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Abstract

In this paper, we study a three-species food chain model with intraguild predation and
taxis mechanisms (prey-taxis and alarm-taxis) in an open interval 2 C R with smooth
boundary. Based on energy estimates, we first establish the existence of global clas-
sical solutions with a uniform-in-time bound. Moreover, we build the global stability
of the spatially homogeneous prey-only steady states, semi-coexistence and coexis-
tence steady states under certain conditions on parameters by using the Lyapunov
functionals and LaSalle’s invariant principle. With numerical simulations, we further
demonstrate that the combination of taxis mechanisms and intraguild predation can
produce stationary spatially inhomogeneous patterns, chaotic spatiotemporal patterns
and spatial-periodic patterns for the parameters outside the stability regime. We also
find from numerical simulations that prey-taxis could destabilize a positive equilib-
rium in a three-species Lotka—Volterra model with intraguild predation, which is in
contrast to the well-known results that the attractive prey-taxis serves to enhance the
stability of the spatially homogeneous steady state in two-species predator system or
three-species food chain model without intraguild predation.
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1 Introduction and main results

To understand the complex ecological interactions, various ordinary differential equa-
tion (ODE)-type food chain models have been proposed, and some interesting and
impressive results have been established on the dynamics of three-species food chain
model (Vance 1978; Gilpin 1979; Krikorian 1979; Hasting and Powell 1991; Holt
and Polis 1997; McCann and Hastings 1997; Klebanoff and Hastings 1994; Polis
1991; Tanabe and Namba 2005; McCann and Yodzis 1994). In particular, the chaos
phenomenon can be found for the three-species food chain models with nonlinear
functional responses (Hasting and Powell 1991; Klebanoff and Hastings 1994) or for
the simple Lotka—Volterra-type functional responses with intraguild predation (i.e., a
simple kind of omnivory in which a predator and a prey share a common resource)
(Tanabe and Namba 2005). As we know, the spatial movement plays an indispens-
able role for the population species to survive and thrive. However, compared with the
well-known results on the temporal three-species predator—prey systems (Vance 1978;
Gilpin 1979; Krikorian 1979; Hasting and Powell 1991; Holt and Polis 1997; McCann
and Hastings 1997, ?; Polis 1991; Tanabe and Namba 2005), few results are available
for the food chain model with spatial movement. In this paper, we shall consider the
three-species Lotka—Volterra food chain model with spatial movement:

ur =d1Au+u(l —u) — bjuv — yjuw, xeQ,t>0,
vy =dyAv —EV - (WVu) + uv — bpvw — v, xeQ,t>0, (1.
w; = Aw — xV - [wVe(u,v)]+vw + ppuw —bw, x € Q,t >0,

where 2 C R” is a bounded domain, and (u, v, w) := (u, v, w)(x, t) denotes the
densities of the prey species, primary and top predators, respectively. The parame-
ters d; > 0 (i = 1,2) are diffusion coefficients, the term —&V - (vVu) describes
the directional movement of primary predators toward their prey density gradi-
ent (called prey-taxis mechanism (Kareiva and Odell 1987)). Similarly, the term
—xV - [wVe¢(u, v)] describes the top predators move toward to high gradient of the
signal produced as a result of the interaction between the prey and primary predator.
Fori = 1, 2, the parameters b; > 0 and y; > 0 describe the interaction of interspecies,
and 6; > O represent the mortality rates of the primary and top predators, respectively.

Before stating our main results, we first recall some related results for the system
(1.1). If w = 0, the system (1.1) becomes the two-species predator—prey system with
prey-taxis (called the prey-taxis system), which was first proposed by Kareiva and
Odell to interpret the heterogeneous aggregative patterns due to the area-restricted
search strategy (Kareiva and Odell 1987). In recent years, the solution behaviors for
two-species prey-taxis system have been extensively studied, including the global
boundedness and large time behavior as well as pattern formations (cf. (Jin and Wang
2017; Kareiva and Odell 1987; Wu et al. 2016; Jin and Wang 2021; Winkler 2017; Cai
et al. 2022) and references therein). Moreover, one can find more related results on the
two-species predator—prey system with other types of taxis mechanisms such as the
indirect prey-taxis mechanism (Ahn and Yoon 2020; Wang and Wang 2020; Tello and
Wrzosek 2016), predator-taxis mechanism (Wu et al. 2018), dual-taxis mechanism
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(Tao and Winkler 2022; Fuest 2020), and signal-dependent prey-taxis mechanism (Jin
and Wang 2021). However, compared with the substantial results on the two-species
predator—prey systems with various taxis mechanisms, few results are known for the
three-species spatial food chain model (1.1) (i.e., w # 0). Recently, the second author
and his collaborators (Jin et al. 2022) studied the global dynamics of system (1.1) ina
two-dimensional bounded domain with homogeneous Neumann boundary conditions
and under the following assumptions:

y1 =y =0 and ¢(u,v) =v. (1.2)

The ideas/methods used in Jin et al. (2022) depend on that the system (1.1) with (1.2)
has a nice entropy estimate, which was first developed in Tao and Winkler (2012) for
the classical chemotaxis system with consumption of chemoattractant and later was
used to study the prey-taxis system (Jin and Wang 2017).

Ify1, y2 > 0,the corresponding ODE version of (1.1) (i.e., ignored the spatial move-
ment) was called intraguild predation model, which exhibits very complex dynamics
and has been studied for a long time (see Holt and Polis (1997); McCann and Hastings
(1997); Polis (1991); Tanabe and Namba (2005) and references therein ). Particularly,
ithas been proved in Tanabe and Namba (2005) that the intraguild predation sometimes
destabilizes food webs and induces chaos, even if the functional responses are linear
(Lotka—Volterra type). However, to our knowledge, for the spatial food chain model
(1.1) with intraguild predation (i.e., y1, y2 > 0), there is no such a result. On the other
hand, if the signal intensity function ¢ (u, v) = uv, the system (1.1) was proposed
in Haskell and Bell (2021) to test the “burglar alarm" hypothesis (cf. (Burkenroad
1943)): a prey species renders itself dangerous to a primary predator by generating
an alarm call to attract a second predator at higher trophic levels in the food chain
that preys on the primary predator. Hence, the system (1.1) with ¢ («, v) = uv, also
called alarm-taxis system, has been studied for the global boundedness and stability
of solutions: in one-dimensional space (Haskell and Bell 2021) and in two dimensions
(Jin et al. 2023) in the presence of intraspecific competition for v and w.

Our goal in this paper is to study the global dynamics for system (1.1) with yy, y» >
0 and more general signal functional ¢ (u, v). However, if y1, y» > O or ¢ (u, v) # v,
the ideas used in Jin et al. (2022) are not available anymore. Moreover, due to the lack
of quadratic decay terms (i.e., intraspecific competition) for v and w, the methods
developed in Jin et al. (2023) are also inapplicable, which motivates us to develop new
ideas to study this problem. To explore the combined effects of the intraguild predation
and taxis mechanisms more clearly, we focus on studying the global dynamics of the
system (1.1) in an open interval 2 C R:

Uy = diuyy +u(l —u) — byuv — yjuw, xeQ,t>0,

vy = davxxy — E(Wuy)x + uv — brvw — Oqv, xeQ,t>0,

Wy = Wy — X (WP, v)x)y +vw + youw —hw, x €, t>0, (1.3
Uy = vy = wy =0, x€o02,t >0,

(u, v, w)(x,0) = (uog, vo, wo)(x), x € Q.
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For more generally, we assume that the signal intensity function ¢ (u, v) satisfies the
following conditions:

(HO) The function ¢ (y, z) : (0, 00) x (0, 00) — R is positive and ¢ (v, z) belongs to
C2([0, 00) x [0, 00)).

Then we first show the global existence of classical solution as follows.

Theorem 1.1 (Global boundedness) Let Q@ C R be a bounded open interval with
smooth boundary. Suppose that the initial data 0 S (ug, vo, wo) € (WL and
the assumptions in (HO) hold. Then the system (1.3) admits a unique global classical
solution (u, v, w) fulfilling u, v, w > 0. Moreover, there exists a constant M > 0
independent of t such that

luC, Dllwrz + lvE Ollwrz + lw(, DllLe < M.

Remark 1.2 The upper bounds of |[u(-, t)| L~ and |Jv(:, t)|| e play an important role
in studying the large time behavior of solutions. In fact, we can show that

lu(-, e < Mo := max {1, [[ugllL}, (1.4)
and
(-, Ol < Ko := C[1 +£(E® + 1)%], (1.5)

where the constant C > 0 depends on the parameters ug, vo, i, 0;, bi, d; (i = 1,2)
and |2| but it is independent of £ and x.

A central question in population dynamics is whether the interacting species
population will arrive at the coexistence, exclusion or extinction eventually.

If y1 = y» = 0 and ¢(u, v) = v, it has been proved in Jin et al. (2022) that the
globally bounded solution will converge to the constant steady state as ¢t — oo and
no pattern formation occurs. Hence, there exist some interesting questions:

(1) How about the global dynamics of solution for the system (1.3) with y, y» > 0?
Whether or not pattern formation occurs?

(2) If y1 = y» = 0, whether or not pattern formation occurs for other kinds of ¢ (u, v)
instead of ¢ (u, v) = v?

To answer the above questions, we first classify the constant steady state (u., v¢, w¢)

of the system (1.3) with y1, y» > 0, which satisfies

0=uc(l —uc—brve — y1we),
0 = ve(ue — brwe — 6y), (1.6)
0 = we(ve + y2ue — 62).

A direct calculation implies that the constant steady state (u., v¢, w.) takes the
following five cases:
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e Trivial steady states: Eg := (0,0, 0) and E; := (1, 0, 0);
e Semi-trivial steady states: Eqp := (91, %, O) and Eq3 := (02 0, 2= 02),

Y1v2
e Coexistence steady state: E, := (uy, Vs, W), Where

by(1-b162)+y101 >0,

e = “hotyi—bibaya
V1(02—y201)+br (62—v2)
Us = by+y1—=bib2y2 >0, (L.7)
_ bi(n—6)+(1-06))
* = T htn-bby O

One can check that the coexistence steady state E := (uy, v, wy) is linearly unstable
if by+y1—b1b2y> < 0. Therefore, for the case of coexistence steady state (i, Vs, W),
we only focus on studying the dynamics in the following range of parameters

by +y1 — bibyyr > 0, by +y1 —bibzy2 > 0,

b
Y102 — 1200 + b2(02 — y2) > 0, = 62> 220+ ;,Zz—ff,l (1.8)
bi(y261 — 62) + (1= 61) > 0, 62 < HR=16, + 1.

Then by constructing some appropriate energy functionals, we can derive the global
stability of the constant steady states as follows.

Theorem 1.3 (Global stability) Assume My and Ko are defined in (1.4) and (1.5),
respectively. Then the solution (u, v, w) of (1.3) obtained in Theorem 1.1 has the
following convergence properties:

e If01 > 1 and 6y > y», then it holds that
lim (lu — 1]z + vl + [[w]lL>) = 0.
11— 00

e If0 <0y < landB, > £ with

0 1 max{bb -1, 0
o= Mg O 1 {b1b2y2 — 1 }’
b1b by by b1by

then there exists &y > 0 such that whenever & € (0, &), it holds that

) 1 -0y
Aim = Ol +llv — lLoe + lwllLe | = 0.

by
o If0; > 1, 6 < min{y,, £} with

_ 1 bays y2min{bibyy2 — y1, 0}
bibyyr + by bibyys + b bibyyr + by
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then there exist &1 > Oand x1 > 0 such that whenever& € (0, &) and x € (0, x1),
it holds that

. ) v2— 6
lim <||M——|IL°°+IIUIIL°°+IIw— ||L°°) =0.

e If (1.8) and y1 = b1bays hold, then there exist & > 0 and x, > 0 such that
whenever & € (0, &) and x € (0, x2), it holds that

lim (Jlu — usllzoe + [ — vellLoe + [[w — wyllLe) =0,
—>0o0

where the coexistence steady state (Uy, Vs, W) is defined in (1.7).

In view of the results obtained in Theorem 1.3, there exists an interesting question:
whether or not pattern formations (non-constant steady states) are possible when
parameters outside the stability regimes found in Theorem 1.3. To answer this ques-
tion, we first do some linearly stable analysis (see Proposition 5.1 ), which together
with the global stability results for the corresponding ODE system obtained in Hsu
et al. (2015), implies that the pattern (if any) can only arise from the homogeneous
coexistence steady state (uy, vx, Wy). In Section 5, we shall use linear stability analy-
sis to find the conditions on parameters for the instability of coexistence steady state
and then perform numerical simulations to illustrate that spatially inhomogeneous
patterns indeed can be found under certain conditions in Section 6. By comparing
with the results obtained for the food chain model without intraguild predation (i.e.,
y1 = y2 = 0), we also demonstrate that the intraguild predation plays an important
role in generating the pattern formation.

2 Local Existence and Preliminaries

In the following context, the [, fdx and || f1lzr(q) will be abbreviated as [, f and
Il fllLr, respectively. Moreover, the constants k; and M; (i = 1,2,3---) represent
generic positive constants independent of ¢ and will vary line-by-line. The local exis-
tence of solutions can be proved by using the Amann’s theorem (Amann 1990,
Theorem 7.3), we omit the proof details for brevity.

Lemma 2.1 (Local existence) Let 2 C R be a bounded open interval with smooth
boundary. Suppose that 0 < (ug, vo, wo) € [WI’OO(Q)]3 and the assumption (H0)
holds. Then there admits Tmax € (0, 00] such that the system (1.3) has a unique
classical solution
0 1,2 2,1,/8 3
(v, w) € [CO10, Tong)s WHA@T N C*1(Q x O, T |

satisfying u,v,w > 0 for all t > 0. Moreover, it holds that if Tmax <
oo, then forall p > 1,

lim sup (lu(-, D) llyrp + [VC Dllyrr + Jw(, D) = oo.
I/Tmax
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Using similar arguments as in (Jin and Wang 2017, Lemma 2.2), we obtain the
boundedness of u immediately as follows.

Lemma 2.2 Suppose the assumptions in Lemma 2.1 hold. Then it holds that
0 < u(x,1) < Mo:=max{l, [luollL=} forall (x,1) € Q x (0, Tmax); (2.1)
Moreover, one has

limsupu(x,t) <1 forall x € Q. 2.2)

—>00

Lemma 2.3 Let (1, v, w) be a solution to the system (1.3) obtained in Lemma 2.1.
Then there exist two constants M1 > 0 and M> > 0 independent of & and x such that
forallt € (0, Tmax)

Otlluollr + O1b1llvoll L1 + (1 + 01) Mo ||

v, Dlip < My = o1b; ; (2.3)
and
lw(, Dllpr < M
Vo(\luollLl-‘rblIIVO\I%IIZZIJ;:ZIIWOIIU)+2M0|Q|’ ify1 =y =0,
Yo(bayalluoll 1 +bay1 HwollLl;Ezl\;lolm)+2bzsz0|Q|+M0M1V1’ i1, 72 > 0.
2.4)

Proof Using the first and second equations of (1.3) and applying the homogeneous
Neumann boundary conditions, we obtain

d
—/(u+b1v)+/u2:/u—b191/v—yl/uw—blbgfvw,
dt Jqo Q Q Q Q Q
Efu—b191/v,
Q Q

which along with 6; > 0 and (2.1) can be updated as

d
—/(M+b1v)+91/(u+b1v)+fM2§(1+91)/ u < (14061)MylL2|,
dr Jq Q Q Q

and hence, applying Gronwall’s inequality, one has

lluoll 1 (14 61)Mo|<2|
(. Dl < —5 + [luoll g1 + ——————— =: M, (2.5)
b 01b1

which gives (2.3).
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Next, we shall show the boundedness of ||w(:, )| ;1. To this end, we divide our
proof into two cases: y; = y» = 0 and y1, y» > 0.
Case 1: y| = y» = 0. In this case, we deduce from the equations of (1.3) that

d
—/ (u+b1v+b1b2w)+/u2+b191/ v+b1b292f w:/ u. (2.6)
dr Jq Q Q Q Q

Denoting yp := min{l1, 8, 6>} and using the fact 0 < u < My (see (2.1)), it follows
from (2.6) that

d
d—t/(u+b1v+b1b2w)+yo/(u+b1v+b1b2w) < 2My|R2],
Q Q

which, together with Gronwall’s inequality, gives

vo(luollpr + billvollpr + bib2llwoll 1) + 2Mo|€2]

Q2.7
bibayy

lw(, Dl <

Case 2: y1, y» > 0. Using the equations of (1.3), one has

d 0
— (y2u+y1w+ﬂv>+y2/u2+92y1/‘w+1—y1[l}§)/2/u+ﬂ/uv,
dr Jo by Q Q by Ja Q by Ja

which together with (2.1) and (2.5) derives

d
— <y2u+y1w+ﬂv>+y0/ <y2u+y1w+ﬂv)§2y2/u+ﬂ/uv
dr Jo by Q by Q by Ja

Y1MoM;
by ’

< 2yr2Mo|2| +

and hence, using Gronwall’s inequality, we have

voay2liuoll g1 + b2yillwoll 1t + yillvoll 1) + 2b2y2a Mol 2| + Mo My
vobay1 '

w0l <

which combined with (2.7) indicates (2.4). Then, the proof of Lemma 2.3 is completed.
O

With the boundedness of |[u(-, #)||roe, ||[v(:,¢)||;1 and |w(-, #)]|;1 in hand, next we
can use the semigroup estimates to obtain the boundedness of |u (-, #)||Ls for any
g > 11in one-dimensional space. More precisely, we have the following results.

Lemma 2.4 Let (u, v, w) be the solution to the system (1.3) obtained in Lemma 2.1.
Then for any q > 1, it holds that

lux (-, DllLe = M3 := M3(q), forall 1 € (0, Tinax), (2.8)

where the constant M3(q) > 0 is defined in (2.12), and is independent of & and x.
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Proof The first equation of (1.3) can be rewritten as

ur — dy(uxx —u) = fx,1), (2.9)

where f(x,t) = (di +1 — u — bjv — yyw)u. Using Holder inequality, the facts
0<u<Mpin 2.1), lv(-, )]l < My in (2.3) and |[w(-, )[|;1 < M2 in (2.4), one
has

IfCOI =1+ 1 —u—Dbiv—yiwulp

(2.10)
< My (I1|(d1 + 1 + Mo) + M1by + May) = £3.

Applying the variation-of-constants formula to (2.9) and using the well-known semi-
group estimates (see Winkler 2010, Lemma 1.3) and (2.10) guarantee that there exist
two constants o1 > 0 and o2 > 0 depending only on €2 such that

t
lux G, Dligg < laxe’ A Dug1q +/0 e NAD £ )1 qds

t 1
— g S DI
<o ||3xM0||Lq+02/ e~ MiFDdi=9) <1+<zfs) +2q)\|f(~,s>|\uds
0 2.11)
% —0a+Dd ~ltg
< oplloxugllLe +02i3f ™ 12 1+7 2 ) ds
0

0203 1 ]_%
501||3XM0||L11+m(]+F<2) (A + Ddy) q>,
where I'(-) represents the Gamma function defined by I'(y) := fooo 1 tYe dy,
and A1 > 0 denotes the first nonzero eigenvalue of —A under Neumann boundary
conditions. Then (2.8) follows directly from (2.11) by choosing

or My (12(dy + 1+ M) + M1by + Mayy) 1 1_i>
M = 1+ — 1 2
3@) 1+ Ddy < * <2q>((h+ )0 19y

+orlldxuollLe,

which is independent of 7, & and x. Then the proof of Lemma 2.4 is completed. O
The following is an auxiliary result that will be used later.

Lemma 2.5 (Stinner et al. 2014, Lemma 3.4) Let T > 0 and Ty € (0, T) and suppose
f@) : 10, T) — [0, 00) is an absolutely continuous function and satisfies

') +af@) <h@)foralt e (0,T),

where constant a > 0 and the nonnegative function h € L 110 ([0, T)) fulfilling

t+Tp
/ h(s)ds < B forallt € [0, T — Tp).
t

Then

f@®) <max{f(0)+ B, ai;o +2B) forallt € (0, T).
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3 Global Boundedness: Proof of Theorem 1.1
In this section, we shall prove the boundedness of the global classical solution for the

system (1.3) as stated in Theorem 1.1. To this end, we first establish the boundedness
of (-, D)L

3.1 Boundedness of ||v(-, )|~
Since the upper bound of ||v(-, t)| L plays a vital role in studying the global stability

of coexistence steady state, in the following, we shall give the explicit relation between
the upper bound of [[v(-, #)| L~ and .

Lemma 3.1 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then

/v2<-,r>sM4(§6+sz+1>, forall € (0, Trgy). G.1)
Q
and
t+t 2M.
/ /vg(.,s)dxdssd—4(s6+gz+1), forallt € (0, Tmax — 7), (3.2)
t Q 2

T"z‘ax } and My > 0 defined in (3.8), is a constant independent of x,

where T = min{1,
Eandt.

Proof Multiplying the second equation of (1.3) by v and using Young’s inequality and
the fact 0 < u(-, t) < My, we obtain

1d [ o 2 2 2_ 2
vi+dy | vy +by wv-+6; vo=¢ VU Uy + | uv
2dt Jg Q Q Q Q Q (3.3)
< &llvllpoollvall 2l 2 + Mollvll?,.

Taking g = 2 in (2.8), it follows that

oMy (I121(dy + 1+ My) + Mby + May) 1 3
lux (-0l 2 < 00 hd; (1 +T (Z) (A1 + 1)d1)4>
3.4)

+o1lldxuoll 2
=Ty,

and then applying Gagliardo—Nirenberg inequality, Young’s inequality as well as
lv(-, ©)]l;1 < My in (2.3), one derives

LI
Ellvllzoelvell 2 lluxll2 < kgl L0l + Tl losll g2 a2
1 s
<kiEMPTullvell}, +kiE MiT vl 2 (3.5

dy
< el + k€ + 89,
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5
where ky = {(32[102) i 2"1}M12rf(1 + T'¥). Similarly, using Gagliardo—

Nirenberg inequality and the fact ||v(-, #)||;1 < M) again, we have

! 2 ! 5ol 2
§+M0 vll72 < k3 §+M0 loxll ;2 vl + vl

1 4 1
< k3 <§ + Mo) M} vy || + k3 ( + Mo) M} (3.6)

da
< lvelze + ks,

1
where k4 := k3 (3 + Mo) M? {1 + <3d2) % (5 + Mo)é} is independent of & and

x- Then substituting (3.5) and (3.6) into (3.3) ensures a constant k5 := 2(ky + k4)
such that

d

o) +/v +d2/v < ko (E6 4+ £2) +2ky < ks(ES +E2 4+ 1), (3.7)
Q

which along with Gronwall’s inequality gives
oG Ol < ks€® +5 + 1) + w7,
and hence, (3.1) follows by taking

My = ks + ol 2

> <2°>5"?+2"2 MEP2(1 4 T4 + ol
= —_— — Vi 2
) 6 dp )] Ol (3.8)

bk (L omp ) i (14 (X2 4 L m :
G 3d,) 3\27 7))
Finally, we integrate (3.7) with respect to ¢ to obtain that for all ¢ € (0, Tpax — T),

t+1
dZ/ / v§(~,s)dxds §k5(.§6+$2+1)+/ v, 1)
' Q Q

< 2ks(6 + 2 4+ 1) + llvoll 12
<2Mu(E +E2+ 1),

and hence, (3.2) follows directly. Then the proof of Lemma 3.1 is completed. O

Lemma 3.2 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant Ms defined in (3.14), which is independent of &,
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X, such that

1
oG Do < Ms[1+EE°+ & +12], forallt € 0, Tma). (3.9

Proof We rewrite the second equation of (1.3) as
vy = davyy — dav — (§vuy)x + (d2 + u)v — (baw + O))v. (3.10)

Applying the variation-of-constants formula to (3.10), one has

t t
v(-, 1) =B Dyy — & / I=IBA=D Y ds + / 1L A=D gy 4 wyvds
0 0

t
_/ U= A=) (po 0 4 0 vds,
0

which, combined with the facts by, w, v > 0 and the semigroup estimates (Winkler
2010, Lemma 1.3), entails us to find two constants o3 > 0 and 04 > 0 depending only
on €2 such that

t
oDl < "™ Dugll e +§ f e A0 i) | oeds
0
t
+ / e A0 + dy — Oyl ods
0
t
— —s _3
sas||vo||Loo+sa4f emHEDRITI A 4 (1 — )70 vuy| 3 ds
0

t
+os / e~ IHDRA=) (1 4 (¢ — )~ 3w + do)v 1ds
0

=: a3llvoll L + J1 + Jo. 3.11)

Choosing ¢ = 61in (2.12), we can find a constant I'; > 0 independent of y and & such
that

oMy (I121(dy + 1 + My) + M1by + Mayy) 1 1
-t < 1+T(— A 1)d) 12
lux (D6 < G0 i, tr 3 ((A1 + Ddy)

+oplloxuoll 6
=Ty,

which, along with Holder inequality, and (3.1), indicates

1 1
loucll 3 < vl lluxlls < M7 (E°+8% + DT,
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and hence,

t
D= [ BOD g =) By s
0

1 1 t ;
504M42§(56+§2+1)2r2/ e RTDE) (] 4 (¢ — )" 8)ds
0 (.12)

1 1 00
504M42§(§6+§2+1)2r2/ o~ 0a+D)z (1+271+g>ds
0

< lEES £+ 1),

1
2 3
where ki = % (1 +T (%) dy (A + l)g) is independent of x and &. Noting

the facts 0 < u < Mo and ||v(-, 1)[|;1 < M, one derives
' 1
Bim o ROV =)+ doyolds
0
t
—dy (A +1)(1—s) _1
=0 ¢ 14+ (¢ —s5)"2)u+d oo ||V ds
- 3/(; I+ @ =52 2L llvllp G13)
t
< o03(My +d2)M1/ e~ A=) (1 4 (4 S)_%)ds
0

< ky,

with

o3(Mo + d2) M, 1 1
kpi=——— " |14+T = )OMidr+dr)2 ).
2 s 1 da <+ (2)(12+2)>

Then substituting (3.12) and (3.13) into (3.11), we have

1
o DlliLe < o3llvolle +kiEE® + £ + 12 + ko,

which gives (3.9) by choosing

1

U4M42F2 1 3 5

Ms:=—= = (14+T(=)d°(n 1)e
= moa+n Ut g2t D

o3(My + d2) My
AMdy +dy

(3.14)
1 1
(1 or (5) Ouds + d2)2> + o3llvoll e

Hence, the proof of Lemma 3.2 is finished. O
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3.2 Boundedness of ||w(-, t) |1~

To establish the boundedness of ||w(:, 1)]| L, we first prove the space-time bound for
w based on some ideas in Tao and Winkler (2019).

Lemma 3.3 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a constant Mg > 0 such that

t+1
/ / w2(~, s)dxds < Mg, forall t € (0, Tax — 1), (3.15)
t Q

where T = min{1, T’;“" I3

Proof Applying Gagliardo—Nirenberg inequality, Cauchy—Schwarz inequality and the
fact |/ w + llli2 = fQ(w + 1) < My 4 |2|, we obtain

/wsz(w+l)2
Q Q

=[lvw + 11|} 4

<ki|9xvw + 117 IWw + 1117, + ki lvVw + 111}

ki (M + |€20) (/ |wy | >2 2

<—F + k1 (Ms + |22
, o Vo1 1 (M2 + |2])

<k1(M2+|Q|)2/ ws
B 4 o (w+1)2

(3.16)

+ k1 (M + |R])%.

On the other hand, we use the third equation of (1.3), (2.3) and Young’s inequality to
derive that

d
Sy 1) =
dt/gzn(w—i—) o

=/ wi / we (u, V) - wy wt+yow w
Q (w+1)2 Q (w+ 12 o w+H1 B Qw+l1
2
wX w¢(u7 U)x ° wx
- — X p|Q
2/sz(w+1)2 X/Q (w+ 1)2 212
1 w} X2 [ wlleu, v)il?
z 5 - = | ——5— —6lQl. 3.17
/S; (w+1)2 2 Jo (w+1)2 21€2 ( )

Noting the facts 0 < In(w + 1) < w and
(3.17) from ¢ to (¢t 4+ 1), one has

/m/ <2012 + x /mf w? g, v)s|? 2/ In(w + 1)(-, f + 1)
2 =972 T w2 N
o wt D w+1) o (3.18)

t+1
<265/92] +2M; + f fgmuﬁwxﬂ.
t

w +1)2 < 1 for all w > 0 and integrating
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Furthermore, by (HO) and the L°°-boundedness of u, v (see (2.1) and (3.9)), there
exists a constant y > 0 independent of ¢ such that

|pul + |pp] <y forallz € (0, Tnax), (3.19)

and then using (3.2) and (3.4), one derives

5 t+71 5 5 t+t ) )
X / / |¢uux + ¢UUX| < 2)( V4 / f (Mx + vx)
t Q t Q

.y (3.20)
2.2 (2 4/(:6 2
<2x%y <F1+—d2 (e°+¢ +1)>.
We substitute (3.20) into (3.18) to obtain that for all € (0, Tpax — 7)
e wi 222, 2Msa (6, 2 321
e SR 2My 2y (T (S +E +1) - (32D

Hence, integrating (3.16) from ¢ to (r + t) and applying (3.21), we get (3.15)
directly. Then the proof of Lemma 3.3 is finished. O

Lemma 3.4 Let (u, v, w) be the solution to the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant M7 such that

t+t
/ / u? (-, s)dxds < My, forall t € (0, Tpnax — 1), (3.22)
t Q

where T := min{l, %Tmax}.

Proof We multiply the first equation by —u,, and use Young’s inequality and (3.4) to
derive

1d
7—/u§+d1/u)2m+2/ uu%:/ u%-‘,—bl/uvu“-ﬁ-yl/uwu“
2dt Jg Q Q Q Q Q

d b2 yz
5/u%+71/u§x+d—]/u2v2+d—1/u2w2
Q Q 1JQ 1JQ

2172

<d—l u? —}-7)/l MO/w2

“2Je ™ a1 Ja

bIMEM4ES + £+ 1),

+ . +T%,
1

which gives

d 2y2M? 202 M2 M4 (E0 + 2 + 1
_/ u§+d1/ W2 < Mo / w? 4 221 46"+ & )_‘_2[,12.
dr Jq Q d Q di

(3.23)
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Then integrating (3.23) with respect to ¢ and using (3.15) and (3.4) imply that for all
t € (0, Tmax — 7),

oo, M2 1+t 2b2M2M4(§6 ar?
[ s = [ [ s e
t Q 1

2y12M0 Me 3T7  202MIMs(E0 +&2+1)
o Ty

d? d d?
=: M7,

which entails (3.22) immediately. Then the proof of Lemma 3.4 is completed. O

Lemma 3.5 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant Mg such that for all t € (0, Tax),

/ v (-, 1) < Mg, forall t € (0, Tyax — 7). (3.24)
Q

Proof Multiplying the second equation of (1.3) by —uvy,, integrating the result over
2, and using Holder inequality and ||u (-, #) || Lo + v (-, ) |lz2 + [V (, 1) || < k1, one
obtains

d
—/ v3+2d2/ v)%X:ZS/ Vllyx Uy
dr Jo Q Q

+2§/ vxuxvxx~|—291/ VUyy
Q Q

+2b2/ vwvxx—2/ UV Vxx
Q Q

<2&ky[luxx | p2 lvxx | g2 +28 lvxux || g2 [vxx |l 2

1
+2ki (01 +kD [vxx 218202 + 202k [|[wl 22 [vxx [l 2

) 487K 45* oki
§d2||vxx||L2+ & ||uxx||L2+d ||Uxux||L2+ d> fw ||L2
4k3(01+k1)?| 2|
+—7
da
which yields
52 4$2 4b2k2
—fv +d2f 2 < s + 2K,
b b & (3.25)
4k3 (01 + k)R '
+ —
d>
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Furthermore, choosing ¢ = 4 in Lemma 2.4 and using Holder inequality and
Gagliardo—Nirenberg inequality, we derive

§
7||”xux||

4
& 2= & HuxHL4||vx||L4 < kallvxxliz2llviigoo +k2||v||Loo =5 ||vxx HLz + k3,

(3.26)

and
2 2 2 da 2
0 = orl < ks (loallzlvlze + 10132) < S llved? + k5. 3:27)
Q

Substituting (3.26) and (3.27) into (3.25), one has

%-2 2 4b2k2
- U +/ )25 = ”Mxx”Lz + ;2 L ||w||%2 + kg, (3.28)
2
with kg = k3 + ks + w . Letting
gZ 272
() = = llucll72 + ——lwll7s + ke

and then using Lemma 3.4 and Lemma 3.3, we have

t+71 52 2
/ h(s)ds = / /u (-, s)dxds
t

4b§k% 2
+ —/ / w*(-, s)dxds + kgt < k7.
dy J; Q

Applying Lemma 2.5 to (3.28) and using (3.29), one gets (3.24). Then, we complete
the proof of Lemma 3.5. O

(3.29)

Lemma 3.6 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then it holds that

lw(, )|l < Mg, forallt e (0, Tiax), (3.30)

where Mg > 0 is a constant independent of t.

Proof We multiply the third equation of (1.3) by w?, integrate the results over £ and
use Young’s inequality with the boundedness of ||u(-, )|z and ||v(-, #)| L to derive

1d

- — +3f w?w? —%x/ w3<¢uux-wx+¢uvx-wx>+/ w*(v + y2u — 62)
4 dt Q Q Q

s3X/Qw3(|¢u||ux\+|¢u||vx|>|wx|+k1fgw4

3 2 2 3)(2 4 2 4
< f/ w wﬁ—/ wh(pullue] + 1gollve) +k1/ wt,
2 Jao 2 Ja Q
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which, together with the basic inequality (y + 2)?2 < 2(y* 4 z?) and the fact
o i ? = [ ww?, gives

d 4 43/ 2y 12
dl/gzw +/Qw +2 QI(w)x|

< 12;(2/ w*(p2u> + ¢2v?) + (4k +1)/ w?

Q Q (3.31)
< wlie (12x2||¢u||%oo||ux||iz + ol 7o lvxll3 2 + (dk1 + 1)|s2|)
<kaflwlfe.

where we have used Holder inequality, (3.19) and (3.24) as well as (3.4). By Gagliardo—
Nirenberg inequality, Young’s inequality and (2.3), one has

2
5

8
4 2,2 2y 15 (a2 22
kallwllzee = kallw”llzee <ksll(w)xll} llw| %+k3llw IIL%

L
4

8 4
=k3 [l w23, i3, + ksllwll7,
3
=S N@)llZ: + ke,
which, substituted into (3.31), gives

d
dr Jo Q

and then (3.30) follows by Gronwall’s inequality. Hence, the proof of Lemma 3.6 is
completed. O

Lemma 3.7 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a constant M1y > 0 independent of t such that

lw, )llLe < Mio, forallt € (0, Tiax)- (3.32)

Proof Applying the variation-of-constants formula to the third equation of (1.3) and
using the well-known semigroup estimates, we have

t
. 7
w0l < kiljwollL +k2/ eTHEVEI (A 4 (1 = )T b, v)cwll 4 ds
0

t
+k3 / e DD (| 4 (1 — )" %) (|0 + you + 1 — )]l 2ds
0

<kt||wol|lLee + I1 + I>. (3.33)
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Noting the facts ||w(-, #)|l;+ < Mo, (3.19), (3.24) and (3.4) and using Holder
inequality, one has

ll¢(u, v)xwllL% =[[(Putex + ‘pvvx)w”L%

Sluux + dvvxlip2lwllps
M2
9 2 2 2 2
<— + ldullpoclluxllys + lPullzocllvxll;2

2
M2
579 + Y2 (Mg +T3) =: ky,

and hence,

1
himta [ O =) Dlg vwl gds
i :

t
< k2k4/ e—()nl-i-l)(t—s)(l + (t _ S)—%)ds (334)
0

< ks.
On the other hand, using Holder inequality and the boundedness of u, v and ||w|| 4,
we can find a constant kg > 0 such that
[(v+y2u — 6 + Dwllp2 < [lv+ you — 62 + 1| pallwll g4 < ke,

and hence,

t
h::k{/ef“”ﬂaﬂkl+(ﬁ—ﬂ_hHW4—mu—Gz—ayu+lhuhuh
0

t
§k3k6/ e~ 1D (1 4 (1 — §)"T)ds (3.35)
0

<k7.

Substituting (3.34) and (3.35) into (3.33) gives (3.32), and hence, the proof of Lemma
3.7 is completed. O

3.3 Proof of Theorem 1.1
Noting (2.1) and (3.4), we derive

(-, OHllwrz < ki, forallt € (0, Tax)- (3.36)
And the combination of (3.9) and (3.24) gives

oG, Dllyiz < ka, forallt € (0, Tmay). (3.37)
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Then combining (3.36), (3.37) and (3.32) and using Lemma 2.1, we directly prove
Theorem 1.1.

4 Global Stability: Proof of Theorem 1.3

In this section, we use Lyapunov functionals and LaSalle’s invariant principle to
establish global stability of constant steady states for the system (1.3).

4.1 Case of Prey-Only
In this subsection, we shall study the global stability of (1, 0, 0) (i.e., prey-only steady

state) provided 81 > 1 and 6, > y». To this end, we introduce the energy functional
as below:

Fi(t) :=.7:1(u,v,w)=oz1/(u—l—lnu)—i—bl/ v—i—blbz/ w,
Q Q Q

where

1, if]/] =]/2=0,

01—1 biby(62—y»)
4 4y

o] =

min{ } if 1,7 > 0.

Lemma4.1 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. Then if
01 > 1 and 6, > y», one has

Am (luC, ) = Tz + oG Ol + w, D) = 0.

Proof Letting g(z) = z — z4 Inz and noting g’(z4) = 0, we use Taylor’s expansion to
obtain that for all z, z4 > 0

Z 1 - z
Z— 2% — ZxIn o= g(2) — g(z4) = zg”(z)(z —z)? = ﬁ(z — 27 >0, (41)

*

where 7 is between z and z,. Choosing z = u and z, = 1, from (4.1) one has

1
u—l—lnu:—z(u—l)zzO, 4.2)
2yq

where yj is between u and 1. Hence, using (4.2) and the definition of 7 (¢), we derive
that F1(¢) > 0 and F1(¢t) = 0 if and only if (&, v, w) = (1,0, 0). Moreover, some
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calculations give

d u—1
—7:1(1)=011/ Mt+b1/ Ut+b]b2/ wy
dr Q u Q Q

2
=—a1d1/ u—;—alf(u—l)z—alblf uv—om/]/ uw (4.3)
Qu Q Q Q

+b1/(u—91 +al)v+/(blbzyzu—b1b292+0l1)/1)w~
Q Q

Case 1: y; = y» = 0. In this case, substituting ¢y = 1 and y; = y» = 0 into (4.3),
one has

d 2
—ﬂ(t)z—dl/ ”—*—f(u—l)z—bl(el—l)/ v—blbzez/ w,
dr o u? Q Q Q

W]“C]l, al()]lg Wl[]l 49 > 1, glVCS
1 ( ) <0

Case 2: y1, y» > 0. Noting the facts lim supu(x, ) < 1in(2.2) and 6; > 1 as well

—0o0

01—1 6h—y

as 0 > yy, for g1 := min | =7, o }, we can find a 1 > 0 such that

u(x,t) <14¢e foranyx € Qandr > #,

which, together with a; := min {%, %}/2}*)&) }, entails

u—01+a <l+e +a—0
<1 0 — 1 0 0 —1
<1+ 5T 1+ 1 (4.4)

6 —1
= — 14 < Ofor allt > 11,

and

bibyyru — b1b26 + a1y1 < bibaya(1 4 1) — b1ba6r + a1 y1
02 —v2  biba(62 — v2)
+ Y1
2y» 4n

< Ofor allt > 1. 4.5)

< biba(y2 — 62) + b1bays

__bib(62 — )
h 4
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The combination of (4.3), (4.4) and (4.5) gives

d 1/1)2C 5
_-7:1(0 =< —aldl ——(Xl (l/l—l) —Ol]bl uv—alyl uw
dr u? Q

b1(91 - 1) / b1b2(92 b1b2(62 — y2) /

and thus, dt]-"l (t) <Oforallt > t1.

Moreover, all the above cases indicate that d 7 F1() = 0iff (u, v, w) = (1,0, 0).
Hence, by LaSalle’s invariance principle (e.g., see (Shankar 1999, pp.198-199, The-
orem 5.24)), we know that (u, v, w) converges to (1,0,0) in L™ as t — oo.

O

4.2 Case of Semi-coexistence

In this subsection, we first study the global stability of semi-coexistence Ejp :=

(91, 1;—19', O) based on the following energy functional:

u v
= LU, W) = —60; —0;In— b —V—-VIn—
Fo(t) For(u, v, w) /S;(u 1 1 n91>+ 1/9(1) n V)

+b1b2/ w,
Q

1-6;
by

where V :=
Lemma4.2 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. If0 < 6; <
1 and

91 1 max{b1b2y» — y1, 0}
[ _9 4+ — 4+ =: 4, 4.6
2 = b]b2 = b] b b]b2 ! ( )

then there exists &y > 0 such that for all £ € (0, &y), it holds that
. 1 -6
Jim (fuGo0) = Ol + oG 1) = —— | e + IwC Dl ) = 0. (47)
— 00 b]

Proof Using (4.1), we can check that F,(¢t) > 0 and F,(¢r) = 0 iff (u,v,w) =
(91, %, O). Applying the equations of (1.3) and using the fact 1 = 6y + bV, one
has
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d u—0; v—V
—F(t) = ur + by v +biby | wy
dt Q u Q v Q
2 2 .
=_91d1f ”—;—bldzvf v—;+b1§v/ fx U
Qu QU Q v
+/(u—91><1 —u— byv— pw) (438)
Q
+b1/(v—V)(M—bzw—91)+b1b2f w( + yau — 6)
Q Q
=—/ YlTB]Yl—F/ hl(x,t)w_/(u—91)27
Q Q Q
where

and
hi(x,t) := (b1bay2 — yD)u + b1b2V + y161 — b1b26.

After some calculations, one can check that By is a positive definite matrix provided
that

E2(1 — 0|l < 461d1ds. (4.9)

Since 0 < 67 < 1 and ||u|| L~ is independent of £, we can find an appropriate constant
& > O such thatif 0 < & < &, then (4.9) holds, which entails us to find a constant

k1 > 0 such that
2 2
—/ Y7 By < —k]/ (”—;+”—;) (4.10)
Q Q \u v

Next, we shall show that under condition (4.6), there exists a constant k» > 0 such
that

bibak
/hl(x,t)w < —1—“/ w. @.11)
Q 2 Q

We divide our proof into two cases: b1bay> < y1 and b1byys > y1.
Case 1: b1bry» < y1. In this case, from (4.6), one has

14! 01 1
0 ——0 — — 4+ —,
D > 1 by + by
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which indicates

hi(x,t) = (b1b2y2 — yD)u + b1b2V + y161 — b1b26
1—-6;

<bib, + y161 — b1b26>

o 1
=—b1b2(92—l91+—‘——)<0.
102

4.12)

Case 2: b1byy, > y). For this case,
(4.6) and the fact limsupu(x, ) < 1 in (2.2) can guarantee that for the positive

—0o0

by

constant & 1= Wyz_m(@z — £1), there exists a constant t, > 0 such that

u(x,t) <1+e foranyx € Qandr > o,
and hence,

hi(x,t) = (b1b2y2 — yD)u + b1byV + y161 — b1b26;

bi1b 1-06
< (bibayr —y1) + %(92 —£1) +b1b L y101 — b1b26
b1by
2—7(92—61) < 0. (413)

Combining (4.12) with (4.13) and letting

Y1 01 1 max{b1b2y» — y1, 0}
b1by by by b1by ,

we directly obtain (4.11). Then substituting (4.10) and (4.11) into (4.8), one has

d u2 v2 blbzkz
(1) < —k x4 X ) —0)? — f <0,
a2 = 1/&2(M2+U2> /Q(u Y 2 )"

and “=" holds iff (u, vy, w) = (61, 0, 0). Furthermore, the fact v, = 0 entails v = v,
where v is a positive constant. Hence, (u, v, w) = (61, v, 0) satisfies

0=01(1—-6; —bv),

which yields § = 152 = V. Then & (1) = 0 implies (u, v, w) = (61, 52, 0).
Applying LaSalle’s invariance principle, one obtains that the semi-coexistence

(91, 1;_191’ 0) is globally asymptotically stable, which gives (4.7). O
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Next, we shall study the global stability of the semi-coexistence steady state

) v2—th ; ; .
(E’ 0, s ) based on the following energy functional:

b1b % [Z
Fa(t) == F3(u, v, w) :1721’2/ (u——z——zln%)—i-blbz/ (w—W—WlnB>
v Ja n v & Q
+b1/ U+f U2,
Q Q

_ n=th
where W := BTN

Lemma4.3 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. Then if
01> 1,0, <yyand

V1y2 bays y2min{b1b2y, — y1, 0}

0 < 1
bibryr + by b1byy, + b bibyy, + b

= 0y, (4.15)

there exist &1 > 0 and x1 > O such that if & € (0, &1) and x € (0, x1), the following
holds:

. 0> v2 — 6
i () = 2+ ol + e = 222, ) =o

Proof Applying (4.1), we can verify that 73(tr) > 0 and “=" holds iff (u, v, w) =
%, 0, V;I—_VZZ . Moreover, by the definition of F3(¢) in (4.14), we utilize the equations

of (1.3) and the fact 1 = % + y1 W to derive

)
d byb u— = w—W
ffg,(l‘):lim/ 7nu1+b1b2/ w,+b1/ u,+2/ -
dr 71 Q u Q w Q Q

:_7b]b2d192/ é—blsz/ wfi-’—blszX/ futts * Wn £ ot
Y1 Qu Qw Q w

bib 0
+ﬂ/ (u——2>(1—u—blv—ylw)-i-blbz/(w—W)(v+y2u—92)
Y1 Q Y2 Q

+b]/v(u7b2w791)72d2/v%+2§/vux-vx+2/ vz(u7b2w791)
Q Q Q Q

b1b 6 \2
=—/ y{szyz—ﬂ/ <u——2) +b1/ vhz(x,t)-‘,-Z/ v2hs(x, 1),
Q Y1 Q V2 Q Q

(4.16)
where
Uy bibyd 6, _ 2 __bibyxWugy
p ” Euv 5
Y, = UTX , By:= —Euv2 2dyv? ——b'b2X2WU¢”
w
B _b|b2X2Wu¢u _b1b2X2WU¢v bibyW,
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and
b1b b1b,0
ha(e, 1) :=(1 — 2227250 — 0y — bW + 22222 and hs(x, 1) :i=u — bow — 6.
14 Y1
4.17)
After some calculations, we can check that B is positive definite if
Iibadiy g2 2b1brdydaf
iz - (M - $2u2v2) v >0, (4.18)
—Euv? 2dyv? 1
and
2b1brd d>0
Bl =biby W (— - gzuzvz)
V1
(4.19)
b2b3 x> W22 d162b1b
— % <2uv¢>u¢v§u + 2u2¢>3d2 + ¢5$) > 0.
Indeed, it can be verified that (4.18) and (4.19) hold if
2 22 247
2b1byd1dr0r > E“yi MKy + x "My, (4.20)

where My and K are defined in (1.4) and (1.5), respectively, and

b2 = 6)

d162b1b7
My o <2SM§KOH¢UHLOO||¢MHLoo+2d2M§u¢unioc+ I¢ulizec ) -

Y1
Since My > |lu||z~ is independent of &, x and K¢ > ||v||r~ is independent of y,
for any given ¢ (u, v) € C2([0, o0)), we can obtain the upper bounds of ||¢, ||z and
ll¢y L are independent of x. Then there exist £&; > 0 and x; > O such that (4.20)
holds if & € (0, &1) and x € (0, x1). Hence, we can find a constant k1 > O such that

2 2 2
—/ YI BoYs < —klf (”—’2‘+v—§+w—§) 4.21)
Q Q \U v w

Next, we shall show h3(x,7) < 0 and hy(x,t) < O, respectively. Noting 67 > 1
and (4.15), we can take

- if y1 < b1baya,
&3 1= ] B _ )
min {912 1’ (sz(zzl(fllfzzjifzz;fz) , ify1 > bibays.
From (2.2), we can find a constant 3 > 0 such that
u(x,t) <1+esforallx € Qandt > 13, (4.22)
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and hence,

0 — 1 o —
By, 1) i=u—byw — 0] <1463 —6) < +1—91=—12 <0. (4.23)

As for hy, we need to distinguish in two cases:
Case 1: y| < b1byy,. This case means 1 — bll)’/—?m < 0; thus, it follows from (4.15)
and (4.17) that

byyry — b2 b1br0
hy(x.1) < —) — 2)2 202 | D1a%

Y12 Y1
(4.24)
bib b
= _Lﬂ(@ —6) <0.
Yiv2

Case 2: y| > b1byys. In this case, we have 1 — bli—f”z > 0, which along with (4.17),
(4.22) and (4.15) gives

b1b b1b ly — 6r)(b1b +b b1by6
hQ(X,t)S(lfﬂ)+(lf 12)/2)(2 2)(b1b2y2 2)7617b2W+¥
71 Y1 2(y1 —bibay))v2 71
b1b +br)(lp — 6 —b1b b — b0 b1b0,
_ Gibays +bo) (62 2)+V1 by o bava —baby | bibab (4.25)
2yiv2 71 7172 71
b1b b
:_w(52_92)<0'
2y1v2

Then combining (4.23), (4.24) and (4.25), we derive that

biby(b1ys + 1) (L2 — 6
blf vhz(x,t)—i—Zf hs(r.n) < 20 + D 2)/1),
Q Q Q

2y1y2

which, along with (4.21) and (4.16), gives

d w2 w2 w?
—Fa(t) < —k _x X _X
dt 30 = 1/g2<u2+v2+w2)

_ biby / (u B @)2 _ bibibayr +b2) (2 — 6) [ )
i Ja Y2 212 Q

<0.

Thus, & 73(r) = 0iff (u, v, w,) = (% 0, 0). This indicates w = w, where & > 0

is a constant. Since (%, 0, 111) is a solution of (1.6), then one has

o 0
—2<1——2—y1ﬁ)>=0,
V2 V2
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which implies W = V;I—_y?. Hence, %.7-"30) = 0iff (u, v, w) = (%, 0, y;]_—yfiz> Then,

one obtains that (% 0, V;I_)Zz ) is globally asymptotically stable by applying LaSalle’s

invariance principle. O

4.3 Case of Coexistence

In this subsection, we shall study the global stability of coexistence steady state
(U4, Vg, wy) defined in (1.7) under the condition (1.8). To this end, we introduce
the energy function as follows

Fu(t) = Falu, v, w) = Fu,(t) + b1 Fu () + b1b2Fy (1),

where

y
]-"y(t):f <y—y*—y*ln—>, Yy =u,v,w.
Q b

*

Lemma 4.4 Let(u, v, w) bethe solution of (1.3) obtained in Theorem 1.1. If (1.8) holds
and y| = b1byy», then there exist & > 0 and x2 > 0 such that for all § € (0, &) and
x € (0, x2), it holds that

im0 =tz + 000 = vallze + W, 1) = wllz=) = 0,

Proof Using (4.1), we can check that F(t) > 0 and F(t) = 0 iff (u,v, w) =
(U, Vs, W),

Next, we shall show %.7-"4 (t) < 0 under certain conditions for the parameters. In
fact, using the first equation of (1.3) and u, + bjv, + yw, = 1, we derive

U — Uy

d
Efum:fg e,

M2
=—u*d1/ —§+/(u—u*)(1—u—b1v—y1w)
Qu Q

uy 2
— s [ 5= [ b [ - ww—u
Qu Q Q

! / (W — us)(w — wy).
Q

(4.26)

Applying u, — bow, = 67 and the second equation of (1.3), one has

vV — Uy

Uy

d
by~ Fy(t) = b
ldt () 1/52 v

v% Uy - Uy
= —bividy | = + b6, +b1 | (v—v)(u—bw —6y)
Qv Q v Q
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v

vf Uy - Uy
= —bividy | — + b8y +b1 | (v = v —uy)
Qv Q Q

— b1b2/ (v — V) (w — wy). 4.27)
Q

Similarly, noting v, + y2u, = 6> and applying the third equation of (1.3), we derive
that

W — Wy

Wy

d
b1by— t) =bib
12dt]:'”() 12/52

2 . .
= —blbzw*/ w_; + b1brws / Pults - Wx + PuVy - W
Qw o

w

+ blbzf (W — ws) (v + y2u — 62) (4.28)
Q

2
w Uy - W Uy - W
:—blbzw*/ —= +b1b2w*X/ Duit Wy + Pove W
Qw Q w

+ blbzf (W — W)V —v,) + blbm/ (W — W) — ).
Q Q

We combine (4.26), (4.27) and (4.28) and use b1b2y> — y; = 0 to obtain

d u? v2 w2
—F4(t) = —usd) | == —biveda | = —b1b /—x
@ 4(1) u*1/9u2 1v*2/QU2 1wy w2

+b1$v*/ hon +b1b2w*x/ But Vox + Gobe - 0 —/ (= ux)? (4.29)
Q v Q Q

w
:—/ Y37-B3Y3—/(u—u*)2,
Q Q

where
. _ bikvu — Xbibawsuu
s Uyd 2 2
. biEven bibyw v
Y3=| % | and By = | —Dsvet bivedy — A
w.
Ux _Xb1b22w*¢uu _Xblbzzw*(bvv b]bzw*

After some calculations, one can verify that the matrix B3 is positive definite if and
only if

bi1&vsu
u*dl _ Iéz*

_ vbi(udids — bivg%u?)
——b'iv*u bivida

- 4

0, (4.30)
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and

b*byw
14 * (Ad)dyusvy — b1E202u?)

b%bzw*xz

|B3| =

s 0 5 5. (4.31)
(s d1 by Wiy v” + Evittwypyv - b1bryu + b1 by vidrwydyu”)

> 0.

Since My > |lul|p~ is independent of &, x and Ko > ||v| L~ is independent of x
(see Remark 1.2), we can find appropriate numbers & > 0 and x > O such that if
£ €(0,52) and x € (0, x2), then

4dydauvs > biv2MEE? + X M. (£, u, v),
where

My (&, 1, v) = uswibody 9y l|7 K§ + Evew, bbbyl L llull Lo MG Ko
+ bibavwyds | a3 K2,

which gives (4.30) and (4.31). Hence, there exists a constant k; > 0 such that (4.29)
can be updated as

d u? v2 w?
Fu(t) < —k e e T —u)? <. 4.32

Then (4.32) implies %]—'40) < 0 and “=" holds iff (u, vy, wy) = (uy, 0, 0), this
indicates v = v, and w = W,, where v, and W, are positive constants satisfying

0=us(l —us — b10x — y1Ws),
0 = Vs (us — bawy — 61),
0= ﬁ)*(ﬂ* + Vouy — 62).

This together with the definition of u, in (1.7) gives

~Zm@—m@+m%—ntz

Uy by VU,
and
b+ )+ (1—-6)
* — — ke
by

Therefore, we conclude that %,7—'4(0 < 0 and %}'40) = 0 iff (u,v,w) =
(ux, vy, wy). Then, LaSalle’s invariance principle yields that (uy, vy, wy) is globally
asymptotically stable. O
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4.4 Proof of Theorem 1.3

The combination of Lemmas 4.1-4.4 immediately implies Theorem 1.3.

5 Linear Stability/Instability Analysis

In this section, we shall study the possible pattern formation for the system (1.3). In
fact, for the space-absent ordinary differential equation (ODE) system of (1.3)

ur =u(l —u) — buv — yjuw,
vy = uv — bhvw — 6;v,

wy = vw + yuw — 6w,

it has been proved in Hsu et al. (2015) that:

(1) The trivial steady state Eg := (0, 0, 0) is always linearly unstable.

(2) The prey-only steady state E1 := (1, 0, 0) is linearly stable if 6; > 1 and 65 > y».

(3) The semi-coexistence steady state E1p := (91, %, O) exists if 0; < 1 and it is
linearly stable provided

biys — 1 1
AT Ny 2 (5.1)

6
2 by by

(4) The semi-coexistence steady state E13 := (%, 0, ”;l—_yzz) exists if 6 < y» and it

is linearly stable provided

V1y2 1 byy»
by + by+y1

(5.2)

For the system (1.3) with spatial movement, by the linear analysis, we can show
that the steady states E, E12 and Ej3 are still linearly stable and hence no pattern
formation occurs. More precisely, we have the following results:

Proposition 5.1 Assume (HO) and ¢, > 0, ¢, > 0 hold. Then for the system (1.3), it
holds that

(a) If 01 > 1 and 6y > y», the prey-only steady state E is linearly stable.

(b) If 61 < 1 and (5.1) hold, the semi-coexistence steady state E1; is linearly stable.
(c) If 0y < v and (5.2) hold, the semi-coexistence steady state E13 is linearly stable.
Proof The proof can be found in the Appendix, see Sect.7. O

And it has been shown in Hsu et al. (2015) that if the coexistence steady state
(ux, vg, wy) exists for the corresponding ODE system of (1.3), then it is linearly
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stable if and only if

b —bib 0
{ 2+ V1 102y2 > 0, (5.3)

V1V2Usx Wy + DU vy > (Y1 — ¥20152) v Wy,

Hence, in the following, we focus only on whether pattern formation emerges from
the coexistence steady state (i, v«, wy) under the conditions (5.3) and (1.8).

As discussed in Appendix, the linear stability/instability of the constant steady state
(U4, Vi, Wy) 1s determined by the eigenvalue of the following characteristic equation

13 4 PL (G, MOp® + Pa(x, Mo + P3(x, k) =0,

where {A;}72, 1 0 = Ao < A1 < A2 < A3... denote the sequence of eigenvalues of
— A under Neumann boundary conditions and P; (x, Ax) (i = 1, 2, 3) are given by the
following equalities

Pi(x, r) :=Ak(d1 +do + 1) +uy > 0,

Pr(x, M) :=Ag(dida + dy + da) + Ak[(da + Dus
+ X¢;V1u*w* + X¢:b20*w* + Ebjuyvy]
+ V1V2usWy + Do Uy Wy + b1ty vy,

P3(x., M) :==\id1dy (5.4)
+ Mg (douts + X yiuwy + xPrd1brv,w,
+ ED1U Vs + XPLEYIULVWS)
+ Mk [ViEusvaws + x (b29} + V19 — ¢ib1b2) U v wy ]
+ A (V1 72d2uswy + badivawy + biuyvy)
+ (b2 + y1 — yab1b2)usviwy,

with ¢F = ¢, (U, v4) and @) = ¢, (us, v.). From Routh-Hurwitz criterion (e.g.,
Appendix B.1 in Murray (2002)), the coexistence steady state (i, v«, wy) is linearly
stable if and only if for each k € N, it holds that

Pi(x, M) >0, P3(x,A) >0, Pr(x, M) Pa(x, A) — P3(x, Ax) > 0.
A direct calculation gives

H(x, 2) = P1(x, M) P2 (X, M) — Pa(x, Ak) = }szl + )»,%Kz + M K3 + Kyq, (5.5
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where
K| :=(ddy+d+dr+ 1)(d +dr) >0,

Ky :=(didy +d1)uy + &(d1 + d2)biusvs + (dy +do + 1)(da + Dus
+ (di + Dx oy yiuswy + (da 4 1) x Py brvsws — X P& Y1V,

K3 :=(dy + Dui + (di + Dy1yauaws + (d2 + Dbavaw, (5.6)
+ (d) + d2)brusvs + brEutv,
+ X¢$V1Mﬁw* + X¢:blb2u*v*w* — (X¢: + &) Y1Us Vs W,

Ky =u[y1y2uwy + brugve — (Y1 — v2b1b2)vewy].

When y = & = 0, one can easily check that P3(x, Ax) > 0 and H(x, Ax) > O for
all k € N, which indicates that the coexistence steady state (i, vy, wy) is linearly
stable. Hence, in the following we will study whether or not the taxis mechanisms can
induce the pattern formations. H (), Ax) depends on the values of ¢ = ¢, (uy, v4),
@ = ¢y(ux, v4), y1 and y». For a better understanding of the difference between the
effect of prey-taxis and alarm-taxis in the food chain model with intraguild predation,
we shall focus on the linear stability/instability of coexistence steady state for two types
of ¢ (u, v): ¢(u, v) = v and ¢ (u, v) = uv, both under the conditions y1, y» > 0.

5.1 Linear Stability/Instability Analysis: Y1 =y, =0

In this subsection, we shall study the linear stability/instability of coexistence steady
state (1, vy, wy) to (1.3) with ¢ (u, v) = vor¢ (u, v) = uvinthecaseof y; = y» = 0.
In this case, (1.3) can be simplified as

up = dytyy +u(l —u) — byuv,
Vv = davyxy — E(Vuy)x + uv — bpvw — v, 5.7)

w; = Wyx — X (WP (u, v)x)x +vw — w,
which is the classical Lotka—Volterra food chain model with taxis mechanisms (i.e.,

&, x > 0). The coexistence steady state (uy, V4, wyx) = (1—5b162, 67, %) exists
provided

01 +b16y < 1. (5.8)

It has been proved in Jin et al. (2022) that if ¢ (v) = v, the coexistence steady state
of the system (5.7) is globally stable if £ > 0 and x > O are both small. Thus, it is
natural to ask whether or not (i, vy, w,) is linearly unstable and pattern formation
occurs for large £ and y. In fact, we have the following results.

Lemma 5.2 (Linear stability: ¢ (u, v) = v) Let ¢ (u, v) = v and assume (5.8) holds,
then (U, Vg, Wy) of (5.7) is linearly stable for all x, & > 0.
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Proof Since ¢ (4, v) = v, we have ¢ = 0 and ¢} = 1. Then noting y; = y» = 0, it
follows from (5.4) that for each k € N

P3(x. k) = Mdidy + AF (day + xdibyvaws + Ebiuv,)
+ Ak (b2d1vswy + brus vy + xbousvwy)
+ brugvewy > 0.

On the other hand, by K; (i = 1, 2, 3, 4) in (5.6), one can check that
K; >0 for i =1,2,3,4,
which implies for each k € N
H (X ) = PrOG M) PO M) = P3O A = 2Kt + Ai K + K3 + Ky > 0.

Then Routh—Hurwitz criterion implies that (i, v,, wy) is linearly stable. O

Remark 5.3 The results in Lemma 5.2 imply that no pattern formation occurs for
the classical Lotka—Volterra food chain model with prey-taxis mechanisms for any

&, x=0.

In the following, we shall study the possibility of pattern formation for the Lotka—
Volterra food chain model incorporating the alarm-taxis mechanism. The main results
are as follows.

Lemma 5.4 (Linear stability/instability: ¢ (u, v) = uv) Let ¢ (u, v) = uv and assume
(5.8) holds. It holds that

(D) If2b16, < 1, then (uy, vy, wy) is linearly stable for all x > O.

(2) If2b16y > 1, then (uy, vy, wy) is linearly unstable provided x > 0is large enough
and there exists some k € N1 such that

2b16, — 1

0< i <
k &

(5.9)

Proof For ¢ (u, v) = uv, one has ¢ = ¢, (s, v4) = vy and @ = Py (s, V4) = Us.
Noting y; = y» = 0 and the definitions of K; (i = 1, 2, 3, 4) in (5.6), we have

K; >0 forall i =1,2,3,4,
which implies that for each k € N
H(x, M) = Pi(x, M) P2(x, A) — P3(x, Ax) > 0.

Moreover, using uy, —bivy, = 1 —2b16> and the facts y; = y2 = 0, @) = vy, ¢ = uy
again, we deduce from (5.4) that
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P3(x, M) = Ajdida + A}(da + Eb1ve)uy 4 A (dibaws + biuy)vi + bautsv,w,
T A xbautsvews Opdy + 1 — 2b163). (5.10)

Then if 2b16, < 1, one has P3(x, Ax) > O for any k € N, and hence, (i, v, Wwy) 1S
linearly stable by Routh—Hurwitz criterion.

On the other hand, if 2016, > 1and (5.9) holds, we get that A d1+1—2b16> < O for
some k € NT. Since Ag, Uy, Ux, Wy are independent of yx, it follows that P3(x, Ax) <
0 for sufficiently large x > 0. Therefore, according to Routh—Hurwitz criterion,
(U4, Vi, Wy) 1s linearly unstable. O

Remark 5.5 For the Lotka—Volterra food chain model (5.7), our results imply that the
taxis function ¢ (u, v) plays an important role on the pattern formation. If ¢ (u, v) = v
(i.e., prey-taxis mechanism), no pattern formation occurs. If ¢ (u, v) = uv (i.e., alarm-
taxis mechanism), the potential steady state bifurcations generated from the constant
coexistence (i, Vs, Wy) may happen. Compared with the results obtained in Haskell
and Bell (2021), our results confirm that the alarm-taxis mechanism can trigger the
pattern formation by itself even without logistic growth source.

5.2 Linear Stability/Instability Analysis: y1, Y2 > 0

In this subsection, we shall study the possibility of pattern formation for the system
(1.3) with intraguild predation (i.e., y1, > > 0). To this end, we analyze the linear
stability/instability of the coexistence steady state (uy, vx, wy) defined in (1.7). In the
case of y1, y» > 0, we rewrite P3(x, Ar) in (5.4) as follows:

P3(x, M) =Aidida + A (daus + Ebruv,)
+ M (V1uswsyada + bavswid) + Dius vy + Y114V w4 E)
+ A2 Brdoyiuwy + @idibrvw, + GFEVIUL VW)
+ M X usVsws (b2 + v1y — dubibr) + (b + Y1 — v2b1b2)usvswy.

5.11)

Lemma 5.6 (Linear stability/instability: ¢ (u, v) = v) Let ¢ (u, v) = v and assume
(1.8) and (5.3) hold. Then we have the following results:

(1) (ux, vy, wy) is linearly stable provided

~

K
X+§§—3and dz—i—lzgyl—u*,

(5.12)
V1U Vs Wy by

with K3 > 0 defined in (5.16).
(2) (ux, vy, wy) is linearly unstable provided y > 0 large enough and one of the
following conditions holds:

d+ 1> 5);1214*’

Y1l +
0 <M < GrDb—gya, Jorsomek € N7,

(5.13)
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or

d+1< for allk e NT. (5.14)

Eyiuy
by

Proof Since ¢ (u, v) = v, one has ¢ = 1 and ¢ = 0. Noting by + y; — y2b1b2 > 0,
it follows from (5.11) that P3(x, Ax) > O forall k € N.

Since (1.8) and (5.3) hold, we derive from (5.6) that K; > 0 and K4 > 0. Hence,
to determine the sign of H (x, Ax), we only need to consider the values of K, and K3.
Using the facts ¢ = 1 and ¢, = 0, we rewrite K, and K3 defined in (5.6) as follows:

K2 = Ko + yvswil(d2 + b2 — §y1u,] and K3 = K3 — (x + §)yiusvews,
where 1?2 > 0 and 1?3 > ( are defined by
Ky := (didy + d\)us + £(d1 + do)bius vy + (dy + dy + 1)(da + D, (5.15)
and

K3 := (da + Du? + (di + Dy1yausws + (da + Dbyvsw,
+(dy + dp)busvs + brEuv,. (5.16)

Then we can derive from (5.12) that K, and K3 are positive and hence H (x, Ax) > 0
forallk € N, whichimplies that (i, vy, ws) is linearly stable by using Routh—Hurwitz
criterion.

Next, we shall show that (u., vs, wy) is linearly unstable for large x under
conditions (5.13) or (5.14). To this end, we rewrite H (x, Ax) (see in (5.5)) as follows:

H(x. ) = A K1 + A Ko + K3 + Ky + g xviews Ouel(da + Do — Eypus] — yius)

5.17
— ME V1 U VW, ( )

where IF(VZ and 1?3 are defined by (5.15) and (5.16), respectively.
Since Ay and the value of (uy, v,, w,) are independent of x, then if (5.13) or (5.14)
holds, we can find x > 0 large enough such that

H(x, ) =0,

and hence, the coexistence steady state (u4, vy, wy) is linearly unstable by applying
Routh—-Hurwitz criterion again. O

Remark 5.7 Compared with the results obtained in Lemma 5.2 and Lemma 5.6, we
found that the intraguild predation (i.e., y1, y» > 0) plays an important role for the
pattern formation.

Next, we shall study the possible pattern formation in the system (1.3) with alarm-taxis
in the sense of ¢ (1, v) = uv.
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Lemma 5.8 (Linear stability/instability: ¢ (#, v) = uv) Let ¢ (u, v) = uv, x > 0 and
& > 0. Assume (1.8) and (5.3) hold. Then it holds that:

(1) (ux, vy, wy) is linearly stable provided

bouy + y1uyx — vib1by > 0 (5.18)
and
Ks di+1 (db+1b
0<$§min{ 3 at +(2+)2}, (5.19)
V11U Vs Wy U Ux¥1

where [?; > 0 defined in (5.16).
(2) (ux, vy, wy) is linearly unstable provided y > 0 large enough and one of the
following conditions holds:

bruy 4+ y1ux — vib1by < 0 and

|batty + yius — vib1 b3
0< Ay < for some kg € N, (5.20)
0 dayyr +diby + us&y

or

di+1  (d+ Dby
> + a

Us Uxy1
U*blbz

>
[(di + Dy1 + (d2 + Dby — us& 1|

3 nd

Aky for some kg € N.  (5.21)

Proof From ¢ (u, v) = uv, one has ¢; = u, and ¢, = v.. Hence, we can derive that

P3(x, M)
=Ajdida + 2} (datty + Eb1usvy) + A (Viuswsyada + bavawid,
+ blus vy + ViUV ws) (5.22)
+ A xuxvswy[Ar (doyt + diby + us&y1) + (baus + yius — vib1b2)]
+ (b2 + y1 — y2b1b2)usviwy,

and

H(x, m) = K1 + 27K + (K3 — Eyiusvaw,) + Ky 53
+ M xsvsws i [(dr + Dyt + (da + Dby — usép] + v*blbzg ;

Then if (5.18) and (5.19) hold, one can verify that P3(x, Ax) > O and H(x, *x) > 0
for each k € N, and hence, by applying Routh—-Hurwitz criterion, we obtain that
(U4, Vi, Wy) 1s linearly stable.

On the contrary, if (5.20) holds, we can choose x large enough such that P3(x, Ar) <
0. Thus, we derive from Routh—-Hurwitz criterion that (u., v, wy) is linearly unstable.
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Similarly, if (5.21) holds, we have H (x, Ax) < O for large x, and hence, (i, v, Wx)
is linearly unstable. O

Remark 5.9 Compared with the Lotka—Volterra food chain model (5.7) with ¢ (u, v) =
uv, the intraguild predation model (i.e., y1, 2 > 0) has richer dynamics. Specifically,
the intraguild predation model has not only the potential of steady state bifurcations
but also that of Hopf bifurcations.

Remark 5.10 The instability results of the intraguild predation model with ¢ (u, v) =
uv indicate that the alarm-taxis mechanism can promote potential steady state bifur-
cations, which cannot be induced by the intraguild predation model with ¢ (u, v) =
v.

6 Spatiotemporal Patterns: Numerical Simulations

In this section, we shall give some numerical simulations to verify our theoretical
analysis in Section 5. As shown in Lemma 5.4, Lemma 5.6 and Lemma 5.8, with
suitable conditions, as long as x > 0 is large enough, pattern formations possibly
occur for the system (1.3) even in the case of & = 0, which are verified in Figs. 1,
3a and 4b. Furthermore, with fixed x > 0, our numerical simulations show that
the parameter & plays a very different effect for the system (1.3) between the cases
that y1 = y» = 0 and y1, y» > 0. For the food chain model with alarm-taxis, &
has a stabilization effect on the homogeneous steady state (see Fig.2), while it has a
destabilization effect in the food chain model with intraguild predation and prey-taxis
(see Fig. 3). As for the food chain model with intraguild predation and alarm-taxis, the
effects of & on pattern formations are more complicated. The system may subsequently
undergo steady state bifurcations, no pattern formations and Hopf bifurcations as &
increases from 0 to 4 and then to 45, see Fig.4.

Moreover, comparing the linear stability results in Lemma 5.2 with Lemma 5.6, we
conclude that the intraguild predation is of importance for inducing pattern formations,
which is verified in Fig.3a, while it is still unclear whether taxis mechanisms or
intraguild predation have essential effects on triggering pattern formations. As shown
in Fig.4a, there is no pattern formation in the case of x = & = 0, y1, y» > 0. This
fact along with Figs. 1, 3a and 4b demonstrates that signal taxis mechanism plays an
indispensable and essential role in promoting spatially inhomogeneous patterns.

6.1 Food Chain Model with Alarm-Taxis: Y1 = Y2 = 0and ¢p(u, v) = uv

In this subsection, we shall give some numerical simulations to the system (1.3) with
¢ (u, v) = uvinthecaseof y; = y» = 0. To thisend, we fix the value of the parameters
in all simulations as follows:

d1:0.1, d2=b1=b2=1,91=0.1, 9220.7, )/1=J/2=0,

which gives (uy, vy, wy) = (0.3,0.7,0.2) and 01 + b16, < 1 as well as 2016, > 1.
Hence, from Lemma 5.4, with the fact H (x, Ax) > 0 we expect only the spatiotemporal
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Fig. 1T Numerical simulation of spatiotemporal patterns generated by (1.3) with ¢ (u, v) = uv and y; =
y2 = 0. The parameter values are: x = 80,& =0,d; =0.1, dp =b; =by =1,0; =0.1, 6, =0.7. The
initial datum (uq, v, wp) is set as a small random perturbation of the homogeneous coexistence steady
state (0.3,0.7,0.2)

steady state (aggregation) pattern occurs when

42
X = xS\ E) = (100)\,% +30(10 + 7&) A + 224 + /\—k) , (6.1

214 — ap)

for some k € NT such that 0 < A; < 4 and here X,fl (&) is the root of P3(x,Ax) =0
in (5.10). Taking 2 = (0, 10r), with allowable wavenumber satisfying 0 < Ay =
(k/lO)2 < 4, we get the allowable unstable modes for k = 1,2,3---,18,19. We
choose Ay = (5/10)2, then stl (&) in (6.1) can be updated as

(S - BT

We first pick £ = 0 to find a value ng '(0) ~ 30.0476 for the possibility of pattern
formations. As shown in Fig. 1, by letting x = 80 > 30.0476 and we can find the
spatiotemporal pattern. Particularly, from Fig. 1, we obtain that the time evolutionary
profiles of solutions are horizontal lines, which indicates that the bifurcation might be
the steady state bifurcation. Moreover, the space profiles show that all species reach
an inhomogeneous coexistence state in space (see the last picture in Fig. 1).
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Fig. 2 Numerical simulation of spatiotemporal patterns for (1.3) with ¢ («, v) = uv. The fixed param-
eter values are: dy = 0.1, dp = by = by = 1,6 = 0.1, 6 = 0.7 and y; = y» = 0. The initial
datum (uq, vg, wo) is set as a small random perturbation of the homogeneous coexistence steady state
(0.3,0.7,0.2).

The expression in (6.1) implies that the critical value x,f '(&) > 0 is increasing in
terms of £ > 0, and the spatiotemporal patterns generated due to any fixed large x
and fixed mode k will disappear as the value of £ > 0 increases, which implies the
prey-taxis has a stabilization effect on the homogeneous steady state. To verify this
fact, we use numerical simulations to find that the spatiotemporal patterns gradually
evolve into the spatially homogeneous patterns as & increases from O to 10, then to
20, and finally disappear at £ = 40, see more details in Fig. 2.

6.2 Food Chain Model with Intraguild Predation and Prey-Taxis: y;, y> > 0 and
P, v)=v

In this subsection, we shall give some numerical simulations to the system (1.3) with
¢ (u, v) = v and y1, y» > 0. We fix the value of the parameters as follows:

di=01,d=b=br=pm=1 =2 0=01,6 =009.

Then the coexistence steady state is (4x, vx, wx) = (0.15,0.75, 0.05). As discussed
in Lemma 5.6, only Hopf bifurcations can occur by noting the fact P3(x, Ax) > 0.
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Fig.3 Numerical simulation of spatiotemporal patterns generated by (1.3) with ¢ (4, v) = vandyq, y2 > 0.
The parameter values are: d] = 0.1, dp = by =by =y, =1, y; =2, 8 =0.1, 6, = 0.9. The initial
datum (ug, vg, wo) is set as a small random perturbation of the homogeneous coexistence steady state
(0.15,0.75, 0.05).

Under the above parameters, we derive that H(x, Ax) = 0in (5.17) is equivalent
to

968032 + (2640 + 4956 )Ax + 3 + 1041 + 90&
15(3 + 30c€ — 20A%)

x = x1E) = . (62)

which is positive provided 14 (20 — 3§) < 3. Taking Q2 = (0, 107), the allowable
wavenumber Ay = (k/10)2 satisfying A (20 —3&) < 3,then k = 1, 2, 3 are allowable
unstable modes for any £ > 0. Fixing k = 2 and (6.2) can be simplified as
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Fig.4 Numerical simulation of spatiotemporal patterns generated by (1.3) with ¢ (4, v) = uv and y1, y» >
0. The parameter values are: dy = 0.1, dp = by = by =y =1, y1 =2,0; = 0.1, 6 = 0.9. The
initial datum (u(), vg, wp) is set as a small random perturbation of the homogeneous coexistence steady
state (0.15, 0.75, 0.05)

62386

75(55 + 3&) (6.3)

XU (&) =61+

We first choose £ = 0 to obtain a value X;{I (0) ~ 76.124 for possible pattern
formations. As shown in Fig.3a, with x = 100 > 76.124 in hand, we can find the
spatiotemporal patterns. In particular, the time evolutionary profiles of solutions are
periodically oscillatory, which indicates the bifurcation might be of Hopf bifurcation
type (see the last picture in Fig. 3a). Moreover, the expression (6.3) indicates that for
fixed unstable mode k = 2, the critical value XZH '(&) > 0 is decreasing about & > 0,
which implies the prey-taxis might have a destabilization effect on patterns. This is
an interesting phenomenon, which is different from the food chain model without
intraguild predation.

To verify this fact, we take & = 10 and £ = 20 and find that the patterns become
unstable as £ increases from 0 to 10 and then to 20, and the chaotic spatiotemporal
patterns may happen, see Fig. 3c.

6.3 Food Chain Model with Intraguild Predation and Alarm-Taxis: Y1, Y2 > 0 and
G(u,v) =uv

In this case, we fix the parameters as follows for simulations:
di =01, dy=by=by=py=1, y1=2,00 =0.1, 6, =0..
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Then (uy, vy, wy) = (0.15,0.75, 0.05). From Lemma 5.8, we know the steady state
and Hopf bifurcations are both possible. Under the above parameters, we first derive
from (5.22) and (5.23) in Lemma 5.8 that P3(x, Ax) = 0 and H (x, Ax) = 0, which
are equivalent to

160022 + 6004 (4 + 3€) + 180 + 2100 + 180¢

— 2 ) = (6.4)
X=X @) 27— 2701 + &) ’
and
7744002 + 1204, (176 + 338) + 2 4 8328 + 180¢
X=x2E) = £ & . (65)
k 540 (8 — 14) — 135
From (5.23) in Lemma 5.8, we know that if
Kx di+1 (dh+1)b 347 3
ossgmin{ 3 4t +(2+)2}=min{—+—g,l4}=l4,
V1U Vs Wi Uy UV 15 2

then H(x,Ar) > 0 for any £k € N and hence no Hopf bifurcation occurs, which
motivates us to study the possibility of steady state pattern formation. To illustrate this
case, we take Q = (0, 107), then from (5.20), the allowable unstable modes k € NT
must satisfy 0 < Ay = (k/10)? < ﬁ

We take k = 3 and & = 0, then (6.4) implies that

x52(0) ~ 433.329,

which is a value for possible pattern formations. As shown in Fig.4b, choosing
x = 450 > 433.329, we can find the spatiotemporal patterns. Particularly, the time
evolutionary profiles of solutions are horizontal lines, which indicates the bifurcation
might be the steady state bifurcation. Furthermore, for the fixed unstable mode & = 3,
the bifurcations will disappear as & increases from O to 4, see Fig.4c.

For relatively large £ > 14, from Lemma 5.8 and the definition of XZ‘lz in (6.5),
the Hopf bifurcations possibly occur as long as the allowable unstable modes k € N™
satisfying A = (k/ 10)2 > ﬁ. With x = 450 in hand, for the same unstable mode
k = 3, we pick & = 45 to find the spatiotemporal patterns, see Fig.4d.

Our results demonstrate that for the fixed large x = 450, as the parameter &
increases, the steady state patterns (see Fig.4b) evolve first into the constant state
(see Fig.4c) and then further develop into the Hopf bifurcation patterns (see Fig. 4d).
Moreover, from Fig. 4a, we observe that no pattern formation occurs when y =& =0
and y1, 2 > 0. This, together with Figs. 1, 3a, 4b and Lemma 5.2, indicates that the
signal taxis mechanism plays an essential role in promoting pattern formation.
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7 Appendix: Linear Analysis

In this section, we are devoted to giving some basic linear analysis on the linear
stability/instability of constant steady state for the system (1.3). To this end, we first
linearize the system (1.3) at constant steady state (u., v., w.) to obtain

v, = AAVW + BY, xe, t>0,
Vv .v =0, x €02, t>0,
W(x,0) = (o — e, Vo — Ve, wo — we)?, x € R,

where 7 denotes the transpose matrix and

U— U d; 0 0 —ue. —brue. —y1uc
Vi=|lv—v |, A= —&v, d> 0] and B = ve By —byu. |,
W — we —XWehy —xwedy 1 2we we B

with ¢ := ¢, (uc, ve), 5 = ¢y (uc, vc) and
By :=u, — bow, — 01 and B33 := v, + yau. — 6;. (7.1)

Let the sequence {)L”}Zio 10 =X < A1 £ A2 < XA3... denotes the sequence
of eigenvalues of —A under Neumann boundary condition. Then, the linear stability
of (uc, ve, we) is determined by the eigenvalues of the matrix (—A¢.A + B), which
satisfies the following characteristic equation

w4 Pip? + Pap+ Py =0,
where P; := P;(A;) (i = 1,2, 3) are defined as below
Pi(A) =M (d1 +dr + 1) + uc — Bap — B33,

Py(a) :=A2(dydy + dy + do) + A {(da + Due — (dy + 1) By — (di + da) B33}
+ M (X Viucwe + xPyb2vewe + Ebjucve)
+ y1y2ucwe + bavewe + brucve
— ucBy — ucB3z + By Bss,

7.2
P3() :=A3dids + 22 (—d1dy Bss + datte — dy Byo) (7.2)

A (X Pdayiucwe + x$Sdibrvewe + Ebjucve + X PSEVIUVWE)

+ A (—uc B — dauc B3z + dy By B33)

+ M {viucwe(yady — x5 B20) + brvewe(dr + xpouc)

+b1ucve(l — £ B33) + yiucvewe (X ¢ + §) — xpgbibaucvewe

+ uc B B3z — yiyaucweBay — biucveBsz + (b2 + v1 — vabibo)ucvew,.
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Based on Routh-Hurwitz criterion (e.g., Appendix B.1 in Murray (2002)), the
nonnegative constant steady states (u., v., w.) are linearly stable if and only if for
each k € N, it holds that

Pi>0, P3y>0, PiP,— P;>0.
Calculating directly, one obtains
PPy — Py =: A} K + APKS + MKS 4+ KS 4+ x AFKE + M KE),
where
K{ :=(didr +di +dr» + 1)(d1 + d>) > 0,

K3 :=(didy + duc + (dy + d2)(—B33) + (d1d2 + d2)(—B22) + £(d1 + da)biucv.
+ (d1 +dr + D{(d2 + Duc — (d1 + 1) By — (d1 + d2) B33},

K3 :=(uc — B — B33){(d2 + Dus — (d\ + d2) B33 — (d1 + 1) B2}
+ (d2 + 1) B2 B33z — (dy + Due B3z — (di + d2)us B
+ [(di + Dy2 — Elyiucwe + (d2 + Dbavew,
+ (d1 + d2)brucve + (ue — B)b1&ucve,
K4 :=— (B2 + B33)(B22B33 + bavgw,) — uc(ue — By — B33) (B + B33)
+ (e — B33)y1vaucwe + (ue — Bo)brucve — (y1 — yab1b2)ucvewe.

Also

K§ = (di + Dogyiucwe + (do + Doybrvewe — ¢péyiucvewe, (7.3)
and

K¢ :=(uc — B33)¢,yiucwe + (—Bx — B33)@,brvcw,

(7.4)
+ ¢ b1brucvewe — PpyiUcV W,

Proof of Proposition 5.1 For the corresponding ODE system of (1.3), it has been proved
in Hsu et al. (2015) that the constant steady state (u., v., w.) is linearly stable under
the following conditions:

(1,0, 0), if91 > 1 and 92 > V2,

1-6 : biyr—1
(Ue, Ve, We) = (91, b—ll, O) , if# <land 6y > _”1’721_91 + %, (7.5)

[} v2—6> : vy barys
(VZ,O, s ) 02 <yrand 0y < o0 + 5250

Under the conditions (7.5), we can derive from (7.1) that By, < 0 and B33 < 0, which
gives K]‘ >0(=1,2,3,4).
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For the prey-only steady state (1,0,0) or semi-coexistence steady state
(91, %, 0), one obtains w, = 0, which together with the facts By < 0and B33 <0
substituted into P3 in (7.2) implies that for any k € N

0 < Py = Aididy + Aj(—d1d2 B33 + daue — dy By + Ebjucve)
+ Akl—uc By — douc B3z + diBao B3z + biucve (1 — € B33)]
+ ucByy B3z — brucveBss.

Since w, = 0, according to the definitions in (7.3)-(7.4), one has K = K¢ = 0, which
together with K > 0 (i = 1,2,3,4) implies PP, — P; > 0. Hence, by Routh—
Hurwitz criterion, the prey-only steady state £ and the semi-coexistence steady state
E1; are linearly stable.

As for E13 := (% 0, V)Z/I_VZZ)’ one has v, = 0 which, together with ¢, > 0, gives

K5C = (d| + 1)V1X¢Z”cwc > 0and Kg = (uc — B33)X¢;V1Mcwc > 0.

Using the facts Kf > 0 (j = 1,2,3,4) again, one obtains PP, — P3 > 0 for
each k € N. On the other hand, noting the facts By, < 0, B3z < 0, v, = 0 and
o5 >0, ¢S > 0, from (7.2), we get that

0 < Py :=Ajdidy + A3 (—d1dy B33 + dau, — di Boy + x¢Sdayiucwe)
+ M{—ucBo — daue B3z + di By B3z + (yada — x ¢, B2 yiucwe}
+ ucB» B3z — y1y2ucweBo.

Therefore, (% ,0, y;}—;?) is linearly stable by applying Routh—Hurwitz criterion. Then

we complete the proof of Proposition 5.1.
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