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Abstract: Methane dehydroaromatization (MDA) represents a promising non-petroleum route for aromatic production. Exploring the
effects of the pore structures of catalysts on their MDA reaction catalytic performances is crucial for developing high-efficiency
catalysts. MWW-type zeolites (MCM-56 and MCM-22) were synthesized by seed-assisted method. The phases, morphologies and pore
structures of Mo/MCM-56 and Mo/MCM-22 catalysts were characterized by XRD, TEM, SEM, and N,adsorption/desorption.
Furthermore, the effects of different pore channel systems of MWW-type zeolites on catalytic performances of Mo/MCM-56 and Mo/MCM-22
catalysts for MDA reaction were investigated. The results show that the seed-assisted method significantly reduces crystallization time of
zeolites, and the structures of MWW zeolites are closely related to the structures of seeds. After reacting for 9.0 h under the same conditions
(700 °C, 100 kPa), Mo/MCM-22 demonstrates higher aromatic selectivity (around 95%) and aromatic yield (around 7.5%), and superior
catalytic stability compared to Mo/MCM-56. Therefore, it is speculated that the 12-membered ring supercages, formed through
condensation of adjacent two-dimensional MWW zeolite nanosheets in Mo/MCM-22 catalyst, serves as the primary sites for MDA
reaction. This study reveals that different pore channel systems of MWW zeolites have significant effects on the catalytic performance of
catalysts for MDA reaction, providing new ideas for designing highly selective and stable MDA catalysts.
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Fig. 1 XRD patterns of MCM-56s and MCM-22s zeolite seeds
and MCM-56 and MCM-22 zeolites before calcination
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