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Abstract. In this paper, we shall investigate a three-species food chain
model with taxis mechanisms including prey-taxis and alarm-taxis in a
smooth bounded domain Ω ⊂ R

n(n ≥ 1) with homogeneous Neumann
boundary conditions. More precisely, we first establish the boundedness
criterion for a general food chain model with various taxis mechanisms
for arbitrary spatial dimensions by using the semigroup estimates and
coupled energy estimates. With the boundedness criterion, we prove the
global boundedness of the solution with the general functional response
functions under some smallness assumptions on the taxis coefficients by
using the weighted energy estimates. On the other hand, for some spe-
cial functional response functions including Beddington–DeAngelis type,
ratio-dependent type and Harrison type, we also obtain the global exis-
tence of the solution with uniform-in-time bound without any smallness
assumptions on the taxis coefficients or initial data.
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1. Introduction and main results

To deeply understand the foundational principles governing ecosystem dy-
namics, energy transfer, and species interactions, various temporal food chain
models have been proposed and studied [13,16,17,24,25,29,30,36,38,43]. It
has been shown that the temporal three-species food chain models exhibit rich
dynamics such as chaos [16,24,30,32,34,51], periodic orbits [31] and bistability
[35] and so on. However, compared with the well-known results on the temporal
food chain models mentioned above, few results are known for the food chain
model with spatial movements, which actually plays an indispensable role for
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the population species to survive and thrive. As experimental observation [23],
the spatial movements not only include the classical random movements (diffu-
sion) but also the directed movements (taxis) such as prey-taxis or alarm-taxis,
which refers to the ability of predators to detect and move towards areas of
higher prey density. To gain a more comprehensive understanding of species’
dispersion and migration patterns, we shall study the following three-species
food chain model with spatial movements in a bounded domain Ω ⊂ R

n with
homogeneous Neumann boundary conditions
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = Δu + u(1 − u) − b1F1(u, v)v, x ∈ Ω, t > 0,

vt = Δv − ξ∇ · (v∇u) + F1(u, v)v − b2F2(v, w)w − θ1v, x ∈ Ω, t > 0,

wt = Δw − χ∇ · [w∇φ(u, v)] + F2(v, w)w − θ2w, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where ν is the outward unit normal vector on ∂Ω and the homogeneous Neu-
mann boundary conditions means that no individuals can cross the boundary.
Here u, v, w represent the density of the prey species, primary and top preda-
tors respectively. For i = 1, 2, the parameters bi > 0 denote consumption rates
of the prey and the primary predators, and θi > 0 represent the mortality rates
of the primary and top predators, respectively. Here Fi(i = 1, 2) are functional
response functions (trophic functions), which describe the consumption rate of
a predator varies with the density of its prey, and the classical forms include
Holling type [18,24,30,31], ratio-dependent type [18], Beddington–DeAngelis
type [4,9,34,51], Harrison type [14] and so on. The term −ξ∇·(v∇u) was used
as prey-taxis mechanism [23] to describe the directional movement of primary
predators toward prey density gradient. Similarly, the term −χ∇· [w∇φ(u, v)]
describes that the top predators move toward to high gradient of the signal
produced due to the interaction between the prey and primary predator.

Before presenting our main results, we first recall some relevant results
on the system (1.1). If w ≡ 0, the system (1.1) becomes the following two
species prey-taxis system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = Δu + u(1 − u) − b1F1(u, v)v, x ∈ Ω, t > 0,

vt = Δv − ξ∇ · (v∇u) + F1(u, v)v − θ1v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

which was proposed to interpret the heterogeneous aggregative patterns due
to the area-restricted search strategy by Kareiva and Odell [23]. The solution
behaviors of two species prey-taxis system (1.2) such as global boundedness
and large time behavior as well as pattern formations have been extensively
studied in the recent years (cf. [7,19,20,23,47,48] and references therein).
Recently, some interesting results have been extensively established for two
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species predator-prey system with various taxis mechanisms such as the in-
direct prey-taxis mechanism [1,42,44], predator-taxis mechanism [49], dual-
taxis mechanism [10,41], signal-dependent prey-taxis mechanism [20] and so
on. However, to our knowledge, due to the more complex coupled structures
than the two species predator-prey systems with various taxis mechanisms,
few results are known for the three-species spatial food chain model (1.1) (i.e.,
w �= 0).

As far as we know, the first result on the system (1.1) was established in
[21]. More precisely, by assuming the functional response functions Fi(i = 1, 2)
are Holling type I and top predators move toward to high gradient of the signal
produced by the primary predator, that is under the following assumptions

F1(u, v) = u, F2(v, w) = v and φ(u, v) = v, (1.3)

the global boundedness and stabilization of solution for the system (1.1) have
been established in two-dimensional bounded domains [21]. In fact, under the
assumptions (1.3), we can view the system (1.1) as two different two-species
predator–prey system and then use the nice entropy estimate found in [40]
for the classical chemotaxis system with consumption of chemoattractant and
developed for the prey-taxis system [19]. On the other hand, if we add the
terms −α1v

2 and −α2w
2 in the second equation and third equation of system

(1.1) (i.e., there exists intra-specific competition for v and w ) respectively, and
the functional response functions Fi(i = 1, 2) and the signal intensity function
φ(u, v) take the following form

F1(u, v) = u, F2(v, w) = v and φ(u, v) = uv, (1.4)

the system (1.1) was first proposed in [15] to text the “burglar alarm” hypoth-
esis (c.f. [6]): a prey species renders itself dangerous to a primary predator by
generating an alarm call to attract a second predator at higher trophic levels
in the food chain that prey on the primary predator. Due to the nonlinearity
of the signal intensity function, the entropy inequality used in [21] for the food
chain model with linear signal intensity function (i.e., φ(u, v) = v) does not
hold anymore. Hence the known results such as global boundedness and sta-
bilization of solutions to the system (1.1) with φ(u, v) = uv are limited to one
dimensional space [15] or two dimensions [11,22] if there exists intra-specific
competition for v and w. From the above discussions, we know that the global
boundedness and stabilization of solution for the system (1.1) were only estab-
lished in two-dimensional spaces in the case of φ(u, v) = v [21] or φ(u, v) = uv
with quadratic decay terms (i.e., intra-specific competition) for v and w [22].
Hence it is natural to ask whether the results are still valid in higher dimensions
for the more general functional response functions Fi(i = 1, 2) and the signal
intensity function φ(u, v). To this end, we shall study the global dynamics for
system (1.1) with the functional response functions F1(u, v) and F2(v, w), and
the signal intensity function φ(u, v) satisfying the following assumptions:

(H1): F1(u, v) ∈ C2([0,∞)× [0,∞)), F1(0, v) = 0, and F1u(u, v) > 0, F1v(u, v)
≤ 0 for all u, v ≥ 0. Moreover, there exists a constant K1 > 0 such that
F1(u, v) ≤ K1(u + 1).
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(H2): F2(v, w) ∈ C2([0,∞)×[0,∞)), F2(0, w) = 0, and F2v(v, w) > 0, F2w(v, w)
≤ 0 for all v, w ≥ 0. Moreover, there exists a constant K2 > 0 such that
F2(v, w) ≤ K2(v + 1).

(H3): φ(u, v) ∈ C2([0,∞) × [0,∞)) and φ(u, v) ≥ 0 for all u, v ≥ 0.
Then under the assumptions (H1)-(H3), the existence and uniqueness of local
solution of (1.1) can be readily proved by Amann’s theorem [2,3]. We omit the
details of the proof for simplicity.

Lemma 1.1. (Local existence) Let Ω ⊂ R
n(n ≥ 1) be a bounded domain

with smooth boundary and suppose (H1)–(H3) hold. Assume (u0, v0, w0) ∈
[W 2,∞(Ω)]3 with u0, v0, w0 � 0, then there exists a Tmax ∈ (0,∞] such that
the system (1.1) has a unique classical solution

(u, v, w) ∈ [C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax))]3

satisfying u, v, w > 0 for all t > 0. Moreover, it holds that

either Tmax = ∞ or lim
t→Tmax

(‖u(·, t)‖W1,∞ + ‖v(·, t)‖W1,∞ + ‖w(·, t)‖L∞) = ∞.

Remark 1.2. The standard method allows us to consider (u0, v0, w0) ∈ W 1,p(Ω)
with p > n

2 , we do not pursue the sharpest result in terms of the class of initial
data.

From Lemma 1.1, we know that the global boundedness of the classical
solution exist if there exists a constant C > 0 such that

‖u(·, t)‖W 1,∞ + ‖v(·, t)‖W 1,∞ + ‖w(·, t)‖L∞ ≤ C. (1.5)

However, the condition (1.5) is hard to verify directly (i.e., see [21,22]). Hence
we want to know whether or not there exists more explicit and concise bound-
edness criterion to ensure the existence of global classical solution in any spa-
tial dimensions. To this end, we establish our first result on the boundedness
criterion for the system (1.1) under the assumptions (H1)–(H3) as follows.

Proposition 1.3. (Boundedness criterion) Let (u, v, w) be the solution of (1.1)
obtained in Lemma 1.1. Suppose that there exist p0 > n

2 and a constant M0 > 0
independent of t such that

sup
t∈(0,Tmax)

‖v(·, t)‖Lp0 + sup
t∈(0,Tmax)

‖w(·, t)‖Lp0 ≤ M0,

then one can find a constant C > 0 independent of t such that

‖u(·, t)‖W 1,∞ + ‖v(·, t)‖W 1,∞ + ‖w(·, t)‖L∞ ≤ C for all t ∈ (0, Tmax).

Remark 1.4. The result in Proposition 1.3 implies that the global boundedness
of the solution for the system (1.1) with assumptions (H1)–(H3) can be ensured
if we can find a p0 > n

2 such that

‖v(·, t)‖Lp0 + ‖w(·, t)‖Lp0 ≤ C, for all t ∈ (0, Tmax), (1.6)

where C > 0 is a constant independent of t. Indeed, the condition (1.6) is
easier to verify than (1.5).
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Remark 1.5. For the system (1.1) with the assumptions (H1)–(H3), we can
easily check that there exists a constant C > 0 independent of t such that
‖v(·, t)‖L1 + ‖w(·, t)‖L1 ≤ C, see Lemma 2.1. Hence using the boundedness
criterion in Theorem (1.3), we can derive the global existence of solution for
the system (1.1) with uniform-in-time bound in one-dimensional space directly.
For the higher dimensions (n ≥ 2), we need more regularity of u and v, which,
however, is not easily obtained due to the complex coupled structure. To our
knowledge, we can obtain (1.6) with p0 > 1 in two-dimensional spaces (see
[21,22]) only under some special functional response functions Fi(i = 1, 2)
and signal intensity function φ(u, v), which motivates us to study the global
boundedness of solution for system (1.1) in higher dimensional spaces (n ≥
2) for general functional response functions Fi(i = 1, 2) and signal intensity
function φ(u, v).

With the above boundedness criterion, we shall establish the global bound-
edness of solution of the system (1.1) in higher-dimensional space (n ≥ 2) as
follows.

Theorem 1.6. (Global boundedness) Let Ω ⊂ R
n(n ≥ 2) be a bounded domain

with smooth boundary. Assume that 0 � (u0, v0, w0) ∈ [W 2,∞(Ω)]3 and (H1)–
(H3) hold. Suppose one of the following conditions holds:
(1): The parameters ξ and χ are small such that

ξ ≤ 1
(n + 2)M1

where M1 := max{1, ‖u0‖L∞} (1.7)

and

χ‖φv‖L∞ ≤ 1
(n + 2)M2

where M2 := C(ξδ + 1). (1.8)

Here C > 0 and δ > 1 are two constants independent of ξ, χ and t.
(2): There exist two positive constants μ1 and μ2 such that

F1(u, v)v ≤ μ1u and F2(v, w)w ≤ μ2v. (1.9)

Then the problem (1.1) has a unique global classical solution (u, v, w) ∈ [C0(Ω̄×
[0,∞))∩C2,1(Ω̄× (0,∞))]3 satisfying u, v, w > 0 for all t > 0. Moreover, there
exists a constant C > 0 independent of t such that

‖u(·, t)‖W 1,∞ + ‖v(·, t)‖W 1,∞ + ‖w(·, t)‖L∞ ≤ C. (1.10)

Remark 1.7. Below we give some remarks on the results obtained in Theorem
1.6.

• Applying the comparison principle to the first equation of (1.1), we have

‖u(·, t)‖L∞ ≤ M1 := max{1, ‖u0‖L∞}.

Moreover, under the condition (1.7), we can derive that there exists a
positive constant M2 such that

‖v(·, t)‖L∞ ≤ M2 := C(ξδ + 1)

where C > 0 and δ > 1 are constants independent of ξ and χ. Since
φ(u, v) ∈ C2([0,∞) × [0,∞)) and the boundedness of u, v, which are



36 Page 6 of 33 H.-Y. Jin and F. Zou NoDEA

independent of χ, we can find a constant η0 > 0 independent of χ such
that

‖φv‖L∞ ≤ η0.

Then (1.8) can be satisfied if

χ ≤ 1
η0(n + 2)M2

.

• The conditions (1.9) can be satisfied by various types of functional re-
sponse functions Fi(i = 1, 2) such as Beddington–DeAngelis type [4,9,
34,51], ratio-dependent type [18] and Harrison type [14] and so on.

At last, we give some applications of the results obtained in Proposition
1.3 and Theorem 1.6. The first example for the application of our results is the
food chain model with alarm-taxis and Holling type I functional response func-
tion, that is the system (1.1) with (1.4). More precisely, we have the following
results.

Proposition 1.8. Let Ω ⊂ R
n(n ≥ 2) be a bounded domain with smooth bound-

ary. Assume that 0 � (u0, v0, w0) ∈ [W 2,∞(Ω)]3 and the parameters ξ and χ
satisfy the following conditions

ξ ≤ 1
(n + 2)M1

and χ ≤ 1
(n + 2)M1M2

,

with M1 and M2 defined as in Theorem 1.6. Then the system (1.1) with (1.4)
has a unique global classical solution (u, v, w) ∈ [C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ ×
(0,∞))]3 satisfying u, v, w > 0 for all t > 0 with uniform-in-time bound in the
sense of (1.10).

Remark 1.9. Our results in proposition 1.8 imply that the boundedness of the
solution for the system (1.1) with (1.4) can be established in any dimensional
space with some smallness assumptions on the taxis coefficients ξ and χ. As
far as we know, the global existence of classical solution for the system (1.1)
with (1.4) for large ξ and χ is still open even in two-dimensional spaces.

The second example will be discussed is the system (1.1) with functional
response functions F1(u, v) and F2(v, w), and the signal intensity function
φ(u, v) taking the following form

F1(u, v) =
u

m1 + v
, F2(v, w) =

v

m2 + w
and φ(u, v) = uv, (1.11)

where m1 and m2 are two positive constants. The system (1.1) with (1.11) can
be rewritten as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = Δu + u(1 − u) − b1uv
m1+v , x ∈ Ω, t > 0,

vt = Δv − ξ∇ · (v∇u) + uv
m1+v − b2vw

m2+w − θ1v, x ∈ Ω, t > 0,

wt = Δw − χ∇ · [w∇(uv)] + vw
m2+w − θ2w, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω.

(1.12)
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For the system (1.12) without spatial movement, the conditions for existence
and stability of extinction and coexistence equilibrium states are determined
in [5]. When χ = ξ = 0, the global dynamics of solution for the system (1.12)
have been established in [27]. Recently, by using the semigroup estimates, the
authors in [50] proved the global bounded classical solution of (1.12) with ξ = 0
in all dimensions. In fact, we notice that the functional response functions
F1(u, v) and F2(v, w) satisfy

F1(u, v)v =
uv

m1 + v
≤ u and F1(v, w)w =

vw

m2 + w
≤ v.

Then the conditions (1.9) are satisfied and hence we can directly obtain the
global boundedness of the solution for the system (1.12) as follows.

Proposition 1.10. Let Ω ⊂ R
n(n ≥ 2) be a bounded domain with smooth bound-

ary. Assume that 0 � (u0, v0, w0) ∈ [W 2,∞(Ω)]3. Then the system (1.1) with
(1.12) has a unique non-negative global classical solution (u, v, w) ∈ [C0(Ω̄ ×
[0,∞)) ∩ C2,1(Ω̄ × (0,∞))]3 satisfying u, v, w > 0 for all t > 0 with uniform-
in-time bound.

Remark 1.11. The results in Proposition 1.10 not only cover the results the
global boundedness results of the system (1.12) in reference [50], but also
extend these results to the case of ξ > 0.

2. Preliminaries and basic lemmas

In the following, we shall abbreviate
∫

Ω
fdx as

∫

Ω
f for simplicity without

confusion. Moreover, we will use ci and Mi(i = 1, 2, ...) to denote generic
positive constants independent of t which may vary in this paper. In this
section, we first give some basic estimates and lemmas that will be used later.

Lemma 2.1. Let (u, v, w) be the solution obtained in Lemma 1.1. Then it holds
that

‖u(·, t)‖L∞ ≤ M1 := max{1, ‖u0‖L∞} for all t ∈ (0, Tmax), (2.1)

and

‖v(·, t)‖L1 + ‖w(·, t)‖L1 ≤ M3 for all t ∈ (0, Tmax), (2.2)

where M3 > 0 is a positive constant independent of ξ, χ and t.

Proof. Applying the comparison principle to the first equation of (1.1), we can
derive (2.1) directly.

From the equations of (1.1), one can derive that
d

dt

∫

Ω

(u + b1v + b1b2w) =
∫

Ω

u(1 − u) − b1θ1

∫

Ω

v − b1b2θ2

∫

Ω

w,

and hence
d

dt

∫

Ω

(u + b1v + b1b2w) +
∫

Ω

u + b1θ1

∫

Ω

v + b1b2θ2

∫

Ω

w

=
∫

Ω

2u −
∫

Ω

u2 = −
∫

Ω

(u − 1)2 + |Ω| ≤ |Ω|,
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which, combined with Grönwall’s inequality, gives (2.2). �
Lemma 2.2. Let Ω ⊂ R

n be a bounded domain with smooth boundary, and
z ∈ C2(Ω̄) satisfy ∂z

∂ν = 0 on ∂Ω, where ν is the outward unit normal vector
on ∂Ω. Then we have

∂|∇z|2
∂ν

≤ 2κ1|∇z|2, (2.3)

and
∫

Ω

|∇z|2(p+1) ≤ κ2‖z‖2
L∞

∫

Ω

|∇z|2(p−1)|D2z|2 for p ∈ [1,∞), (2.4)

where κ1 = κ1(Ω) is an upper bound of the curvatures of ∂Ω and κ2 = 2(n +
4p2).

Proof. The proof of (2.3) can be found in [33]. The estimate (2.4) has been
proved in [26]. �

Lemma 2.3. [44] Let T > 0 and τ = min{1, T
2 }. Suppose that the non-negative

functions y ∈ C([0, T )) ∩ C1((0, T )) and f ∈ L1
loc([0, T )) satisfy

y′(t) + ay(t) ≤ f(t), t ∈ (0, T ),

and
∫ t+τ

t

f(s)ds ≤ b, t ∈ (0, T − τ),

then it holds that

y(t) ≤ max
{

y(0) + b,
b

a
+ 2b

}
, t ∈ (0, T ).

Lemma 2.4. [12,46] Let etΔ(t ≥ 0) be the Neumann heat semigroup in Ω, and
denote λ1 > 0 as the first non-zero eigenvalue of −Δ in Ω under Neumann
boundary conditions. Then there exist positive constants γi (i = 1, 2, 3, 4) de-
pending only on Ω such that:

(i) If 2 ≤ p < ∞, then

‖∇etΔz‖Lp ≤ γ1e
−λ1t‖∇z‖Lp for all t > 0 (2.5)

holds for all z ∈ W 1,p(Ω).
(ii) If 1 ≤ q ≤ p ≤ ∞, then

‖∇etΔz‖Lp ≤ γ2

(
1 + t−

1
2− n

2 ( 1
q − 1

p )
)

e−λ1t‖z‖Lq for all t > 0 (2.6)

holds for all z ∈ Lq(Ω).
(iii) If 1 ≤ q ≤ p ≤ ∞, then

‖etΔz‖Lp ≤ γ3

(
1 + t−

n
2 ( 1

q − 1
p )

)
‖z‖Lq for all t > 0 (2.7)

holds for all z ∈ Lq(Ω).
(iv) If 1 < q ≤ p ≤ ∞, then

‖etΔ∇ · z‖Lp ≤ γ4

(
1 + t−

1
2− n

2 ( 1
q − 1

p )
)

e−λ1t‖z‖Lq for all t > 0 (2.8)

holds for all z ∈ (C∞
0 (Ω))n.
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We emphasize that the result in Lemma 2.4(iv) is also applicable to any
z ∈ Lq(Ω) with 1 ≤ q < ∞, because C∞

0 (Ω) is dense in Lq(Ω)(1 ≤ q < ∞)
(see also [46]).

3. Boundedness criterion: proof of Proposition 1.3

In this section, we are devoted to establishing the boundedness criterion of
for the system (1.1) in any dimensional space. To this end, we first utilize the
Neumann semigroup theory motivated by [19, Lemma 3.1] to establish the
boundedness of ‖v(·, t)‖L∞ provided the boundedness of ‖v(·, t)‖Lp0 for some
p0 > n

2 . For the two species predator–prey system (1.2), the boundedness of
‖v(·, t)‖L∞ is enough to ensure the existence of global classical solution. How-
ever, for the three-species food chain model, we need further estimates on the
boundedness of ‖w(·, t)‖L∞ , which is not easily to obtain. In fact, since the
appearance of cross-diffusion term −χ∇· [w∇φ(u, v)] in the third equation, to
derive the L∞-bound of w, we need some estimates on ∇v, whose estimates
however depends on the estimates of w itself. To overcome this problem, we
first establish coupling energy estimates of ‖w(·, t)‖Lp +‖∇v(·, t)‖L2p provided
the boundedness of ‖w(·, t)‖Lp0 with p0 > n

2 , and then apply semigroup esti-
mates to derive boundedness of ‖w(·, t)‖L∞ . Then the boundedness criterion
for system (1.1) follows.

3.1. Boundedness of ‖v(·, t)‖L∞

In this subsection, we first show that the boundedness of ‖v(·, t)‖L∞ can be
established provided the boundedness of ‖v(·, t)‖Lp0 for some p0 > n

2 .

Lemma 3.1. Let (u, v, w) be the solution of (1.1) obtained in Lemma 1.1. If
there exist constants p0 > n

2 and C0 > 0 independent of ξ and t such that

sup
t∈(0,Tmax)

‖v(·, t)‖Lp0 ≤ C0, (3.1)

then we can find two constants C1 > 0 and δ > 1 independent of ξ, χ and t
such that

‖v(·, t)‖L∞ ≤ M2 := C1(ξδ + 1). (3.2)

Moreover, it holds that

‖∇u(·, t)‖L∞ ≤ M4, (3.3)

where M4 > 0 is a constant depending on ξ but independent of χ and t.

Proof. If ‖v(·, t)‖Lp0 ≤ C0, we claim that there exists a constant c1 > 0 such
that

‖∇u(·, t)‖Lr ≤ c1, for all t ∈ (0, Tmax), (3.4)

with

r ∈
{

[1, np0
n−p0

), if p0 ≤ n,

[1,∞], if p0 > n.
(3.5)
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In fact, applying the variation-of-constants formula to the first equation of
(1.1), we have

u(·, t) = e(Δ−1)tu0 +
∫ t

0

e(Δ−1)(t−s)u(2 − u)ds − b1

∫ t

0

e(Δ−1)(t−s)F1(u, v)vds,

and hence

‖∇u(·, t)‖Lr ≤ ‖∇e(Δ−1)tu0‖Lr +
∫ t

0

‖∇e(Δ−1)(t−s)u(2 − u)‖Lrds

+ b1

∫ t

0

‖∇e(Δ−1)(t−s)F1(u, v)v‖Lrds

= I1 + I2 + I3.

(3.6)

Then using (2.5) and u0 ∈ W 2,∞(Ω), we can derive that

I1 = ‖∇e(Δ−1)tu0‖Lr ≤ γ1e
−(λ1+1)t‖∇u0‖Lr ≤ c2. (3.7)

Noting the fact ‖u(·, t)‖L∞ ≤ M1 in Lemma 2.1 and using (2.6), we can esti-
mate I2 as follows:

I2 =
∫ t

0

‖∇e(Δ−1)(t−s)u(2 − u)‖Lrds

≤ γ2

∫ t

0

(
1 + (t − s)− 1

2+ n
2r

)
e−(λ1+1)(t−s)‖u(2 − u)‖L∞ds

≤ γ2M1(2 + M1)
∫ ∞

0

(
1 + (t − s)− 1

2+ n
2r

)
e−(λ1+1)(t−s)ds

≤ c3.

(3.8)

Using the properties of F1(u, v) in assumption (H1) and noting the fact
‖u(·, t)‖L∞ ≤ M1 (see Lemma 2.1), we can find a positive constant c4 :=
K1(M1 + 1) such that

0 < F1(u, v) ≤ c4. (3.9)

Then using (3.1) and (3.9), we can apply the semigroup estimates in (2.6) to
derive

I3 = b1

∫ t

0

‖∇e(Δ−1)(t−s)F1(u, v)v‖Lrds

≤ b1γ2

∫ t

0

(

1 + (t − s)− 1
2− n

2

(
1

p0
− 1

r

))

e−(λ1+1)(t−s)‖F1(u, v)‖L∞‖v‖Lp0 ds

≤ b1γ2C0c4

∫ ∞

0

(

1 + (t − s)− 1
2− n

2

(
1

p0
− 1

r

))

e−(λ1+1)(t−s)ds

≤ b1γ2C0c4

λ1 + 1

(

1 + (λ1 + 1)
1
2+ n

2

(
1

p0
− 1

r

)

Γ
(

1
2

− n

2

(
1
p0

− 1
r

)))

≤ c5,

(3.10)

where Γ denotes the Gamma function defined by Γ(z) =
∫ ∞
0

tz−1e−tdt.
Then substituting (3.7), (3.8) and (3.10) into (3.6), we obtain (3.4).
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We are now in a position to show (3.2). Applying the variation-of-constants
formula to the second equation of system (1.1), and noting F2(v, w) > 0 from
the assumption (H2), it holds that

v(·, t) = e(Δ−θ1)tv0 − ξ

∫ t

0

e(Δ−θ1)(t−s)∇ · (v∇u)ds +

∫ t

0

e(Δ−θ1)(t−s)F1(u, v)vds

− b2

∫ t

0

e(Δ−θ1)(t−s)F2(v, w)wds

≤ e(Δ−θ1)tv0 − ξ

∫ t

0

e(Δ−θ1)(t−s)∇ · (v∇u)ds +

∫ t

0

e(Δ−θ1)(t−s)F1(u, v)vds,

(3.11)

which gives

‖v(·, t)‖L∞ ≤ ‖e(Δ−θ1)tv0‖L∞ + ξ

∫ t

0

‖e(Δ−θ1)(t−s)∇ · (v∇u)‖L∞ds

+
∫ t

0

‖e(Δ−θ1)(t−s)F1(u, v)v‖L∞ds.

(3.12)

For each fixed T ∈ (0, Tmax), if we let

M(T ) := sup
t∈(0,T )

‖v(·, t)‖L∞ , (3.13)

then M(T ) is finite due to local existence of the solution. Next, we shall
estimate M(T ) from (3.12). Without loss of generality, we assume that n

2 <
p0 ≤ n and hence n < np0

n−p0
, which entails us to find a n < r < np0

n−p0
such that

(3.4) holds. Moreover, using the fact n < r < np0
n−p0

, we can fix n < q < r such
that

− 1
2

− n

2q
> −1 and δ0 := 1 − r − q

rq
∈ (0, 1). (3.14)

Then using the fact ‖v(·, t)‖L1 ≤ M3 in (2.2) and the estimate (3.4), we have

‖v∇u‖Lq ≤ ‖v‖
L

rq
r−q

‖∇u‖Lr ≤ ‖v‖
r−q
rq

L1 ‖v‖1− r−q
rq

L∞ ‖∇u‖Lr ≤ c6M
1−δ0
3 Mδ0(T ).

(3.15)

On the other hand, noting (3.1) and (3.9) one has

‖F1(u, v)v‖Lp0 ≤ ‖F1(u, v)‖L∞‖v‖Lp0 ≤ C0c4. (3.16)

With the estimates (3.15) and (3.16) in hand, from (3.14) and (3.12), we can
use the semigroup estimates (2.7) and (2.8) to derive
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‖v(·, t)‖L∞ ≤ γ3‖v0‖L∞ + γ4ξ

∫ ∞

0

(
1 + (t − s)

− 1
2 − n

2q

)
e−(λ1+θ1)(t−s)‖v∇u‖Lq ds

+ γ3

∫ ∞

0

(
1 + (t − s)

− n
2p0

)
e−θ1(t−s)‖F1(u, v)v‖Lp0 ds

≤ γ3‖v0‖L∞

+
γ4c6ξM

1−δ0
3

λ1 + θ1
Mδ0(T )

(

1 + (λ1 + θ1)
1
2+ n

2q Γ

(
1

2
− n

2q

))

+
γ3C0c4

θ1

(

1 + θ
n

2p0
1 Γ

(

1 − n

2p0

))

≤ c7ξMδ0(T ) + c8.

(3.17)

Then noting the definition of M(T ) in (3.13), from (3.17), one can obtain

M(T ) ≤ c7ξMδ0(T ) + c8,

which gives

M(T ) ≤ 2(1 − δ0)(2δ0)
δ0

1−δ0 (c7ξ)
1

1−δ0 + 2c8 ≤ c9(1 + ξ
1

1−δ0 )

and then (3.2) follows. Moreover, using (3.2), we can obtain (3.3) directly from
(3.4) and (3.5). Then we complete the proof of this lemma. �
3.2. Coupled energy estimates: ‖w(·, t)‖Lp + ‖∇v(·, t)‖L2p

Next, we shall improve the regularity of v to establish the boundedness of
‖w(·, t)‖L∞ . To this end, we first establish the following coupled energy esti-
mates.

Lemma 3.2. Assume the conditions in Lemma 3.1 hold. Then it holds that
d

dt

∫

Ω

(
wp + |∇v|2p

)
+ M5

∫

Ω

(wp + |∇v|2p) +
2(p − 1)

p

∫

Ω

|∇w
p
2 |2

≤ M6

(∫

Ω

|Δu|p+1 +
∫

Ω

wp+1 + 1
)

,

(3.18)

where M5 = p min{θ1, θ2} and M6 > 0 is a constant depending on ξ and χ but
independent of t.

Proof. Using the second equation of (1.1) and the integration by parts, we can
derive that

1
2p

d

dt

∫

Ω

|∇v|2p =
∫

Ω

|∇v|2p−2∇v · ∇vt

=
∫

Ω

|∇v|2p−2∇v · ∇[Δv − ∇ · (ξv∇u)

+ F1(u, v)v − b2F2(v, w)w − θ1v]

=
∫

Ω

|∇v|2p−2∇v · ∇Δv + ξ

∫

Ω

∇ · (|∇v|2p−2∇v)∇ · (v∇u)

+
∫

Ω

|∇v|2p−2∇v · ∇[F1(u, v)v]

− b2

∫

Ω

|∇v|2p−2∇v · ∇[F2(v, w)w] − θ1

∫

Ω

|∇v|2p,
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which, together with the fact ∇v · ∇Δv = 1
2Δ|∇v|2 − |D2v|2, gives

1
2p

d

dt

∫

Ω

|∇v|2p +
p − 1

2

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2

+
∫

Ω

|∇v|2(p−1)|D2v|2 + θ1

∫

Ω

|∇v|2p

=
1
2

∫

∂Ω

|∇v|2(p−1) ∂|∇v|2
∂ν

+ ξ

∫

Ω

∇ · (|∇v|2p−2∇v)∇ · (v∇u)

+
∫

Ω

|∇v|2p−2∇v · ∇[F1(u, v)v] − b2

∫

Ω

|∇v|2p−2∇v · ∇[F2(v, w)w]

= J1 + J2 + J3 + J4.

(3.19)

Using (2.3) and the following trace inequality (see [37, Remark 52.9])

‖z‖L2(∂Ω) ≤ ε‖∇z‖L2(Ω) + Cε‖z‖L2(Ω) for any ε > 0.

We first estimate the term J1 as follows:

J1 =
1
2

∫

∂Ω

|∇v|2(p−1) ∂|∇v|2
∂ν

≤ κ1

∫

∂Ω

|∇v|2p

≤ p − 1
16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2 + c1

∫

Ω

|∇v|2p.

(3.20)

Using the facts ‖v(·, t)‖L∞ ≤ M2 and ‖∇u(·, t)‖L∞ ≤ M4, and noting |Δv| ≤√
n|D2v|, we can estimate the term J2 as follows:

J2 = ξ

∫

Ω

∇ · (|∇v|2p−2∇v)∇ · (v∇u)

= ξ(p − 1)
∫

Ω

|∇v|2(p−2)∇|∇v|2 · ∇v(∇v · ∇u + vΔu)

+ ξ

∫

Ω

|∇v|2p−2Δv(∇v · ∇u + vΔu)

≤ ξ(p − 1)M4

∫

Ω

|∇v|2(p−1)|∇|∇v|2|

+ ξ(p − 1)M2

∫

Ω

|∇v|2p−3|∇|∇v|2||Δu|

+ ξM4

∫

Ω

|∇v|2p−1|Δv| + ξM2

∫

Ω

|∇v|2p−2|Δu||Δv|

≤ p − 1
8

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2 + c2

∫

Ω

|∇v|2p

+
1
8

∫

Ω

|∇v|2(p−1)|D2v|2 + c3

∫

Ω

|∇v|2(p−1)|Δu|2,

(3.21)

where c2 := 4(n + p − 1)ξ2M2
4 and c3 := 4(n + p − 1)ξ2M2

2 .
Using (3.2) and noting the properties of F2(v, w) in assumption (H2), one

has

0 < F2(v, w) ≤ K2(M2 + 1). (3.22)
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Then noting facts (3.2), (3.9) and (3.22) as well as |Δv| ≤ √
n|D2v|, and using

Young’s inequality, we estimate the terms J3 and J4 as follows:

J3 =

∫

Ω

|∇v|2p−2∇v · ∇(F1(u, v)v)

= −
∫

Ω

∇ · (|∇v|2p−2∇v)F1(u, v)v

≤ (p − 1)

∫

Ω

|∇v|2p−3|∇|∇v|2|F1(u, v)v +

∫

Ω

|∇v|2p−2|Δv|F1(u, v)v

≤ p − 1

16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2 +
1

16

∫

Ω

|∇v|2(p−1)|D2v|2 + c4

∫

Ω

|∇v|2(p−1)

(3.23)

and

J4 = −b2

∫

Ω

|∇v|2p−2∇v · ∇(F2(v, w)w)

= b2

∫

Ω

∇ · (|∇v|2p−2∇v)F2(v, w)w

≤ b2(p − 1)

∫

Ω

|∇v|2p−3|∇|∇v|2|F2(v, w)w + b2

∫

Ω

|∇v|2p−2|Δv|F2(v, w)w

≤ p − 1

16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2 +
1

16

∫

Ω

|∇v|2(p−1)|D2v|2 + c5

∫

Ω

|∇v|2(p−1)w2.

(3.24)

Substituting (3.20), (3.21), (3.23) and (3.24) into (3.19), and using Hölder
inequality and Young’s inequality, we can derive that

1
2p

d

dt

∫

Ω

|∇v|2p +
3(p − 1)

16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2

+
3
4

∫

Ω

|∇v|2(p−1)|D2v|2 + θ1

∫

Ω

|∇v|2p

≤ (c1 + c2)
∫

Ω

|∇v|2p + c3

∫

Ω

|∇v|2(p−1)|Δu|2 + c4

∫

Ω

|∇v|2(p−1)

+ c5

∫

Ω

|∇v|2(p−1)w2

≤ (c1 + c2)
∫

Ω

|∇v|2p + c4

∫

Ω

|∇v|2(p−1) +
1

4κ2M2
2

∫

Ω

|∇v|2(p+1)

+ c6

∫

Ω

|Δu|p+1 + c7

∫

Ω

wp+1,

(3.25)

where κ2 = 2(n + 4p2) is the constant defined in Lemma 2.2. Then applying
Young’s inequality and (2.4), and noting ‖v(·, t)‖L∞ ≤ M2, we can obtain

(c1 + c2)
∫

Ω

|∇v|2p + c4

∫

Ω

|∇v|2(p−1) +
1

4κ2M2
2

∫

Ω

|∇v|2(p+1)

≤ 1
2κ2M2

2

∫

Ω

|∇v|2(p+1) + c8

≤ 1
2

∫

Ω

|∇v|2(p−1)|D2v|2 + c8,
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which substituted into (3.25) entails that

d

dt

∫

Ω

|∇v|2p +
3p(p − 1)

8

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2

+
p

2

∫

Ω

|∇v|2(p−1)|D2v|2 + 2pθ1

∫

Ω

|∇v|2p

≤ 2c6p

∫

Ω

|Δu|p+1 + 2c7p

∫

Ω

wp+1 + 2c8p.

(3.26)

On the other hand, from the third equation of (1.1), we can derive that

1
p

d

dt

∫

Ω

wp =
∫

Ω

wp−1wt

=
∫

Ω

wp−1[Δw − ∇ · [χw∇φ(u, v)] + F2(v, w)w − θ2w]

= −(p − 1)
∫

Ω

wp−2|∇w|2 + χ(p − 1)
∫

Ω

φuwp−1∇u · ∇w

+ χ(p − 1)
∫

Ω

φvwp−1∇v · ∇w +
∫

Ω

F2(v, w)wp − θ2

∫

Ω

wp.

(3.27)

Moreover, noting the boundedness of ‖u(·, t)‖L∞ (see Lemma 2.1) and
‖v(·, t)‖L∞( see (3.2)) and using the assumption (H3), we can find a constant
η > 0 independent of t such that

‖φu‖L∞ + ‖φv‖L∞ ≤ η. (3.28)

Then noting the facts (3.3), (3.22) and (3.28), and using Young’s inequality,
we can derive from (3.27) that

1
p

d

dt

∫

Ω

wp + (p − 1)
∫

Ω

wp−2|∇w|2 + θ2

∫

Ω

wp

≤ ηχ(p−1)M4

∫

Ω

wp−1|∇w|+ηχ(p−1)
∫

Ω

wp−1|∇v||∇w|+
∫

Ω

F2(v, w)wp

≤ p − 1
2

∫

Ω

wp−2|∇w|2 + c9

∫

Ω

wp|∇v|2 + c10

∫

Ω

wp,

which, together with the fact
∫

Ω
wp−2|∇w|2 = 4

p2

∫

Ω
|∇w

p
2 |2, gives

d

dt

∫

Ω

wp +
2(p − 1)

p

∫

Ω

|∇w
p
2 |2 + θ2p

∫

Ω

wp ≤ c9p

∫

Ω

wp|∇v|2 + c10p

∫

Ω

wp.

(3.29)

On the other hand, using Young’s inequality noting ‖v(·, t)‖L∞ ≤ M2, we can
derive from (2.4) that

c9p

∫

Ω

wp|∇v|2 + c10p

∫

Ω

wp ≤ p

2κ2M2
2

∫

Ω

|∇v|2(p+1) + c11

∫

Ω

wp+1 + c12

≤ p

2

∫

Ω

|∇v|2(p−1)|D2v|2 + c11

∫

Ω

wp+1 + c12.

(3.30)
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Then substituting (3.30) into (3.29) and combining (3.26), we can obtain
(3.18). �

3.3. Boundedness of ‖w(·, t)‖L∞

In this subsection, we are devoted to establishing the boundedness of ‖w(·, t)‖L∞ .
To this end, we first improve the regularity of u as follows.

Lemma 3.3. Let (u, v, w) be the solution obtained in Lemma 1.1, and suppose
that (3.1) hold. Then there exists a constant M7 > 0 depending on ξ but
independent of χ and t such that for any p > 1

∫ t+τ

t

∫

Ω

|D2u|p ≤ M7 for all t ∈ (0, T̃max), (3.31)

and
∫ t

τ

e−p(t−s)‖Δu‖p
Lp ≤ M7 for all t ∈ (τ, Tmax), (3.32)

where

τ := min
{

1,
Tmax

2

}

and T̃max =

{
Tmax − τ, if Tmax < ∞,

∞, if Tmax = ∞.

Proof. Letting G(x, t) := u(2 − u) − b1F1(u, v)v, we can rewrite the first equa-
tion of (1.1) as follows:

ut − Δu + u = G(x, t).

The combination of Lemma 2.1, (3.2) and (3.9) gives

‖G(·, t)‖L∞ = ‖u(2 − u) − b1F1(u, v)v‖L∞ ≤ c1. (3.33)

With u0 ∈ W 2,∞(Ω) and (3.33) in hand, we can use the similar arguments
as in [28, Lemma 4.2] to derive (3.31) directly. Then the estimate (3.32) is a
consequence of the maximal Sobolev regularity property (see [8, Lemma 2.5]).

�

Lemma 3.4. Suppose that (u, v, w) is the solution obtained in Lemma 1.1 and
assume that there exist constants p0 > n

2 and M0 > 0 such that

sup
t∈(0,Tmax)

‖v(·, t)‖Lp0 + sup
t∈(0,Tmax)

‖w(·, t)‖Lp0 ≤ M0,

then there exist two positive constants M8 and M9, which depend on ξ and χ
but are independent of t such that

‖∇v(·, t)‖L∞ ≤ M8 for all t ∈ (0, Tmax), (3.34)

and

‖w(·, t)‖L∞ ≤ M9 for all t ∈ (0, Tmax). (3.35)
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Proof. Since ‖w(·, t)‖Lp0 ≤ M0 with p0 > n
2 , then we can use Gagliardo-

Nirenberg inequality to find a constant c1 > 0 such that

M6

∫

Ω

wp+1 = M6‖w
p
2 ‖

2(p+1)
p

L
2(p+1)

p

≤ c1M6

(
‖∇w

p
2 ‖

2θ(p+1)
p

L2 ‖w
p
2 ‖

2(1−θ)(p+1)
p

L
2p0

p

+ ‖w
p
2 ‖

2(p+1)
p

L
2p0

p

)
,

≤ 2(p − 1)
p

∫

Ω

|∇w
p
2 |2 + c2, (3.36)

where θ =
p

2p0
− p

2(p+1)
p

2p0
−( 1

2− 1
n )

∈ (0, 1) and 2θ(p+1)
p < 2. Substituting (3.36) into (3.18),

we have

d

dt

∫

Ω

(
wp + |∇v|2p

)
+ M5

∫

Ω

(wp + |∇v|2p) ≤ M6

∫

Ω

|Δu|p+1 + c3. (3.37)

Then noting (3.31), we can apply Lemma 2.3 to (3.37) to find a constant c4 > 0
independent of t such for all p > p0 > n

2 that

‖w(·, t)‖Lp + ‖∇v(·, t)‖L2p ≤ c4 for all t ∈ (0, Tmax). (3.38)

From Lemma (1.1), we know that (3.34) holds for all t ∈ (0, τ ] with τ is
defined in Lemma 3.3. Hence we only need to show that (3.34) holds for all
t ∈ (τ, Tmax). Applying the variation-of-constants formula to second equation
of (1.1), we have

∇v(·, t) = ∇e(Δ−1)(t−τ)v(·, τ) − ξ

∫ t

τ

∇e(Δ−1)(t−s)∇ · (v∇u)ds

+
∫ t

τ

∇e(Δ−1)(t−s)(F1(u, v)

+ 1 − θ1)vds − b2

∫ t

τ

∇e(Δ−1)(t−s)F2(v, w)wds.

(3.39)

Then noting the L∞-bound of v,∇u, F1(u, v) and F2(v, w), from (3.39), we
can derive that

‖∇v(·, t)‖L∞ ≤ ‖∇e(Δ−1)(t−τ)v(·, τ)‖L∞ + ξ

∫ t

τ

‖∇e(Δ−1)(t−s)∇ · (v∇u)‖L∞ds

+

∫ t

τ

‖∇e(Δ−1)(t−s)(F1(u, v) + 1 − θ1)v‖L∞ds

+ b2

∫ t

τ

‖∇e(Δ−θ1)(t−s)F2(v, w)w‖L∞ds.

(3.40)
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Then using the semigroup estimates in Lemma 2.4 to (3.40), it holds that

‖∇v(·, t)‖L∞ ≤ γ2‖v(·, τ)‖L∞

+ γ2ξ

∫ t

τ

(
1 + (t − s)− 1

2− n
4p

)
e−(λ1+1)(t−s)‖∇ · (v∇u)‖L2pds

+ γ2c5

∫ t

τ

(
1 + (t − s)− 1

2

)
e−(λ1+1)(t−s)ds

+ γ2b2c6

∫ t

τ

(
1 + (t − s)− 1

2− n
2p

)
e−(λ1+1)(t−s)‖w‖Lpds.

(3.41)

Choosing p > n in (3.38), and using the boundedness of ‖v(·, t)‖L∞ and
‖∇u(·, t)‖L∞ , we have

‖∇ · (v∇u)‖L2p = ‖∇v · ∇u + vΔu‖L2p ≤ c7‖∇v‖L2p

+c8‖Δu‖L2p ≤ c4c7 + c8‖Δu‖L2p ,

and

∫ t

τ

(
1 + (t − s)

− 1
2 − n

4p

)
e−(λ1+1)(t−s) +

∫ t

τ

(
1 + (t − s)

− 1
2 − n

2p

)
e−(λ1+1)(t−s) ≤ c9,

which substituted into (3.41) gives

‖∇v(·, τ)‖L∞ ≤ c8γ2ξ

∫ t

τ

(
1 + (t − s)

− 1
2 − n

4p

)
e−(λ1+1)(t−s)‖Δu‖L2pds

+ γ2‖v(·, t)‖L∞ + γ2c5c9 + γ2b2c6c9.

(3.42)

On the other hand, using Hölder inequality and choosing p > n in (3.32), we
can derive that

∫ t

τ

(
1 + (t − s)− 1

2− n
4p

)
e−(λ1+1)(t−s)‖Δu‖L2pds

≤
(∫ t

τ

(
1 + (t − s)− 1

2− n
4p

) 2p
2p−1

e− 2pλ1
2p−1 (t−s)

) 2p−1
2p

·
(∫ t

τ

e−2p(t−s)‖Δu‖2p
L2pds

) 1
2p

≤ c10.

(3.43)

Substituting (3.43) into (3.42), we obtain (3.34) directly.
Similarly, we can apply the variation-of-constants formula to the third

equation of (1.1) and use the semigroup estimates in Lemma 2.4 to obtain
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‖w(·, t)‖L∞ ≤ ‖e(Δ−θ2)tw0‖L∞ + χ

∫ t

0

‖e(Δ−θ2)(t−s)∇ · [w∇φ(u, v)]‖L∞ds

+
∫ t

0

‖e(Δ−θ2)(t−s)F2(v, w)w‖L∞ds

≤ γ3‖w0‖L∞

+ c11

∫ t

0

(1 + (t − s)− 1
2− n

2p )e−(λ+θ2)(t−s)‖w∇φ(u, v)‖Lpds

+ c12

∫ t

0

(
1 + (t − s)− n

2p

)
e−θ2(t−s)‖w‖Lpds,

where p > n. Using the facts (3.28), ‖∇u(·, t)‖L∞ ≤ M4 in (3.3) and
‖∇v(·, t)‖L∞ ≤ M8 in (3.34), for p > n, we have

‖w‖Lp + ‖w∇φ(u, v)‖Lp ≤ (1 + ‖∇φ(u, v)‖L∞)‖w‖Lp

≤ [1 + η(M4 + M8)]‖w‖Lp ≤ c13. (3.44)

Substituting (3.44) into (3.45), and using the fact p > n, we have

‖w(·, t)‖L∞ ≤ γ3‖w0‖L∞ + c11c13

∫ ∞

0

(1 + (t − s)− 1
2− n

2p )e−(λ+θ2)(t−s)ds

+ c12c13

∫ ∞

0

(
1 + (t − s)− n

2p

)
e−θ2(t−s)ds

≤ c14,

(3.45)

which gives (3.35). �

Proof of Proposition 1.3. Proposition 1.3 is a consequence of the combination
of Lemma 3.1–3.4. �

4. Global boundedness: Proof of Theorem 1.6

In this section, we will prove global boundedness of the classical solution as
stated in Theorem 1.6. From the boundedness criterion established in Propo-
sition 1.3, to prove the boundedness results in Theorem 1.6, we only need
to show the boundedness of ‖v(·, t)‖Lp + ‖w(·, t)‖Lp for p > n

2 based on the
weighted energy estimates (see [39,45]) and the semigroup estimates.

4.1. Case I: general functional response functions

In this subsection, we first study the (1.1) with general functional response
function satisfying the assumptions (H1) and (H2). Then based on the weighted
energy estimates, we shall show the boundedness of ‖v(·, t)‖Lp + ‖w(·, t)‖Lp

with p > n
2 under the smallness assumptions on ξ and χ.

Lemma 4.1. Let the (u, v, w) be the solution obtained in Lemma 1.1 and sup-
pose assumptions (H1)–(H3) hold. If ξ satisfies that

ξ ≤ 1
(n + 2)M1

with M1 := max{1, ‖u0‖L∞}, (4.1)
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then it holds that

‖v(·, t)‖L∞ ≤ M2 for all t ∈ (0, Tmax), (4.2)

where M2 is the constant defined in Lemma 3.1.

Proof. Noting that ‖u(·, t)‖L∞ ≤ M1 := max{1, ‖u0‖L∞} from (2.1), based on
some ideas in [39,45], we introduce a weight function as follows

Φ(u) := e(βu)2 with β2 =
p − 1
4pM2

1

, (4.3)

where p = n + 2 is chosen to ensure the following two relations (will be used
later) hold:

ξ2p2 < 8β2 (4.4)

and

(p − 1)β2

p
>

4β4u2

p
and

(p − 1)β2

p
≥ ξ2(p − 1)2

4
. (4.5)

We can easily check that Φ(u) satisfies

1 ≤ Φ(u) ≤ c1, (4.6)

and

0 < Φ′(u) = 2β2uΦ(u) and 0 < Φ′′(u) = (2β2 + 4β4u2)Φ(u). (4.7)

From equations of (1.1) and using formula of integration by parts, we can
derive that

1
p

d

dt

∫

Ω

Φ(u)vp =
1
p

∫

Ω

Φ′(u)vput +
∫

Ω

Φ(u)vp−1vt

= −1
p

∫

Ω

Φ′′(u)vp|∇u|2 − 2
∫

Ω

Φ′(u)vp−1∇u · ∇v

− (p − 1)
∫

Ω

Φ(u)vp−2|∇v|2 + ξ

∫

Ω

Φ′(u)vp|∇u|2

+ ξ(p − 1)
∫

Ω

Φ(u)vp−1∇u · ∇v

+
1
p

∫

Ω

Φ′(u)uvp +
∫

Ω

Φ(u)vpF1(u, v)

− 1
p

∫

Ω

Φ′(u)u2vp − b1

p

∫

Ω

Φ′(u)vp+1F1(u, v)

− b2

∫

Ω

Φ(u)vp−1F2(v, w)w − θ1

∫

Ω

Φ(u)vp,
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which, together with the facts F2(v, w) > 0 in assumption (H2), Φ(u) > 0 and
Φ′(u) > 0 in (4.7) as well as u, v, w > 0, gives

1

p

d

dt

∫

Ω

Φ(u)vp ≤ −
∫

Ω

[
1

p
Φ′′(u) − ξΦ′(u)

]

vp|∇u|2 − (p − 1)

∫

Ω

Φ(u)vp−2|∇v|2

−
∫

Ω

[
2Φ′(u) − ξ(p − 1)Φ(u)

]
vp−1∇u · ∇v

+
1

p

∫

Ω

Φ′(u)uvp +

∫

Ω

Φ(u)vpF1(u, v)

= −
∫

Ω

XAXT +
1

p

∫

Ω

Φ′(u)uvp +

∫

Ω

Φ(u)vpF1(u, v),

(4.8)

where X = (v
p
2 ∇u, v

p−2
2 ∇v) and

A =

⎛

⎝

1
pΦ′′(u) − ξΦ′(u) 2Φ′(u)−ξ(p−1)Φ(u)

2

2Φ′(u)−ξ(p−1)Φ(u)
2 (p − 1)Φ(u)

⎞

⎠ .

Next, we shall prove the positive definite of the matrix A. To this end, we can
use (4.7) and the fact (4.4) to obtain

1
p
Φ′′(u) − ξΦ′(u) =

[
1
p
(2β2 + 4β4u2) − 2ξβ2u

]

Φ(u)

=
2β2

p

(
2β2u2 − ξpu + 1

)
Φ(u) > 0,

(4.9)

where we have used the fact 2β2u2 − ξpu + 1 > 0 due to ξ2p2 < 8β2 in (4.4).
Using (4.6) and (4.7), and noting the fact (4.5), we can verify that

|A| =
p − 1

p
[Φ′′(u) − pξΦ′(u)] Φ(u) − [2Φ′(u) − ξ(p − 1)Φ(u)]2

4

=
p − 1

p
Φ′′(u)Φ(u) − |Φ′(u)|2 − ξ2(p − 1)2Φ2(u)

4

=
[
p − 1

p
(2β2 + 4β4u2) − 4β4u2 − ξ2(p − 1)2

4

]

Φ2(u)

=
[
2(p − 1)β2

p
− 4β4u2

p
− ξ2(p − 1)2

4

]

Φ2(u) > 0.

(4.10)

Then the combination of (4.9) and (4.10) implies that the matrix A is positive
definite, and thence from (4.8), one can find a constant c2 > 0 independent of
ξ such that

1
p

d

dt

∫

Ω

Φ(u)vp + c2

∫

Ω

vp|∇u|2 + c2

∫

Ω

vp−2|∇v|2

≤ 1
p

∫

Ω

Φ′(u)uvp +
∫

Ω

Φ(u)vpF1(u, v). (4.11)

On the other hand, we can use (4.6), (4.7) and (3.9) as well as (2.1) to find a
positive constant c3 such that

1
p

∫

Ω

Φ′(u)uvp +
∫

Ω

Φ(u)vpF1(u, v) ≤ c3

∫

Ω

vp,
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which substituted into (4.11) yields

1
p

d

dt

∫

Ω

Φ(u)vp + c2

∫

Ω

vp−2|∇v|2 ≤ c3

∫

Ω

vp. (4.12)

Using the fact 1 ≤ Φ(u) ≤ c1 in (4.6) and ‖v(·, t)‖L1 ≤ M3 in (2.2), then we
can use Gagliardo-Nirenberg inequality to find c5 > 0 such that

c3

∫

Ω

vp +
∫

Ω

Φ(u)vp ≤ c4

∫

Ω

vp = c4‖v
p
2 ‖2

L2

≤ c5(‖∇v
p
2 ‖

2n(p−1)
n(p−1)+2

L2 ‖v
p
2 ‖

4
n(p−1)+2

L
2
p

+ ‖v
p
2 ‖2

L
2
p
)

≤ c2

∫

Ω

vp−2|∇v|2 + c6,

which substituted into (4.12) gives

1
p

d

dt

∫

Ω

Φ(u)vp +
∫

Ω

Φ(u)vp ≤ c6. (4.13)

Then applying Grönwall’s inequality to (4.13), we have
∫

Ω
Φ(u)vp ≤ c7, which

together with the facts Φ(u) ≥ 1 and p = n + 2 gives

‖v(·, t)‖Ln+2 ≤ c8, (4.14)

where c8 > 0 is a constant independent of ξ. Then using Lemma 3.1 and noting
(4.14), we can obtain (4.2) directly. �

Lemma 4.2. Let (u, v, w) be the solution obtained in Lemma 1.1 and assume
(H1)–(H3) hold. Suppose ξ satisfies (4.1) and χ satisfies

χ‖φv‖L∞ ≤ 1
(n + 2)M2

, (4.15)

we have

‖w(·, t)‖L∞ ≤ M9, for all t ∈ (0, Tmax), (4.16)

where M2 is the constant defined in Lemma 3.1 and M9 is chosen in (3.35).

Proof. Since ξ satisfies (4.1), then from Lemma 4.1, we have ‖v(·, t)‖L∞ ≤ M2.
Letting p := n + 2, we introduce a weight function

Ψ(v) := e(ρv)2 with ρ2 =
p − 1
4pM2

2

, (4.17)

which satisfies

1 ≤ Ψ(v) ≤ c1, (4.18)

and

0 < Ψ′(v) = 2ρ2vΨ(v) and 0 < Ψ′′(v) = (2ρ2 + 4ρ4v2)Ψ(v). (4.19)
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Using the second and third equation of (1.1), and noting the fact Ψ(v) > 0,
after some calculations, we can derive

1
p

d

dt

∫

Ω

Ψ(v)wp =
1
p

∫

Ω

Ψ′(v)wpvt +
∫

Ω

Ψ(v)wp−1wt

≤ −
∫

Ω

Y BY T +
∫

Ω

[
ξ

p
Ψ′′(v)v + χΨ′(v)φu

]

wp∇u · ∇v

+
∫

Ω

(ξΨ′(v)v + χ(p − 1)Ψ(v)φu) wp−1∇u · ∇w

+
1
p

∫

Ω

Ψ′(v)vwpF1(u, v) +
∫

Ω

Ψ(v)wpF2(v, w),

(4.20)

where Y = (w
p
2 ∇v, w

p−2
2 ∇w) and

B =

⎛

⎝

1
pΨ′′(v) − χφvΨ′(v) 2Ψ′(u)−χ(p−1)φvΨ(u)

2

2Ψ′(u)−χ(p−1)φvΨ(u)
2 (p − 1)Ψ(v)

⎞

⎠ . (4.21)

Next, we shall prove that the matrix B is positive definite. In fact, noting
(4.15) and the definition of ρ in (4.17), we can check that

χ2φ2
v <

8ρ2

p2
, (4.22)

and

(p − 1)ρ2

p
>

4ρ4v2

p
and

(p − 1)ρ2

p
≥ χ2(p − 1)2φ2

v

4
. (4.23)

Then using (4.18) and (4.19), and noting (4.22), we can check that

1
p
Ψ′′(v) − χφvΨ′(v) =

2ρ2

p

(
2ρ2v2 − pχφvv + 1

)
Ψ(v) > 0. (4.24)

On the other hand, after some calculations, using (4.19) and (4.23), we can
derive from (4.21) that

|B| =
p − 1

p
[Ψ′′(v) − pχφvΨ′(v)] Ψ(v) − [2Ψ′(v) − χ(p − 1)φvΨ(v)]2

4

=
[
p − 1

p
(2ρ2 + 4ρ4v2) − 4ρ4v2 − χ2(p − 1)2φ2

v

4

]

Ψ2(v)

=
[
2(p − 1)ρ2

p
− 4ρ4v2

p
− χ2(p − 1)2φ2

v

4

]

Ψ2(v) > 0.

(4.25)

Then the combination of (4.24) and (4.25) gives the positive definite of the
matrix B and hence there exists a constant c2 > 0 such that

∫

Ω

Y BY T ≥ c2

∫

Ω

wp|∇v|2 + c2

∫

Ω

wp−2|∇w|2. (4.26)



36 Page 24 of 33 H.-Y. Jin and F. Zou NoDEA

On the other hand, noting the boundedness of ‖v(·, t)‖L∞ and ‖∇u(·, t)‖L∞ ,
and using (4.18) and (4.19) as well as the assumptions (H1)–(H3) on Fi(u, v)(i =
1, 2) and φ(u, v), we can derive that

∫

Ω

(
ξ

p
Ψ′′(v)v + χΨ′(v)φu

)

wp∇u · ∇v ≤ c3

∫

Ω

wp|∇v| (4.27)

and
∫

Ω

(ξΨ′(v)v + χ(p − 1)Ψ(v)φu) wp−1∇u · ∇w ≤ c4

∫

Ω

wp−1|∇w| (4.28)

as well as
1
p

∫

Ω

Ψ′(v)vwpF1(u, v) +
∫

Ω

Ψ(v)wpF2(v, w) ≤ c5

∫

Ω

wp. (4.29)

Then substituting (4.26)–(4.29) into (4.20), and using Young’s inequality, we
obtain that

1
p

d

dt

∫

Ω

Ψ(v)wp

+ c2

∫

Ω

wp|∇v|2 + c2

∫

Ω

wp−2|∇w|2

≤ c3

∫

Ω

wp|∇v| + c4

∫

Ω

wp−1|∇w| + c5

∫

Ω

wp

≤ c2

2

∫

Ω

wp|∇v|2 +
c2

2

∫

Ω

wp−2|∇w|2 +
(

c2
3

2c2
+

c2
4

2c2
+ c5

)∫

Ω

wp,

which gives
1
p

d

dt

∫

Ω

Ψ(v)wp +
c2

2

∫

Ω

wp|∇v|2 +
c2

2

∫

Ω

wp−2|∇w|2 ≤ c6

∫

Ω

wp, (4.30)

with c6 := c23
2c2

+ c24
2c2

+ c5.
At last, using the facts 1 ≤ Ψ(v) ≤ c1 and ‖w(·, t)‖L1 ≤ M3. We can use

the Gagliardo-Nirenberg inequality and Young’s inequality to derive that

c6

∫

Ω

wp +

∫

Ω

Ψ(v)wp ≤ c7

∫

Ω

wp = c7‖w
p
2 ‖2

L2

≤ c8(‖∇w
p
2 ‖

2n(p−1)
n(p−1)+2

L2 ‖w
p
2 ‖

4
n(p−1)+2

L
2
p

+ ‖w
p
2 ‖2

L
2
p
)

≤ c2

2

∫

Ω

wp−2|∇w|2 + c9. (4.31)

The combination of (4.30) and (4.31) gives

1
p

d

dt

∫

Ω

Ψ(v)wp +
∫

Ω

Ψ(v)wp ≤ c9. (4.32)

Applying Grönwall’s inequality to (4.32), we obtain
∫

Ω

wp ≤
∫

Ω

Ψ(v)wp ≤ c10.

Since p = n + 2, (4.16) follows Lemma 3.4. Then we complete the proof. �
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4.2. Case II: special functional response functions

In this subsection, suppose F1(u, v) and F2(v, w) satisfy assumptions (H1)–
(H3) and (1.9), then we shall establish the boundedness of system (1.1) by using
semigroup estimates and the boundedness criterion obtained in Proposition
1.3.

Lemma 4.3. Let (u, v, w) be the solution obtained in Lemma 1.1, and suppose
the assumptions (H1)–(H3) and (1.9) hold. Then we have

‖∇u(·, t)‖L∞ ≤ M10 for all t ∈ (0, Tmax), (4.33)

and

‖v(·, t)‖L∞ ≤ M11 for all t ∈ (0, Tmax), (4.34)

where the constant M10 is independent of ξ, χ and t, and M11 depends on ξ
but is independent of χ and t.

Proof. Noting ‖u(·, t)‖L∞ ≤ M1 in Lemma 2.1, and using the assumption (H1)
and (1.9), we have

0 < F1(u, v)v ≤ μ1u ≤ μ1M1 for all t ∈ (0, Tmax). (4.35)

Applying the variation-of-constants formula to the first equation of system
(1.1), one can derive

∇u(·, t) = ∇e(Δ−1)tu0 +
∫ t

0

∇e(Δ−1)(t−s)u(2 − u)ds

−b1

∫ t

0

∇e(Δ−1)(t−s)F1(u, v)vds. (4.36)

Then using the semigroup estimates stated in Lemma 2.4 and (4.35), we can
derive from (4.36) that

‖∇u(·, t)‖L∞ ≤ ‖∇e(Δ−1)tu0‖L∞ +
∫ t

0

‖∇e(Δ−1)(t−s)u(2 − u)‖L∞ds

+ b1

∫ t

0

‖∇e(Δ−1)(t−s)F1(u, v)v‖L∞ds

≤ γ2‖u0‖L∞ + γ2

∫ t

0

(1 + (t − s)− 1
2 )e−(λ1+1)(t−s)‖u(2 − u)‖L∞ds

+ b1γ2

∫ t

0

(1 + (t − s)− 1
2 )e−(λ1+1)(t−s)‖F1(u, v)v‖L∞ds

≤ γ2‖u0‖L∞

+ γ2M1(2 + M1 + b1μ1)
∫ ∞

0

(1 + (t − s)− 1
2 )e−(λ1+1)(t−s)ds

≤ γ2‖u0‖L∞ +
γ2M1(2 + M1 + b1μ1)

λ1 + 1

(

1 + (λ1 + 1)
1
2 Γ

(
1
2

))

,

which gives (4.33).
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Next, we shall prove the boundedness of ‖v(·, t)‖L∞ in (4.34). By using
the boundedness criterion established in Lemma 3.1, we only need to show
‖v(·, t)‖Lp ≤ c1 with p > n

2 . To this end, for T ∈ (0, Tmax) we first define

N (T ) := sup
t∈(0,T )

‖v(·, t)‖Lp . (4.37)

For p > n
2 , we choose n

3 < q < p such that

− 1
2

− n

2

(
1
q

− 1
p

)

> −1 and δ1 :=
1 − 1

q

1 − 1
p

∈ (0, 1). (4.38)

Then using (4.33), Hölder inequality and (4.37), we have

‖v∇u‖Lq ≤ ‖v‖Lq‖∇u‖L∞ ≤ ‖v‖1−δ1
L1 ‖v‖δ1

Lp‖∇u‖L∞ ≤ M1−δ1
3 M10N δ1(T ).

(4.39)

Then applying the semigroup estimates in Lemma 2.4 and using (4.39), we
can derive from (3.11) that

‖v(·, t)‖Lp ≤ ‖e(Δ−θ1)tv0‖Lp + ξ

∫ t

0

‖e(Δ−θ1)(t−s)∇ · (v∇u)‖Lpds

+

∫ t

0

‖e(Δ−θ1)(t−s)F1(u, v)v‖Lpds

≤ γ3‖v0‖L∞ + γ3

∫ t

0

(1 + (t − s)
n
2p )e−θ1(t−s)‖F1(u, v)v‖L∞ds

+ γ4ξ

∫ t

0

(
1 + (t − s)

− 1
2 − n

2 ( 1
q

− 1
p
)
)

e−(λ1+θ1)(t−s)‖v∇u‖Lq ds

≤ γ3‖v0‖L∞ + γ3μ1M1

∫ ∞

0

(1 + (t − s)
n
2p )e−θ1(t−s)ds

+ γ4ξM
1−δ1
3 M10N δ1(T )

∫ ∞

0

(
1 + (t − s)

− 1
2 − n

2 ( 1
q

− 1
p
)
)

e−(λ1+θ1)(t−s)ds

≤ c1ξN δ1(T ) + c2,

which combined (4.37) gives

N (T ) ≤ c1ξN δ1(T ) + c2

and hence N (T ) ≤ c3(1 + ξ
1

1−δ1 ) := c4 by noting δ1 ∈ (0, 1) in (4.38). Then
using the definition of N (T ), we have for all p > n

2 that

‖v(·, t)‖Lp ≤ c4 for all t ∈ (0, Tmax). (4.40)

At last, applying Lemma 3.1 to (4.40) with p > n
2 , we obtain (4.34). �

Lemma 4.4. Let (u, v, w) be the solution obtained in Lemma 1.1 and the as-
sumptions (H1)–(H3) as well as (1.9) hold. Then it holds that

‖∇v(·, t)‖L∞ ≤ M12 for all t ∈ (0, Tmax), (4.41)

and

‖w(·, t)‖L∞ ≤ M13 for all t ∈ (0, Tmax), (4.42)

where M12 and M13 are positive constants depending on ξ and χ but indepen-
dent of t.
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Proof. Using the similar arguments in Lemma 3.2, we can derive

1
2p

d

dt

∫

Ω

|∇v|2p +
p − 1

2

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2

+
∫

Ω

|∇v|2(p−1)|D2v|2 + θ1

∫

Ω

|∇v|2p

=
1
2

∫

∂Ω

|∇v|2(p−1) ∂|∇v|2
∂ν

+ ξ

∫

Ω

∇ · (|∇v|2p−2∇v)∇ · (v∇u)

+
∫

Ω

|∇v|2p−2∇v · ∇(F1(u, v)v) − b2

∫

Ω

|∇v|2p−2∇v · ∇(F2(v, w)w)

= J1 + J2 + J3 + J4.

(4.43)

The terms J1, J2 and J3 can be estimated by using the same way in Lemma 3.2,
and then we only need to estimate the term J4. In fact, noting ‖v(·, t)‖L∞ ≤
M11 in Lemma 4.3 and using the condition (1.9), we have

0 < F2(v, w)w ≤ μ2v ≤ μ2M11 for all t ∈ (0, Tmax). (4.44)

Then using the integration by parts and Young’s inequality as well as (4.44),
we estimate J4 as follows:

J4 = −b2

∫

Ω

|∇v|2p−2∇v · ∇(F2(v, w)w)

≤ b2(p − 1)

∫

Ω

|∇v|2p−3|∇|∇v|2|F2(v, w)w + b2

∫

Ω

|∇v|2p−2ΔvF2(v, w)w

≤ b2(p − 1)μ2M11

∫

Ω

|∇v|2p−3|∇|∇v|2| + b2μ2M11

√
n

∫

Ω

|∇v|2p−2|D2v|

≤ p − 1

16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2 +
1

16

∫

Ω

|∇v|2p−2|D2v|2 + c1

∫

Ω

|∇v|2(p−1).

(4.45)

Then substituting J1 in (3.20), J2 in (3.21) and J3 in (3.23) as well as J4 in
(4.45) into (4.43), we obtain

1
2p

d

dt

∫

Ω

|∇v|2p +
3(p − 1)

16

∫

Ω

|∇v|2(p−2)|∇|∇v|2|2

+
3
4

∫

Ω

|∇v|2p−2|D2v|2 + θ1

∫

Ω

|∇v|2p

≤ c2

∫

Ω

|∇v|2p + c3

∫

Ω

|∇v|2(p−1) + c4

∫

Ω

|∇v|2(p−1)|Δu|2.

(4.46)

Using Young’s inequality and (2.4), we can derive that

c2

∫

Ω

|∇v|2p + c3

∫

Ω

|∇v|2(p−1) + c4

∫

Ω

|∇v|2(p−1)|Δu|2

≤ 3
4k2M2

2

∫

Ω

|∇v|2(p+1) + c5

∫

Ω

|D2u|p+1 + c6

≤ 3
4

∫

Ω

|∇v|2p−2|D2v|2 + c5

∫

Ω

|D2u|p+1 + c6,
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which substituted into (4.46) gives

1
2p

d

dt

∫

Ω

|∇v|2p + θ1

∫

Ω

|∇v|2p ≤ c5

∫

Ω

|D2u|p+1 + c6. (4.47)

Noting the boundedness of ‖v(·, t)‖L∞ , from Lemma 3.3, we have
∫ t+τ

t

∫

Ω

|D2u|p+1 ≤ M7 for all t ∈ (0, T̃max). (4.48)

Then using Lemma 2.3 and noting (4.48), from (4.47), we obtain

‖∇v(·, t)‖L2p ≤ c7. (4.49)

On the other hand, we rewrite the second equation of system (1.1) in the
following:

vt − Δv + v = −∇ · (ξv∇u) + H(u, v, w), (4.50)

where H(u, v, w) := F1(u, v)v − b2F2(v, w)w + (1 − θ1)v satisfying

‖H(u, v, w)‖L∞ ≤ ‖F1(u, v)v‖L∞ + b2‖F2(v, w)w‖L∞ + (1 + θ1)‖v‖L∞

≤ μ1M1 + b2μ2M11 + (1 + θ1)M11 := c8.
(4.51)

Then applying the variation-of-constants formula to (4.50), we obtain

∇v(·, t) =∇e(Δ−1)(t−τ)v(·, τ) − ξ

∫ t

τ

∇e(Δ−1)(t−s)∇ · (v∇u)ds

+
∫ t

τ

∇e(Δ−1)(t−s)H(u, v, w)ds.

(4.52)

Using the boundedness of ‖∇u(·, t)‖L∞ (see (4.33)) and ‖∇v(·, t)‖L2p (see
(4.49)), for p > n

2 , we can derive that

‖∇ · (v∇u)‖L2p ≤ c9 + c10‖Δu‖L2p . (4.53)

Next, we apply the semigroup estimates in Lemma 2.4, and use (4.51)–(4.53)
and (3.43) to obtain that

‖∇v(·, t)‖L∞ ≤ ‖∇e(Δ−1)(t−τ)v(·, τ)‖L∞ + ξ

∫ t

τ

‖∇e(Δ−1)(t−s)∇ · (v∇u)‖L∞ds

+

∫ t

τ

‖∇e(Δ−1)(t−s)H(u, v, w)‖L∞ds

≤ c11 + γ2ξ

∫ t

τ

(
1 + (t − s)

− 1
2 − n

4p

)
e−(λ1+1)(t−s)‖∇ · (v∇u)‖L2pds

+ γ2c8

∫ t

τ

(
1 + (t − s)− 1

2

)
e−(λ1+1)(t−s)ds

≤ c11 + γ2ξc9

∫ t

τ

(
1 + (t − s)

− 1
2 − n

4p

)
e−(λ1+1)(t−s)ds

+ γ2ξc10

∫ t

τ

(
1 + (t − s)

− 1
2 − n

4p

)
e−(λ1+1)(t−s)‖Δu‖L2pds

+ γ2c8

∫ t

τ

(
1 + (t − s)− 1

2

)
e−(λ1+1)(t−s)ds

≤ c12,
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which gives (4.41).
Next, we shall prove (4.42). In fact, using the third equation of system

(1.1), we have

w(·, t) = e(Δ−θ2)tw0 − χ

∫ t

0

e(Δ−θ2)(t−s)∇ · [w∇φ(u, v)]

+
∫ t

0

e(Δ−θ2)(t−s)F2(v, w)wds.

(4.54)

For p > n
2 and T ∈ (0, Tmax), we define

K(T ) := sup
t∈(0,T )

‖w(·, t)‖Lp . (4.55)

Then noting p > n
2 , we can find constant n

3 < q < p such that

− 1
2

− n

2

(
1
q

− 1
p

)

> −1 and δ2 :=
1
q − 1
1
p − 1

∈ (0, 1). (4.56)

On the other hand, due the assumption (H3) and the boundedness of ‖u(·, t)‖L∞

(see Lemma 2.1) and ‖v(·, t)‖L∞ (see Lemma 4.3), we can find a positive con-
stant c13 independent of t such that

‖φu‖L∞ + ‖φv‖L∞ ≤ c13,

which, together with the facts (4.33) and (4.41), gives

‖w∇φ(u, v)‖Lq = ‖w(φu∇u + φv∇v)‖Lq ≤ c13‖w‖Lq (‖∇u‖L∞ + ‖∇v‖L∞)

≤ c14‖w‖1−δ2
L1 ‖w‖δ2

Lp

≤ c14M
1−δ2
3 Kδ2(T ).

(4.57)

Then using Lemma 2.4 and noting the facts (4.56) and (4.57), from (4.54), we
have

‖w(·, t)‖Lp ≤ γ3‖w0‖L∞

+ χγ4

∫ t

0

(
1 + (t − s)− 1

2− n
2 ( 1

q − 1
p )

)
e−(λ1+θ2)(t−s)‖w∇φ(u, v)‖Lqds

+ γ3μ2M11

∫ t

0

(1 + (t − s)
n
2p e−θ2(t−s)ds

≤ c15 + c16χKδ2(T ),

which combined (4.55) gives

K(T ) ≤ c15χKδ2(T ) + c16. (4.58)

Then we apply Young’s inequality to from (4.58) to obtain

K(T ) ≤ c17(1 + χ
1

1−δ2 ) := c18,

and hence for p > n
2 it holds

‖w(·, t)‖Lp ≤ c18 for all t ∈ (0, Tmax). (4.59)
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Then using the boundedness criterion in Lemma 3.4, from (4.59), we derive
(4.42) and then it completes the proof of Lemma 4.4. �

Proof. Theorem 1.6 is a consequence of Lemmas 4.1–4.4. �
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