,P)

RT
=

�µ0
w(T , 0)

RT0

−

∫

T
T0

�hLw(T )

RT 2
dT +

∫

p
0

�VL
w

RT 2
dP − ln(αw)

Table 2 presents a summary of CO2 hydrate nucleation 
and growth models. Experimental and modeling results 
indicated that the presence of salt ions disrupted the 
hydrogen bond network in aqueous solutions, leading to 
a decrease in water activity, which impeded hydrate for-
mation. Therefore, the addition of kinetic promoters is 
essential to accelerate the formation of hydrates.

3.2 � Kinetics of CO2 hydrate formation with additives
The surfactants, ionic liquids and amino acids have been 
used as additives to enhance kinetics of CO2 hydrate for-
mation. CO2 hydrate nucleation and growth in the pres-
ence of the additives are promoted by changing the local 
hydrogen-bonding network or the movement of CO2 
molecules and water molecules. Some additives mainly 
exist in the form of ions, and others exist as molecules. 
These anions, cations and molecules will compete for 
water molecules with CO2 guest molecules. Moreover, 
they also interfere with the interaction between water 

molecules, and the interaction between CO2 molecules 
and water molecules. CO2 hydrate nucleation mecha-
nisms include classical nucleation theory [74, 75], unsta-
ble cluster nucleation [76, 77], interface nucleation [78, 
79], local-structure nucleation [80], blob nucleation [81], 
and two-step nucleation [82, 83], as illustrated in Fig. 5. 
These nucleation mechanisms reveal that hydrate nuclea-
tion requires the formation of critical nuclei, which is 
stabilized through interactions between guest molecules 
and water molecules. In the two-step hydrate nucleation 
mechanism, amorphous clusters transform into criti-
cal-sized nuclei through interactions between gas and 
water molecules in the first step. In the second step, the 

Table 2  A summary of CO2 hydrate nucleation and growth models

Formation process Theory Model equation Applicable system Reference

Hydrate nucleation Phase field theory
JSS = J0e

−W∗

/kT
Water [66]

Mass transfer effect J = Ae�se�T/kT e−Bt/T�T 2 [67]

Interface effect �� = Ve�g+ Ve(Pl − Pi)+�surf [68]

Hydrate growth Intrinsic kinetic reaction Ry(t) = πkrµ2(f − feq) Water [69]

Heat transfer v�−1 = (Lρhrc)
−1�T [70]

Mass transfer G = klρsolAh

(

x
CO2

b − x
CO2
int

)

[71]

Mass transfer nCO2
n
H2O,0

= α
5.75

[1− exp
(

−5.75K
(

fexp − feq
)

t
)

] Seawater [64]

dngg,H
dt

= KAe�µnH2O,L
[72]

�µL
w (T ,P)
RT =

�µ0
w (T ,0)
RT0

−
∫

T
T0

�hLw (T )

RT 2
dT +

∫ p
0
�VLw
RT 2

dP − ln(αw)
[73]
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interconnected cavities within these nuclei absorb gas 
molecules to form a stable hydrate nucleus.

The hydrate growth theories include interfacial ten-
sion reduction [84–88], critical micelle formation, hydro-
phobic effect, and capillary effect, as illustrated in Fig. 6. 
Surfactants not only reduce interfacial tension between 
gas and liquid phases and increase gas solubility but also 
enhance the hydrate interface, facilitating the continuous 
transformation of gas and water molecules into hydrate 

cages [84–86]. The ice-like interfacial structure might 
only aid nucleation, as the hydrate shell’s barrier effect 
prevented additional CO2 and water molecules from 
accessing the hydrate surface [87]. As SDS concentration 
increased, more SDS anions associated with adsorbed 
sulfate ions through lateral interactions between hydro-
carbon chains and head groups oriented toward the water 
phase, counteracting electrostatic repulsion among sul-
fate ions without significantly altering the micro-polarity 

Fig. 5  CO2 hydrate nucleation and growth theory

Fig. 6  Energy consumption of CO2 capture methods from gas mixture
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of the hydrate-liquid interface [89]. However, certain pol-
ymers could strengthen hydrogen bonds among surface 
water molecules, further restricting their transformation 
into clathrate hydrates and thus inhibiting hydrate growth 
[90–96]. The critical micelle theory has been applied 
to explain the role of surfactants in promoting hydrate 
formation. Upon reaching the critical micelle concen-
tration (CMC) in aqueous solution, hydrate growth pre-
sented a pronounced increase [97–101]. The surfactants 
formed micelles with hydrophobic groups aggregating 
inward and hydrophilic groups arranging to create cav-
ity structures at the CMC, which encapsulate gas mol-
ecules and increase gas solubility. Consequently, in the 
presence of micelles, hydrates readily formed through-
out the solution. However, some researchers argued that 
the surfactant concentration could not reach the CMC 
at temperatures below the Krafft temperature, necessary 
for hydrate formation [102–104]. The theories of interfa-
cial tension reduction and critical micelle concentration 
are based on assumptions rather than experimental evi-
dence, complicating the explanation of hydrate forma-
tion mechanisms in the presence of additives. In fact, 
the hydrogen bonds among water molecules in hydrates 
were affected by additives, and thus the water structure 
played a crucial role in hydrate formation [105–116]. The 
water structure was enhanced near hydrophobic sur-
faces, exhibiting more ice-like ordering in the bulk phase 
or near partially hydrophobic surfaces, while it became 
disrupted near hydrophilic surface [109, 110]. Simula-
tions indicated that water molecules tended to be locally 
structured near hydrophobic surfaces but became con-
cave near hydrophilic surface, which could explain the 
preferential formation of hydrates on hydrophobic sur-
faces observed experimentally [111]. Dry water was used 
as a kinetic hydrate promoter by increasing the local con-
tact area between water and the guest gas [117, 118]. The 
phenomenon of hydrate wall-climbing has been observed 
in aqueous solution containing surfactants and hydro-
phobic amino acids, so the capillary effect was applied to 
further elucidate the mechanism of hydrate growth and 
quantify the growth process [119–128]. In the absence of 
SDS, the lateral growth of CO2 hydrates at the gas–liquid 
interface was limited, but the presence of SDS induced 
hydrate climbing along the reactor wall [116]. Continu-
ous CO2 infiltration into porous hydrate structures pro-
moted the encapsulation efficiency of THF + CO2 hydrate 
in SDS solution [123]. Nadezhda et  al. [128] calculated 
the hydrate growth rate driven by capillary force in SDS 
solution, and found that the upward growth rate of CO2 
hydrate film along the reactor wall at the gas–liquid 
interface with low mass transfer driving force of 8 × 10⁻3 
mm/s. In L-methionine solution, a hydrate growth model 
was developed based on capillary-driven mass transfer 

through porous hydrate structure, revealing the lateral 
growth rate of the CO2 hydrate film [129]. However, the 
presence of NaCl inhibits the capillary effect, attributed 
to competition between NaCl and L-methionine for 
water molecules.

Liquid CO2 exhibits higher solubility under high pres-
sure, which plays a positive role in hydrate nucleation 
and growth [130, 131]. However, similar to gaseous CO2 
liquid CO2 formed a hydrate film at the interface with 
liquid water, which inhibited further hydrate growth. A 
CO2 hydrate film, approximately 0.4 μm thick, rapidly 
formed at the interface and isolated the liquid CO2 from 
seawater to limit further dissolution of liquid CO2 [132, 
133]. Uchida et al. investigated the formation process of 
CO2 hydrate film on the surfaces of H2O droplets and 
liquid CO2 droplets, and their results showed that this 
film restricted mass transfer of liquid CO2 [134, 135]. 
Zhu et al. examined the effect of temperature on the ini-
tial morphology and lateral growth rate of hydrate film 
during the formation of liquid CO2 hydrates, found that 
the rate of hydrate formation slowed with the increase 
of temperature [136]. At low temperatures, hydrate film 
growth occurred in three stages: rapid lateral growth, 
rapid thickening, and slow development. At higher tem-
peratures, the growth process involved only two stages: 
rapid lateral growth and slow development. Moreover, 
the presence of salt ions significantly reduced the hydrate 
growth rate during the formation of CO2 hydrates from 
liquid CO2. Addressing how to enhance CO2 hydrate 
storage capacity and accelerate hydrate formation rate 
remains a significant scientific challenge.

Table  3 provides a summary of the conditions and 
kinetic parameters of hydrate formation, including induc-
tion time, conversion efficiency of water to hydrate and 
average conversion rate of water to hydrate in the pro-
cess of liquid CO2 forming solid hydrates. Li et al. [137] 
found that water saturation and particle size of glass bead 
affected hydrate formation from liquid CO2 by improv-
ing the contact between liquid CO2 and liquid H2O in 
the solution with 3.5 wt% NaCl at 6.0 MPa. When water 
saturation decreased from 60 to 40%, the conversion effi-
ciency of water to hydrate increased from 10.0% to 20.1%, 
and the conversion rate of water to hydrate increased 
from 0.0025 mol H2O/(mol H2O·min) to 0.0101 mol 
H2O/(mol H2O·min). For glass beads with particle sizes 
below 500 μm, an increase in particle size was found to 
be more favorable for hydrate formation. At a constant 
water saturation, glass bead in the 350–500 μm size 
range enhanced the conversion rate of water to hydrate 
to 0.0116 mol H2O/(mol H2O·min). In contrast, when the 
particle size of glass bead was 1500–2500 um and water 
saturation was 33%, the conversion efficiency of water to 
hydrate and average conversion rate of water to hydrate 
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decreased to 1.4% and 0.00055 mol H2O/(mol H2O·min) 
respectively [138]. Almenningen et al. [139] developed a 
direct imaging method for pores in a micromodel chip, 
and revealed that CO2 hydrate growth could occur at the 
phase interface or within dissolved water following the 
injection of liquid CO2 into unsaturated water sandstone. 
The conversion rate of water to hydrate increased to 
0.0059 mol H2O/(mol H2O·min) in the system of seawa-
ter and 150–250 μm glass bead by combining SiO2 nano-
particles with SDS due to the heterogeneous interfaces of 
nanoparticles to decrease the energy barrier for hydrate 
nucleation and accelerate mass transfer [140].

To avoid polluting marine environment, environmen-
tal-friendly additives were developed to shorten induc-
tion time of hydrate nucleation and promote hydrate 
growth. The induction time of hydrate nucleation was 
shortened within 30.0 min in the presence of sodium 
lignosulfonate (SL) and L-tryptophan [100, 141]. SL was 

used to increase the conversion efficiency of water to 
hydrate from 17.9% to 31.8%, and increase the average 
conversion rate of water to hydrate from 0.00022 mol 
H2O/(mol H2O·min) to 0.00039 mol H2O/(mol H2O·min) 
due to the presence of micelle with SL [100]. L-trypto-
phan with hydrophilic carboxyl groups was introduced 
to achieve the conversion efficiency of water to hydrate 
of 98.6% and the average conversion rate of water to 
hydrate of 0.0043 mol H2O/(mol H2O·min) at the pres-
sure of 6.4 MPa and the temperature of 274.2 K [141]. 
However, the presence of salt ions in the aqueous solu-
tion significantly disabled L-tryptophan and decreased 
average conversion rate of water to hydrate to 0.00016 
mol H2O/(mol H2O·min) at 10.0 MPa [142]. Under opti-
mal conditions with porous media, the induction time 
was shortened to 5.0 min and average conversion rate of 
water to hydrate was increased to 0.0078 mol H2O/(mol 
H2O·min) [143]. The formation of a hydrate cap layer has 

Table 3  A summary of hydrate formation conditions and kinetic parameters including induction time, conversion efficiency of water 
to hydrate and average conversion rate of water to hydrate in the process of liquid CO2 to form solid hydrates

System Water 
saturation/%

T
/K

P
/MPa

Induction 
time/min

Conversion efficiency 
of water to hydrate %

Average Conversion rate of 
water to hydrate/(mol H2O/(mol 
H2O·min))

Ref.

Water+3.5 wt% NaCl + 105-125 um 
glass bead

60 277.2 6.0 -- 10.0 0.0025 [137]

Water+3.5 wt% NaCl + 105-125 um 
glass bead

40 277.2 6.0 -- 20.1 0.0101

Water+3.5 wt% NaCl + 177-250 um 
glass bead

277.2 6.0 -- 20.9 0.0105

Water+3.5 wt% NaCl + 350-500 um 
glass bead

277.2 6.0 -- 23.2 0.0116

Water + 288ppm SDS + 1500-2500 
um glass bead

33 274.0 6.0 6.4 1.4 0.00055 [138]

Seawater + 150-250 μm glass bead 100 274.2 4.0 10.0 59.3 0.0033 [140]

Seawater + 0.15 wt% SiO2+ 150-250 
μm glass bead

274.2 4.0 5.0 80.3 0.0067

Seawater + 0.05 wt% SDS+ 150-250 
μm glass bead

274.2 4.0 34.0 70.6 0.0059

Seawater + 0.05 wt% SDS0.15 wt% 
SiO2+ 150-250 μm glass bead

274.2 4.0 18.0 64.9 0.0054

Water 100 274.2 6.4 120.0 58.0 0.00081 [141]

Water + stirring 274.2 6.4 30.0 82.6 0.0013

Water+300 ppm L-tryptophan 274.2 6.4 15.0 93.4 0.0023

Water+500 ppm L-tryptophan 274.2 6.4 15.0 98.8 0.0035

Water+1000 ppm L-tryptophan 274.2 6.4 15.0 98.6 0.0043

Water 100 288.7 6.0 35.4 17.9 0.00022 [100]

Water+0.5 wt% SL 288.0 6.0 23.1 24.3 0.00030

Water+1.0 wt% SL 288.0 6.0 21.1 31.8 0.00039

Water+3.0 wt% SL 288.0 6.0 25.2 28.5 0.00035

Brine 100 274.6 10.0 19.8 25.0 0.00017 [142]

Brine + 500 ppm L-tryptophan 274.6 10.0 33.0 19.2 0.00016

Silica sand + water 100 274.2 4.0 10.0 91.8 0.0077 [143]

Silica sand + 300 ppm L-tryptophan 274.2 4.0 5.0 93.8 0.0078
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also been investigated to assess marine sealing capacity. 
In unsealed marine sediment, the maximum CO2 stor-
age density in mud systems reached 66.8 kg/m3, which 
was 60% and 67% higher than in sandy and clay systems, 
respectively [144]. The construction of a CO2 hydrate 
cap layer further enhanced CO2 sequestration capacity 
by trapping liquid CO2 beneath the cap layer [145–148]. 
When the initial water saturation exceeded 26.2%, CO2 
hydrates formed within minutes, effectively halting leak-
age [145]. The saturation of granular hydrates formed 
in seawater-saturated zones was 25% lower than that of 
sheet-like hydrates formed in seawater residual zones 
[149]. Moreover, the presence of marine organic matter 
favored the liquid CO2 to form hydrate [150]. Numeri-
cal simulation models indicated that increasing reservoir 
pore volume and reducing hydrate-induced blockage 
significantly increased storage capacity [151, 152]. Sim-
ulations suggested that higher flow rate and pressure 
accelerated hydrate formation, thereby reducing the risk 
of injection well blockage and enhancing the stability of 
the hydrate cap [153]. Whether CO2 hydrates can effec-
tively prevent liquid CO2 leakage largely depends on the 
absolute permeability of the selected marine region [154].

4 � Energy consumption and cost of CO2 capture 
and sequestration

4.1 � Energy consumption of CO2 capture and sequestration
Beyond the foundational research on CO2 capture and 
storage (CCS), energy consumption and cost analysis are 
essential for evaluating its industrial feasibility. For binary 
gas mixtures, the theoretical minimum work for separa-
tion can be calculated as shown in Eq. 17 [155]. The gas 
mixture and its components were assumed to behave as 
ideal gases, and the separation process was conducted 
under isothermal conditions. At 298 K, the minimum 
work required to separate 1 ton of CO2 from a CO2 and 
N2 mixture with CO2 mole fraction of 12% to 25% ranges 
from 0.12 and 0.16 GJ. The minimum work required to 
separate 1 ton of CO2 from a CO2 and methane (CH4) 
mixture with a CO2 mole fraction of 25% to 60% ranges 
from 0.06 to 0.12 GJ. The minimum work required to sep-
arate 1 kg of CO2 from a CO2 and hydrogen (H2) mixture 
with a CO2 mole fraction of 30% to 50% is 0.07 to 0.11 GJ. 
CO2 and CH4 gas mixture and CO2 and H2 gas mixture 
with higher CO2 concentrations require less work for sep-
aration compared to CO2 and nitrogen (N2) gas mixture, 
indicating that they are easier to separate. However, in 
practical processes, energy consumption for CO2 capture 
is also affected by gas properties and process conditions.

(15)

Wmin,T = −RT

[

x ln x + (1− x) ln (1− x)

x
−

y ln y+
(

1− y
)

ln
(

1− y
)

y

]

In the Eq.  15, R is the thermodynamic constant, valued 
at 8.314 J/(mol·K); T  represents the thermodynamic tem-
perature in the separation process, K; x and y are the mole 
fractions of a component in a binary gas mixture before and 
after separation, respectively.

Some researchers have systematically analyzed various 
CO2 capture methods, including absorption, adsorption, 
cryogenic distillation, membrane separation, and hydrate 
technology, as shown in Fig.  6. During the chemical 
absorption of CO2 using ammonia solution for gas treat-
ment of 1000 tonnes/day, the regeneration process was 
energy-intensive, with an energy consumption of 2.0–6.0 
GJ per ton of CO2 absorbed [156]. Shen et al. [157] use a 
biphasic solvent, triethylenetetramine (TETA)-N,N,N’,N’-
tetramethyl-1,3-propanediamine (TMPDA), to enhance 
CO2 absorption with a gas flow rate of 200 mL/min in 500 
mL double-stirred cell reactor. The energy consumption 
associated with the absorption process was estimated 
by evaluating three components: reaction heat, sensible 
heat, and latent heat, while excluding the energy con-
tributions from gas compression and solvent pumping. 
The energy consumption with the biphasic solvent was 
reduced to 1.8 GJ per ton of CO2, which was 52% lower 
than that of the conventional monoethanolamine (MEA) 
absorbent. Similarly, in the adsorption process using 
solid materials, such as molecular sieves, porous carbon 
materials, metal–organic frameworks (MOFs), and cova-
lent organic frameworks (COFs), substantial energy was 
required for adsorbent regeneration, consuming 2.0–3.0 
GJ per ton of CO2 separated [158]. The energy consump-
tion was calculated based on thermal energy losses. The 
flue gas source was a 500 MW coal-fired power plant, 
with an annual CO2 emission of approximately 3.636 Mt. 
A three-bed adsorption column system was employed to 
simulate the CO2 capture process. Each adsorption bed 
was packed to a height of 1 m with an inner diameter of 
7.7 cm. The pilot-scale experimental setup was designed 
to approximate realistic operating conditions and assess 
the performance of the adsorption system. In a three-
column fixed bed and rotary bed system, the use of solid 
polyamines reduced the regeneration temperature to 348 
K, decreasing the energy cost for adsorbent regeneration 
to 1.1 GJ per ton of CO2 [159]. In membrane separation, 
energy was required for compressors and vacuum pump, 
with an energy demand of 0.5–6.0 GJ per ton of CO2 sep-
arated [160]. Compared to compression configurations, 
a permeate vacuum configuration decreased operational 
energy consumption from 1.67 GJ per ton of CO2 to 1.06 
GJ per ton of CO2 [161]. In the energy consumption anal-
ysis of this membrane separation, the efficiencies of the 
compressor, expander, and vacuum pump were assumed 
to be 85%.
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In the process of CO2 separation via cryogenic distilla-
tion, low-temperature condensation transformed gaseous 
CO2 into a liquid phase, requiring continuous compres-
sion and cooling to drive phase change in the gas mix-
ture, resulting in an energy consumption of 6.0–10.0 GJ 
per ton of CO2 separated [162]. A dynamically operated 
low-temperature packed bed biogas treatment process 
with biogas flow of 0.312 kg/s further achieved energy 
demand of 2.9 GJ per ton of CO2 [163]. The energy con-
sumption was estimated based on the calculated energy 
requirements for compression, cooling, and air recov-
ery, without accounting for additional energy losses. For 
hydrate-based CO2 separation, compression and low-
temperature cooling are also energy-intensive, consum-
ing 1.8–3.0 GJ per ton of CO2 separated [164–166]. The 
energy consumption for a fixed-bed column under static 
conditions was reported to be 1.4 GJ per ton of CO2, 
which was lower than that of a stirred tank reactor (2.3 
GJ per ton of CO2) and a reciprocating impact reactor 
(5.3 GJ per ton of CO2). A CO2/N2 gas mixture, derived 
from post-desulfurization and denitrification treatment, 
was used as simulated flue gas at a flow rate of 10 kmol/h. 
The temperature and pressure of the gas mixture were 
maintained at 323.0 K and 0.1 MPa, respectively. During 
the separation of a 10,000 Nm3/h gas mixture containing 
64 mol% CH₄ and 36 mol% CO2, by reducing the hydrate 
formation pressure from 4.0 MPa to 1.0 MPa, total energy 
consumption was decreased by 22.3%, with energy costs 
reduced to 1.6 GJ per ton of CO2 [155]. Although the 
analysis excluded the potential and kinetic energy of the 
process streams, the second law of thermodynamics was 

applied to evaluate energy transformation, transfer, uti-
lization, and loss, thereby providing insights into strate-
gies for improving both process efficiency and energy 
utilization.

To further calculate the costs of CO2 capture, Baxter 
et al. [167] applied the concept of Levelized Cost of Elec-
tricity (LCOE) to comprehensively compare the costs of 
various capture methods including fuel costs, fixed and 
variable operation and maintenance costs, capital charge 
costs, and storage and monitoring costs. Figure 7 shows 
the cost of CO2 capture methods from gas mixtures 
including cooling, steam, chemicals, electricity and capi-
tal charge costs. The flue gas was derived from a 600 MW 
coal-fired power plant, with a treatment capacity of 635 
kg/s. For the chemical absorption process, the capital cost 
included major components such as blowers, compres-
sors, heat exchangers, circulation pumps, reboilers, and 
dryers. The cost of packing materials was estimated based 
on a steel price of 1200$ per ton. Installation costs were 
calculated by applying a manual labor factor to the total 
equipment cost. Operating costs encompassed electric-
ity consumption by blowers, compressors, heat exchang-
ers, circulation pumps, and reboilers, as well as the cost 
of chemical additives. Depreciation, interest, labor, and 
maintenance were collectively estimated as 20% of the 
total annual capital investment. For membrane separa-
tion, the capital cost consisted of membranes, compres-
sors, and expanders. In the case of cryogenic distillation, 
the equipment cost included blowers, compressors, heat 
exchangers, and distillation columns. For hydrate-based 
separation, the capital cost was primarily composed of 

Fig. 7  Cost of CO2 capture methods from gas mixtures including cooling, steam, chemicals, electricity and capital charge costs
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compressors, heat exchangers, and hydrate reactors. In 
the case of amine absorption, the costs of capital charge 
and steam energy consumption represented significant 
cost components, resulting in an overall capture cost of 
133.4 $ per ton of CO2, which was higher than that of 
membrane separation, cryogenic distillation, and hydrate 
technology [168], as shown in Fig. 7. Membrane separa-
tion incurred relatively high fixed capital charge costs 
due to the high price of membranes. In contrast, the cap-
ture cost of hydrate technology was reduced to 55.0 $ 
per ton of CO2 [169]. Capital costs were also influenced 
by operating conditions. At a flow rate of 100 m3/h, the 
capital costs for pressure swing adsorption, water wash-
ing, and chemical absorption were 11.9 k$/(m3/h), 11.5 
k$/(m3/h), and 10.9 k$/(m3/h), respectively [170]. At a 
higher flow rate of 1400 m3/h, the capital cost for cryo-
genic distillation was 2.6 k$/(m3/h), slightly above that of 
standard membrane technology at 2.2 k$/(m3/h) [171]. In 
terms of energy consumption and capture cost, hydrate 
technology demonstrates a clear advantage over other 
capture methods.

4.2 � Cost of CO2 capture and sequestration
The overall energy consumption and costs of total oceanic 
CO2 sequestration are composed of four main compo-
nents: CO2 capture, storage, transportation, and injection 
into seafloor. After the selection of a suitable CO2 capture 
method, various storage options are available, including 
high-pressure liquid CO2 storage (HPLCD), optimized 
liquid CO2 storage (OLCD), and hydrate-based CO2 stor-
age (HCD). Table 4 presents a summary of the cost analy-
sis for CO2 storage, transportation, and injection after 
capture. For feed gas flow rate of 3751 kmol/h, the spe-
cific energy consumption for HPLCD, OLCD, and HCD 
was 95.8, 89.5, and 61.4 kWh per ton of CO2, respectively, 
with the total annual cost estimated at 7.7, 7.2, 5.0 $ per 
ton of CO2, respectively [172]. In the optimization of the 
three CO2 storage scenarios, the processes were assumed 
to operate under thermodynamic equilibrium and steady-
state conditions. The gas phase was modeled as an ideal 
gas, and potential gas leakage was considered negligible. 
This suggested that hydrate-based storage was a promis-
ing approach for CO2 sequestration. For CO2 transporta-
tion of 3 Mt CO2/year, the cost of transporting 1 million 

tons of CO2 per year was estimated at 33.0 $ and 28.0 $ 
per ton at an approximate distance of 530 km by pipe-
line and 724 km by ship, respectively [173]. The cost of 
pipeline transport was estimated based on the compres-
sion in the capture plant, onshore and offshore pipelines, 
and booster. The required pressure in the well head was 
assumed to be 100 bar, and the onshore pipelines were 
also assumed to be buried 1 m underground. The cost of 
ship transport included the liquefaction process in the 
capture plant, carrier, and pumping process for injection. 
The ship speed was assumed to be 15 knots, and the load-
ing and unloading times were assumed to be 20 h each. 
The cost of terminal included the storage tank and pres-
surization process of ship-transported CO2 for offshore 
pipeline transport. The total energy demand for CO2 
capture, transportation, and sequestration was 16.6 MW, 
with hydrate-based gas separation accounting for 70% of 
the total energy requirement in the hydrate CO2 capture 
and sequestration process [174]. When the CO2 han-
dling capacity reached 1 Mt CO2/year and the transport 
distance exceeded 1000 km, transport costs by pipeline 
ranged from 0.02 to 0.04 $ per ton of CO2 per km, by ship 
from 0.03 to 0.08 $ per ton of CO2 per km, and by tank at 
approximately 0.1 $ per ton of CO2 per km [175, 176].

For the injection of liquid CO2, shallow environment 
for platform and jack-up rigs, medium-depth environ-
ment for semi-submersible rig and drillship, and deep-
sea environment for casing while drilling (CWD), dual 
gradient drilling (DGD), managed pressure drilling 
(MPD), and managed pressure casing drilling (MPCD) 
are suitable [178]. Considering that drilling and initial 
capital investment represent the primary cost compo-
nents of offshore CO2 injection, the overall sequestra-
tion cost can be reasonably estimated based on drilling 
expenditures. At a depth of 3000 m and 500 m off-
shore, the costs of CO2 injection using mobile ships 
and floating platforms were estimated at 15.2 and 12.8 
$ per ton of CO2, respectively [177]. According to the 
U.S. Department of Energy, sequestration costs for res-
ervoir injection projects ranged from 8 to 20.0 $ per 
ton of CO2 [179]. For a marine CO2 sequestration pro-
ject with an annual storage capacity of 1 million tons, 
the total cost was estimated at 36.0 $ per ton CO2, with 
an initial capital investment of 150.0 million $ and a 

Table 4  Cost analysis of CO2 storage, transportation and injection after CO2 capture

CO2 storage methods 
[167]

Cost
($/ton)

CO2 transportation methods 
[175, 176]

Cost
($/ton/km)

CO2 injection methods 
[177]

Cost
($/ton)

HPLCD 7.7 Pipeline 0.02–0.04 Moving ship 15.2

OLCD 7.2 Ship 0.03–0.08 Floating platform 12.8

HCD 4.9 Tanker 0.1 – –
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daily energy requirement of 713 MWh [180]. The capi-
tal expenditure considered in this study included fixed 
capital investment, working capital, and startup costs.

The fixed capital investment and working capital cov-
ered the installation costs of key equipment such as gas 
compressors, bubble column reactors, refrigeration sys-
tems, and water pumps, as well as expenses related to land 
acquisition, water intake and discharge infrastructure, site 
development, auxiliary facilities, insurance, freight, taxes, 
engineering services, project development, and risk contin-
gency fees. Working capital also accounted for one month’s 
supply of raw materials, accounts receivable, accounts pay-
able, and tax obligations. Startup costs included expendi-
tures for commissioning labor and revenue losses incurred 
during process ramp-up and initial system debugging.

Globally, numerous CO2 capture and sequestra-
tion pilot projects have been initiated, with estimated 
cost ranging between 50 $ and 100 $ per ton of CO2 
[181]. The cost of oceanic CO2 sequestration ranged 
from 4.7 $ to 12.0 $ per ton of CO2, roughly double 
that of terrestrial sequestration [182]. For self-sealing 
oceanic sequestration, the cost was approximately 
three times higher than for land-based sequestration, 
with cost increasing further when cumulative capaci-
ties exceeded 500 Mt/y [183]. In this sequestration 
scenario, the net-to-gross ratio of the target region 
was assumed to be approximately 2.0%, with a perme-
ability of 22 mD. The average cost of self-sealing oce-
anic sequestration was 142 $ per ton of CO2, which 
was significantly higher than the 57.9 $ per ton of 
CO2 for non-self-sealing oceanic sequestration. With 
the increase of ocean depth, factors such as net sand 
thickness in marine sediments, construction of water 
injection wells, and pipeline infrastructure lead to sub-
stantial increase in oceanic sequestration cost. Marine 
drilling costs were influenced by drilling depth, dis-
tance from shore, and water depth [184]. While the 
cost of land-based sequestration was less than 100,000 
$ per day, the cost for oceanic sequestration increased 
to between 600,000 $ and 800,000 $ per day [185]. 
Reducing the depth of oceanic sequestration from 
around 1000 m to approximately 400 m can reduce 
sequestration cost by nearly half, decreasing the aver-
age cost to 28.9 $ per ton of CO2. Decreasing CO2 
capture cost, reducing transport distances, increas-
ing storage capacity, and decreasing CO2 injection 
costs can significantly reduce the cost of oceanic CO2 
sequestration [186].

5 � Perspectives
Fundamental research and economic analysis reveal that 
hydrate-based CO2 capture and sequestration are feasible 
and economical, but there are still a series of challenges: 

(1) The lack of comprehensive discussion on the thermo-
dynamics and kinetics of CO2 hydrate formation; (2) The 
controversy surrounding CO2 hydrate nucleation and 
growth theories; (3) The limitation of hydrate-based CO2 
capture and sequestration development due to cost.

The presence of salt ions significantly alters the ther-
modynamics of CO2 hydrate formation, not only shift-
ing the hydrate phase equilibrium line but also reducing 
the enthalpy change of the hydrate formation reaction. 
Upon the addition of additives, the transformation of the 
hydrate structure also has a significant impact on both 
the phase equilibrium and the enthalpy change of hydrate 
formation reaction. However, there is a lack of thermody-
namic studies on hydrate formation in complex systems 
where both seawater and additives coexist, and no uni-
fied thermodynamic model has been developed for fur-
ther evaluation.

The kinetics of CO2 hydrate formation is influenced 
by salt ions due to the change in water activity, thereby 
impacting the hydrate nucleation and growth. CO2 
hydrate nucleation and growth theories differ based 
on the additives. A unified theory to comprehensively 
explain the formation process of CO2 hydrates is still 
lacking, as studies primarily rely on isolated experimen-
tal observations and results. Furthermore, there is an 
ongoing debate between the interfacial tension reduction 
theory and the critical micelle theory. Therefore, more 
molecular simulations and characterization experiments 
are essential to elucidate the CO2 hydrate formation 
mechanism.

The overall energy consumption and cost of oceanic 
CO2 sequestration comprise four main components with 
CO2 capture, storage, transportation, and injection into 
seafloor. However, most studies have focused on optimiz-
ing the cost of individual component without considering 
the cost optimization of the entire sequestration chain. 
The cost of marine CO2 injection is notably higher than 
that of terrestrial sequestration. The formation of hydrate 
caps is conducive to cost-effective CO2 sequestration in 
shallow seas, which can significantly reduce the energy 
consumption and capital charge cost requirements for 
sequestration. From an economic perspective, hydrate-
based oceanic carbon sequestration presents consider-
able sequestration potential.

�Nomenclature

CO2	� Carbon dioxide
CO2

(

g
)

	� Gas CO2

nH2O(s)	� Solid ice

CO2 • nH2O(s)	� Solid hydrate

CO2(l)	� Liquid CO2

nH2O(l)	� Liquid water

P	� Phase equilibrium pressure

T 	� Phase equilibrium temperature
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�Hdis	� Hydrate dissociation enthalpy
�V 	� Volume change for reaction
n	� Moles of water
x(CO2)	� Molar fraction of CO2 dissolves in the water
V (CO2)	� Volume of CO2
CP	� Cyclopentane
CP-one	� Cyclopentanone
CP-ol	� Cyclopentanol
DXN	� 1,4-dioxane
THF	� Tetrahydrofuran
MCP	� Methylcyclopentane
DMB	� 3,3-dimethyl-1-butanol
NH	� Neopentane
TBAB	� Tetrabutylammonium bromide
TBAC	� Tetrabutylammonium chloride
TBAF	� Tetrabutylammonium fluoride
TBA⁺	� Tetrabutylammonium ions
TMACl	� Tetramethylammonium chloride
TEAOH	� Tetraethylammonium hydroxide
TPrAOH	� Tetrapropylammonium hydroxide
NaCl	� Sodium chloride
JSS	� Rate of steady state nucleation
J0	� Nucleation factor
W*	� Work of the nucleus formation
J	� Nucleation rate
Δse	� Dissociation entropy of a hydrate building unit at 

the equilibrium temperature
k	� Boltzmann constant
ΔT	� Supercooling temperature
A	� Kinetic parameter
B	� Thermodynamic parameter
ΔΨ	� Nucleation barrier
Ve	� Volume of the nucleus
Pl	� Liquid pressure
Ψsurf	� Nucleation barrier
Ry(t)	� Macroscopic reaction rate
kr	� Intrinsic rate constant
μ2	� Second moment of the particle size distribution
f	� Fugacity of the dissolved gas
feq	� Fugacity of the three-phase equilibrium
ν	� Propagation rate of CO2 hydrate film
L	� Latent heat of the hydrate formation
λ	� Thermal conductivity of the surrounding phases
ρh	� Mole density of the hydrateMole density of the 

hydrate
rc	� Curvature of the hydrate film
G	� Mass growth rate of CO2 hydrate
kl	� Mass transfer coefficient of CO2 gas
ρsol	� Density of the solution
Ah	� Internal hydrate layer area

x
CO2

b

 	� Mole fraction of CO2 in the bulk liquid phase

x
CO2
int

 	� Mole fraction of CO2 in the liquid-crystal layer in 
�equilibrium

nCO2 	� Mole of the carbon dioxide
nH2O,0 	� Mole of the water
α	� Adjustable parameter
K	� Overall reaction rote constant
fexp	� Fugacity of the carbon dioxide in the vapor phase
feq	� Fugacity of the carbon dioxide in the hydrate-liquid 

water-vapor three-phase equilibrium
ngg,H	� Number of moles of guest gas in the hydrate phase
Ae	� Effective reaction surface area
Δμ	� Driving force
�µL

w(T ,P)	� Chemical potentials of water in the liquid phase

�µ0
w(T , 0) 	� Difference in standard chemical potential of water 

for gas hydrate
�hLw 	� Enthalpy difference between empty hydrate cavities 

and liquid water
�VL

w 	� Difference between molar volume of the water 
in hydrate and liquid phase

αw	� Absolute activity of water in aqueous phase
CMC	� Critical micelle concentration
SL	� Sodium lignosulfonate
Wmin,T	� Energy consumption
x	� Mole fractions of a component in a binary gas mix-

ture before separation
y	� Mole fractions of a component in a binary gas mix-

ture after separation
CH4	� Methane
H2	� Hydrogen
N2	� Nitrogen
TETA	� Triethylenetetramine
TMPDA	� N,N,N’,N’-tetramethyl-1,3-propanediamine
MEA	� Monoethanolamine
COFs	� Covalent organic frameworks
LCOE	� Levelized Cost of Electricity
HPLCD	� High-pressure liquid CO2 storage
OLCD	� Optimized liquid CO2 storage
HCD	� Hydrate-based CO2 storage
CWD	� Casing while drilling
DGD	� Dual gradient drilling
MPD	� Managed pressure drilling
MPCD	� Managed pressure casing drilling
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