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Abstract
In this paper, we study a three-species food chain model with intraguild predation and
taxis mechanisms (prey-taxis and alarm-taxis) in an open interval� ⊂ Rwith smooth
boundary. Based on energy estimates, we first establish the existence of global clas-
sical solutions with a uniform-in-time bound. Moreover, we build the global stability
of the spatially homogeneous prey-only steady states, semi-coexistence and coexis-
tence steady states under certain conditions on parameters by using the Lyapunov
functionals and LaSalle’s invariant principle. With numerical simulations, we further
demonstrate that the combination of taxis mechanisms and intraguild predation can
produce stationary spatially inhomogeneous patterns, chaotic spatiotemporal patterns
and spatial-periodic patterns for the parameters outside the stability regime. We also
find from numerical simulations that prey-taxis could destabilize a positive equilib-
rium in a three-species Lotka–Volterra model with intraguild predation, which is in
contrast to the well-known results that the attractive prey-taxis serves to enhance the
stability of the spatially homogeneous steady state in two-species predator system or
three-species food chain model without intraguild predation.
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1 Introduction andmain results

To understand the complex ecological interactions, various ordinary differential equa-
tion (ODE)-type food chain models have been proposed, and some interesting and
impressive results have been established on the dynamics of three-species food chain
model (Vance 1978; Gilpin 1979; Krikorian 1979; Hasting and Powell 1991; Holt
and Polis 1997; McCann and Hastings 1997; Klebanoff and Hastings 1994; Polis
1991; Tanabe and Namba 2005; McCann and Yodzis 1994). In particular, the chaos
phenomenon can be found for the three-species food chain models with nonlinear
functional responses (Hasting and Powell 1991; Klebanoff and Hastings 1994) or for
the simple Lotka–Volterra-type functional responses with intraguild predation (i.e., a
simple kind of omnivory in which a predator and a prey share a common resource)
(Tanabe and Namba 2005). As we know, the spatial movement plays an indispens-
able role for the population species to survive and thrive. However, compared with the
well-known results on the temporal three-species predator–prey systems (Vance 1978;
Gilpin 1979; Krikorian 1979; Hasting and Powell 1991; Holt and Polis 1997; McCann
and Hastings 1997, ?; Polis 1991; Tanabe and Namba 2005), few results are available
for the food chain model with spatial movement. In this paper, we shall consider the
three-species Lotka–Volterra food chain model with spatial movement:

⎧
⎪⎨

⎪⎩

ut = d1�u + u(1 − u) − b1uv − γ1uw, x ∈ �, t > 0,

vt = d2�v − ξ∇ · (v∇u) + uv − b2vw − θ1v, x ∈ �, t > 0,

wt = �w − χ∇ · [w∇φ(u, v)] + vw + γ2uw − θ2w, x ∈ �, t > 0,

(1.1)

where � ⊂ R
n is a bounded domain, and (u, v, w) := (u, v, w)(x, t) denotes the

densities of the prey species, primary and top predators, respectively. The parame-
ters di > 0 (i = 1, 2) are diffusion coefficients, the term −ξ∇ · (v∇u) describes
the directional movement of primary predators toward their prey density gradi-
ent (called prey-taxis mechanism (Kareiva and Odell 1987)). Similarly, the term
−χ∇ · [w∇φ(u, v)] describes the top predators move toward to high gradient of the
signal produced as a result of the interaction between the prey and primary predator.
For i = 1, 2, the parameters bi > 0 and γi ≥ 0 describe the interaction of interspecies,
and θi > 0 represent the mortality rates of the primary and top predators, respectively.

Before stating our main results, we first recall some related results for the system
(1.1). If w ≡ 0, the system (1.1) becomes the two-species predator–prey system with
prey-taxis (called the prey-taxis system), which was first proposed by Kareiva and
Odell to interpret the heterogeneous aggregative patterns due to the area-restricted
search strategy (Kareiva and Odell 1987). In recent years, the solution behaviors for
two-species prey-taxis system have been extensively studied, including the global
boundedness and large time behavior as well as pattern formations (cf. (Jin and Wang
2017; Kareiva and Odell 1987; Wu et al. 2016; Jin andWang 2021; Winkler 2017; Cai
et al. 2022) and references therein). Moreover, one can find more related results on the
two-species predator–prey system with other types of taxis mechanisms such as the
indirect prey-taxis mechanism (Ahn and Yoon 2020; Wang andWang 2020; Tello and
Wrzosek 2016), predator-taxis mechanism (Wu et al. 2018), dual-taxis mechanism
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(Tao andWinkler 2022; Fuest 2020), and signal-dependent prey-taxis mechanism (Jin
and Wang 2021). However, compared with the substantial results on the two-species
predator–prey systems with various taxis mechanisms, few results are known for the
three-species spatial food chain model (1.1) (i.e.,w �= 0). Recently, the second author
and his collaborators (Jin et al. 2022) studied the global dynamics of system (1.1) in a
two-dimensional bounded domain with homogeneous Neumann boundary conditions
and under the following assumptions:

γ1 = γ2 = 0 and φ(u, v) = v. (1.2)

The ideas/methods used in Jin et al. (2022) depend on that the system (1.1) with (1.2)
has a nice entropy estimate, which was first developed in Tao and Winkler (2012) for
the classical chemotaxis system with consumption of chemoattractant and later was
used to study the prey-taxis system (Jin and Wang 2017).

Ifγ1, γ2 > 0, the correspondingODEversionof (1.1) (i.e., ignored the spatialmove-
ment) was called intraguild predation model, which exhibits very complex dynamics
and has been studied for a long time (see Holt and Polis (1997); McCann and Hastings
(1997); Polis (1991); Tanabe and Namba (2005) and references therein ). Particularly,
it has been proved inTanabe andNamba (2005) that the intraguild predation sometimes
destabilizes food webs and induces chaos, even if the functional responses are linear
(Lotka–Volterra type). However, to our knowledge, for the spatial food chain model
(1.1) with intraguild predation (i.e., γ1, γ2 > 0), there is no such a result. On the other
hand, if the signal intensity function φ(u, v) = uv, the system (1.1) was proposed
in Haskell and Bell (2021) to test the “burglar alarm" hypothesis (cf. (Burkenroad
1943)): a prey species renders itself dangerous to a primary predator by generating
an alarm call to attract a second predator at higher trophic levels in the food chain
that preys on the primary predator. Hence, the system (1.1) with φ(u, v) = uv, also
called alarm-taxis system, has been studied for the global boundedness and stability
of solutions: in one-dimensional space (Haskell and Bell 2021) and in two dimensions
(Jin et al. 2023) in the presence of intraspecific competition for v and w.

Our goal in this paper is to study the global dynamics for system (1.1) with γ1, γ2 >

0 and more general signal functional φ(u, v). However, if γ1, γ2 > 0 or φ(u, v) �= v,
the ideas used in Jin et al. (2022) are not available anymore. Moreover, due to the lack
of quadratic decay terms (i.e., intraspecific competition) for v and w, the methods
developed in Jin et al. (2023) are also inapplicable, which motivates us to develop new
ideas to study this problem. To explore the combined effects of the intraguild predation
and taxis mechanisms more clearly, we focus on studying the global dynamics of the
system (1.1) in an open interval � ⊂ R:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + u(1 − u) − b1uv − γ1uw, x ∈ �, t > 0,

vt = d2vxx − ξ(vux )x + uv − b2vw − θ1v, x ∈ �, t > 0,

wt = wxx − χ(wφ(u, v)x )x + vw + γ2uw − θ2w, x ∈ �, t > 0,

ux = vx = wx = 0, x ∈ ∂�, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ �.

(1.3)
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For more generally, we assume that the signal intensity function φ(u, v) satisfies the
following conditions:

(H0) The function φ(y, z) : (0,∞)× (0,∞) → R is positive and φ(y, z) belongs to
C2([0,∞) × [0,∞)).

Then we first show the global existence of classical solution as follows.

Theorem 1.1 (Global boundedness) Let � ⊂ R be a bounded open interval with
smooth boundary. Suppose that the initial data 0 � (u0, v0, w0) ∈ [W 1,∞(�)]3 and
the assumptions in (H0) hold. Then the system (1.3) admits a unique global classical
solution (u, v, w) fulfilling u, v, w > 0. Moreover, there exists a constant M > 0
independent of t such that

‖u(·, t)‖W 1,2 + ‖v(·, t)‖W 1,2 + ‖w(·, t)‖L∞ ≤ M .

Remark 1.2 The upper bounds of ‖u(·, t)‖L∞ and ‖v(·, t)‖L∞ play an important role
in studying the large time behavior of solutions. In fact, we can show that

‖u(·, t)‖L∞ ≤ M0 := max{1, ‖u0‖L∞}, (1.4)

and

‖v(·, t)‖L∞ ≤ K0 := C[1 + ξ(ξ6 + 1)
1
2 ], (1.5)

where the constant C > 0 depends on the parameters u0, v0, γi , θi , bi , di (i = 1, 2)
and |�| but it is independent of ξ and χ .

A central question in population dynamics is whether the interacting species
population will arrive at the coexistence, exclusion or extinction eventually.

If γ1 = γ2 = 0 and φ(u, v) = v, it has been proved in Jin et al. (2022) that the
globally bounded solution will converge to the constant steady state as t → ∞ and
no pattern formation occurs. Hence, there exist some interesting questions:

(1) How about the global dynamics of solution for the system (1.3) with γ1, γ2 > 0?
Whether or not pattern formation occurs?

(2) If γ1 = γ2 = 0, whether or not pattern formation occurs for other kinds of φ(u, v)

instead of φ(u, v) = v?

To answer the above questions, we first classify the constant steady state (uc, vc, wc)

of the system (1.3) with γ1, γ2 > 0, which satisfies

⎧
⎪⎨

⎪⎩

0 = uc(1 − uc − b1vc − γ1wc),

0 = vc(uc − b2wc − θ1),

0 = wc(vc + γ2uc − θ2).

(1.6)

A direct calculation implies that the constant steady state (uc, vc, wc) takes the
following five cases:

123



Journal of Nonlinear Science (2025) 35 :56 Page 5 of 47 56

• Trivial steady states: E0 := (0, 0, 0) and E1 := (1, 0, 0);

• Semi-trivial steady states: E12 :=
(
θ1,

1−θ1
b1

, 0
)
and E13 :=

(
θ2
γ2

, 0, γ2−θ2
γ1γ2

)
;

• Coexistence steady state: E∗ := (u∗, v∗, w∗), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∗ = b2(1−b1θ2)+γ1θ1
b2+γ1−b1b2γ2

> 0,

v∗ = γ1(θ2−γ2θ1)+b2(θ2−γ2)
b2+γ1−b1b2γ2

> 0,

w∗ = b1(γ2θ1−θ2)+(1−θ1)
b2+γ1−b1b2γ2

> 0.

(1.7)

One can check that the coexistence steady state E∗ := (u∗, v∗, w∗) is linearly unstable
if b2+γ1−b1b2γ2 < 0. Therefore, for the case of coexistence steady state (u∗, v∗, w∗),
we only focus on studying the dynamics in the following range of parameters

⎧
⎪⎪⎨

⎪⎪⎩

b2 + γ1 − b1b2γ2 > 0,

γ1(θ2 − γ2θ1) + b2(θ2 − γ2) > 0,

b1(γ2θ1 − θ2) + (1 − θ1) > 0,

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

b2 + γ1 − b1b2γ2 > 0,

θ2 >
γ1γ2
b2+γ1

θ1 + b2γ2
b2+γ1

,

θ2 <
b1γ2−1

b1
θ1 + 1

b1
.

(1.8)

Then by constructing some appropriate energy functionals, we can derive the global
stability of the constant steady states as follows.

Theorem 1.3 (Global stability) Assume M0 and K0 are defined in (1.4) and (1.5),
respectively. Then the solution (u, v, w) of (1.3) obtained in Theorem 1.1 has the
following convergence properties:

• If θ1 > 1 and θ2 > γ2, then it holds that

lim
t→∞(‖u − 1‖L∞ + ‖v‖L∞ + ‖w‖L∞) = 0.

• If 0 < θ1 < 1 and θ2 > 
1 with


1 := γ1

b1b2
θ1 − θ1

b1
+ 1

b1
+ max{b1b2γ2 − γ1, 0}

b1b2
,

then there exists ξ0 > 0 such that whenever ξ ∈ (0, ξ0), it holds that

lim
t→∞

(

‖u − θ1‖L∞ + ‖v − 1 − θ1

b1
‖L∞ + ‖w‖L∞

)

= 0.

• If θ1 > 1, θ2 < min{γ2, 
2} with


2 := γ1γ2

b1b2γ2 + b2
θ1 + b2γ2

b1b2γ2 + b2
+ γ2 min{b1b2γ2 − γ1, 0}

b1b2γ2 + b2
,
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then there exist ξ1 > 0 andχ1 > 0 such that whenever ξ ∈ (0, ξ1) andχ ∈ (0, χ1),
it holds that

lim
t→∞

(

‖u − θ2

γ2
‖L∞ + ‖v‖L∞ + ‖w − γ2 − θ2

γ1γ2
‖L∞

)

= 0.

• If (1.8) and γ1 = b1b2γ2 hold, then there exist ξ2 > 0 and χ2 > 0 such that
whenever ξ ∈ (0, ξ2) and χ ∈ (0, χ2), it holds that

lim
t→∞(‖u − u∗‖L∞ + ‖v − v∗‖L∞ + ‖w − w∗‖L∞) = 0,

where the coexistence steady state (u∗, v∗, w∗) is defined in (1.7).

In view of the results obtained in Theorem 1.3, there exists an interesting question:
whether or not pattern formations (non-constant steady states) are possible when
parameters outside the stability regimes found in Theorem 1.3. To answer this ques-
tion, we first do some linearly stable analysis (see Proposition 5.1 ), which together
with the global stability results for the corresponding ODE system obtained in Hsu
et al. (2015), implies that the pattern (if any) can only arise from the homogeneous
coexistence steady state (u∗, v∗, w∗). In Section 5, we shall use linear stability analy-
sis to find the conditions on parameters for the instability of coexistence steady state
and then perform numerical simulations to illustrate that spatially inhomogeneous
patterns indeed can be found under certain conditions in Section 6. By comparing
with the results obtained for the food chain model without intraguild predation (i.e.,
γ1 = γ2 = 0), we also demonstrate that the intraguild predation plays an important
role in generating the pattern formation.

2 Local Existence and Preliminaries

In the following context, the
∫

�
f dx and ‖ f ‖L p(�) will be abbreviated as

∫

�
f and

‖ f ‖L p , respectively. Moreover, the constants ki and Mi (i = 1, 2, 3 · · · ) represent
generic positive constants independent of t and will vary line-by-line. The local exis-
tence of solutions can be proved by using the Amann’s theorem (Amann 1990,
Theorem 7.3), we omit the proof details for brevity.

Lemma 2.1 (Local existence) Let � ⊂ R be a bounded open interval with smooth
boundary. Suppose that 0 � (u0, v0, w0) ∈ [W 1,∞(�)]3 and the assumption (H0)
holds. Then there admits Tmax ∈ (0,∞] such that the system (1.3) has a unique
classical solution

(u, v, w) ∈
[
C0([0, Tmax);W 1,2(�)] ∩ C2,1(�̄ × (0, Tmax))

]3
,

satisfying u, v, w > 0 for all t > 0. Moreover, it holds that if Tmax <

∞, then for all p > 1,

lim sup
t↗Tmax

(‖u(·, t)‖W 1,p + ‖v(·, t)‖W 1,p + ‖w(·, t)‖L∞
) = ∞.
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Using similar arguments as in (Jin and Wang 2017, Lemma 2.2), we obtain the
boundedness of u immediately as follows.

Lemma 2.2 Suppose the assumptions in Lemma 2.1 hold. Then it holds that

0 < u(x, t) ≤ M0:= max{1, ‖u0‖L∞} for all (x, t) ∈ � × (0, Tmax); (2.1)

Moreover, one has

lim sup
t→∞

u(x, t) ≤ 1 for all x ∈ �̄. (2.2)

Lemma 2.3 Let (u, v, w) be a solution to the system (1.3) obtained in Lemma 2.1.
Then there exist two constants M1 > 0 and M2 > 0 independent of ξ and χ such that
for all t ∈ (0, Tmax)

‖v(·, t)‖L1 ≤ M1 := θ1‖u0‖L1 + θ1b1‖v0‖L1 + (1 + θ1)M0|�|
θ1b1

, (2.3)

and

‖w(·, t)‖L1 ≤ M2

:=
⎧
⎨

⎩

γ0(‖u0‖L1+b1‖v0‖L1+b1b2‖w0‖L1 )+2M0|�|
b1b2γ0

, if γ1 = γ2 = 0,
γ0(b2γ2‖u0‖L1+b2γ1‖w0‖L1+γ1‖v0‖L1 )+2b2γ2M0|�|+M0M1γ1

γ0b2γ1
, if γ1, γ2 > 0.

(2.4)

Proof Using the first and second equations of (1.3) and applying the homogeneous
Neumann boundary conditions, we obtain

d

dt

∫

�

(u + b1v) +
∫

�

u2 =
∫

�

u − b1θ1

∫

�

v − γ1

∫

�

uw − b1b2

∫

�

vw,

≤
∫

�

u − b1θ1

∫

�

v,

which along with θ1 > 0 and (2.1) can be updated as

d

dt

∫

�

(u + b1v) + θ1

∫

�

(u + b1v) +
∫

�

u2 ≤ (1 + θ1)

∫

�

u ≤ (1 + θ1)M0|�|,

and hence, applying Grönwall’s inequality, one has

‖v(·, t)‖L1 ≤ ‖u0‖L1

b1
+ ‖v0‖L1 + (1 + θ1)M0|�|

θ1b1
=: M1, (2.5)

which gives (2.3).
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Next, we shall show the boundedness of ‖w(·, t)‖L1 . To this end, we divide our
proof into two cases: γ1 = γ2 = 0 and γ1, γ2 > 0.

Case 1: γ1 = γ2 = 0. In this case, we deduce from the equations of (1.3) that

d

dt

∫

�

(u + b1v + b1b2w) +
∫

�

u2 + b1θ1

∫

�

v + b1b2θ2

∫

�

w =
∫

�

u. (2.6)

Denoting γ0 := min{1, θ1, θ2} and using the fact 0 < u ≤ M0 (see (2.1)), it follows
from (2.6) that

d

dt

∫

�

(u + b1v + b1b2w) + γ0

∫

�

(u + b1v + b1b2w) ≤ 2M0|�|,

which, together with Grönwall’s inequality, gives

‖w(·, t)‖L1 ≤ γ0(‖u0‖L1 + b1‖v0‖L1 + b1b2‖w0‖L1) + 2M0|�|
b1b2γ0

. (2.7)

Case 2: γ1, γ2 > 0. Using the equations of (1.3), one has

d

dt

∫

�

(

γ2u + γ1w + γ1

b2
v

)

+ γ2

∫

�
u2 + θ2γ1

∫

�
w + θ1γ1

b2

∫

�
v ≤ γ2

∫

�
u + γ1

b2

∫

�
uv,

which together with (2.1) and (2.5) derives

d

dt

∫

�

(

γ2u + γ1w + γ1

b2
v

)

+ γ0

∫

�

(

γ2u + γ1w + γ1

b2
v

)

≤ 2γ2

∫

�
u + γ1

b2

∫

�
uv

≤ 2γ2M0|�| + γ1M0M1

b2
,

and hence, using Grönwall’s inequality, we have

‖w(·, t)‖L1 ≤ γ0(b2γ2‖u0‖L1 + b2γ1‖w0‖L1 + γ1‖v0‖L1 ) + 2b2γ2M0|�| + M0M1γ1

γ0b2γ1
,

which combinedwith (2.7) indicates (2.4). Then, the proof of Lemma 2.3 is completed.
��

With the boundedness of ‖u(·, t)‖L∞ , ‖v(·, t)‖L1 and ‖w(·, t)‖L1 in hand, next we
can use the semigroup estimates to obtain the boundedness of ‖ux (·, t)‖Lq for any
q > 1 in one-dimensional space. More precisely, we have the following results.

Lemma 2.4 Let (u, v, w) be the solution to the system (1.3) obtained in Lemma 2.1.
Then for any q > 1, it holds that

‖ux (·, t)‖Lq ≤ M3 := M3(q), for all t ∈ (0, Tmax), (2.8)

where the constant M3(q) > 0 is defined in (2.12), and is independent of ξ and χ .
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Proof The first equation of (1.3) can be rewritten as

ut − d1(uxx − u) = f (x, t), (2.9)

where f (x, t) = (d1 + 1 − u − b1v − γ1w)u. Using Hölder inequality, the facts
0 < u ≤ M0 in (2.1), ‖v(·, t)‖L1 ≤ M1 in (2.3) and ‖w(·, t)‖L1 ≤ M2 in (2.4), one
has

‖ f (·, t)‖L1 = ‖(d1 + 1 − u − b1v − γ1w)u‖L1

≤ M0 (|�|(d1 + 1 + M0) + M1b1 + M2γ1) = 
3.
(2.10)

Applying the variation-of-constants formula to (2.9) and using the well-known semi-
group estimates (see Winkler 2010, Lemma 1.3) and (2.10) guarantee that there exist
two constants σ1 > 0 and σ2 > 0 depending only on � such that

‖ux (·, t)‖Lq ≤ ‖∂x etd1(�−1)u0‖Lq +
∫ t

0
‖∂x e(t−s)d1(�−1) f (·, s)‖Lq ds

≤ σ1‖∂x u0‖Lq + σ2

∫ t

0
e−(λ1+1)d1(t−s)

(

1 + (t − s)
−1+ 1

2q

)

‖ f (·, s)‖L1ds

≤ σ1‖∂x u0‖Lq + σ2
3

∫ ∞
0

e−(λ1+1)d1z
(

1 + z
−1+ 1

2q

)

ds

≤ σ1‖∂x u0‖Lq + σ2
3

(λ1 + 1)d1

(

1 + 


(
1

2q

)

((λ1 + 1)d1)
1− 1

2q

)

,

(2.11)

where 
(·) represents the Gamma function defined by 
(y) := ∫ ∞
0 t−1+ye−t dt ,

and λ1 > 0 denotes the first nonzero eigenvalue of −� under Neumann boundary
conditions. Then (2.8) follows directly from (2.11) by choosing

M3(q) := σ2M0 (|�|(d1 + 1 + M0) + M1b1 + M2γ1)

(λ1 + 1)d1

(

1 + 


(
1

2q

)

((λ1 + 1)d1)
1− 1

2q

)

+ σ1‖∂x u0‖Lq ,

(2.12)

which is independent of t , ξ and χ . Then the proof of Lemma 2.4 is completed. ��
The following is an auxiliary result that will be used later.

Lemma 2.5 (Stinner et al. 2014, Lemma 3.4) Let T > 0 and T0 ∈ (0, T ) and suppose
f (t) : [0, T ) → [0,∞) is an absolutely continuous function and satisfies

f ′(t) + α f (t) ≤ h(t) for all t ∈ (0, T ),

where constant α > 0 and the nonnegative function h ∈ L1
loc([0, T )) fulfilling

∫ t+T0

t
h(s)ds ≤ β for all t ∈ [0, T − T0).

Then

f (t) ≤ max{ f (0) + β,
β

αT0
+ 2β} for all t ∈ (0, T ).
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3 Global Boundedness: Proof of Theorem 1.1

In this section, we shall prove the boundedness of the global classical solution for the
system (1.3) as stated in Theorem 1.1. To this end, we first establish the boundedness
of ‖v(·, t)‖L∞ .

3.1 Boundedness of ‖v(·, t)‖L∞

Since the upper bound of ‖v(·, t)‖L∞ plays a vital role in studying the global stability
of coexistence steady state, in the following, we shall give the explicit relation between
the upper bound of ‖v(·, t)‖L∞ and ξ .

Lemma 3.1 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then

∫

�

v2(·, t) ≤ M4(ξ
6 + ξ2 + 1), for all t ∈ (0, Tmax), (3.1)

and

∫ t+τ

t

∫

�

v2x (·, s)dxds ≤ 2M4

d2
(ξ6 + ξ2 + 1), for all t ∈ (0, Tmax − τ), (3.2)

where τ = min{1, Tmax
2 } and M4 > 0 defined in (3.8), is a constant independent of χ ,

ξ and t.

Proof Multiplying the second equation of (1.3) by v and using Young’s inequality and
the fact 0 < u(·, t) ≤ M0, we obtain

1

2

d

dt

∫

�
v2 + d2

∫

�
v2x + b2

∫

�
wv2+θ1

∫

�
v2 = ξ

∫

�
vvx · ux +

∫

�
uv2

≤ ξ‖v‖L∞‖vx‖L2‖ux‖L2 + M0‖v‖2
L2

.

(3.3)

Taking q = 2 in (2.8), it follows that

‖ux (·.t)‖L2 ≤ σ2M0 (|�|(d1 + 1 + M0) + M1b1 + M2γ1)

(λ1 + 1)d1

(

1 + 


(
1

4

)

((λ1 + 1)d1)
3
4

)

+ σ1‖∂x u0‖L2
=: 
1,

(3.4)

and then applying Gagliardo–Nirenberg inequality, Young’s inequality as well as
‖v(·, t)‖L1 ≤ M1 in (2.3), one derives

ξ‖v‖L∞‖vx‖L2‖ux‖L2 ≤ k1ξ(‖vx‖
2
3
L2‖v‖

1
3
L1 + ‖v‖L1)‖vx‖L2‖ux‖L2

≤ k1ξM
1
3
1 
1‖vx‖

5
3
L2 + k1ξM1
1‖vx‖L2

≤ d2
4

‖vx‖2L2 + k2(ξ
6 + ξ2),

(3.5)
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where k2 :=
{(

20
3d2

)5 k61
6 + 2k21

d2

}

M2
1
2

1(1 + 
4
1). Similarly, using Gagliardo–

Nirenberg inequality and the fact ‖v(·, t)‖L1 ≤ M1 again, we have

(
1

2
+ M0

)

‖v‖2L2 ≤ k3

(
1

2
+ M0

)(

‖vx‖
2
3
L2‖v‖

4
3
L1 + ‖v‖2L1

)

≤ k3

(
1

2
+ M0

)

M
4
3
1 ‖vx‖

2
3
L2 + k3

(
1

2
+ M0

)

M2
1

≤ d2
4

‖vx‖2L2 + k4,

(3.6)

where k4 := k3
( 1
2 + M0

)
M2

1

{

1 +
(

k3
3d2

) 1
2 4

3

( 1
2 + M0

) 1
2

}

is independent of ξ and

χ . Then substituting (3.5) and (3.6) into (3.3) ensures a constant k5 := 2(k2 + k4)
such that

d

dt

∫

�

v2 +
∫

�

v2 + d2

∫

�

v2x ≤ 2k2(ξ
6 + ξ2) + 2k4 ≤ k5(ξ

6 + ξ2 + 1), (3.7)

which along with Grönwall’s inequality gives

‖v(·, t)‖2L2 ≤ k5(ξ
6 + ξ2 + 1) + ‖v0‖2L2 ,

and hence, (3.1) follows by taking

M4 := k5 + ‖v0‖L2

= 2

((
20

3d2

)5 k61
6

+ 2k21
d2

)

M2
1
2

1(1 + 
4
1) + ‖v0‖L2

+ 2k3

(
1

2
+ M0

)

M2
1

(

1 +
(

k3
3d2

) 1
2 4

3

(
1

2
+ M0

) 1
2
)

.

(3.8)

Finally, we integrate (3.7) with respect to t to obtain that for all t ∈ (0, Tmax − τ),

d2

∫ t+τ

t

∫

�

v2x (·, s)dxds ≤ k5(ξ
6 + ξ2 + 1) +

∫

�

v2(·, t)
≤ 2k5(ξ

6 + ξ2 + 1) + ‖v0‖L2

≤ 2M4(ξ
6 + ξ2 + 1),

and hence, (3.2) follows directly. Then the proof of Lemma 3.1 is completed. ��
Lemma 3.2 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant M5 defined in (3.14), which is independent of ξ ,
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χ , such that

‖v(·, t)‖L∞ ≤ M5[1 + ξ(ξ6 + ξ2 + 1)
1
2 ], for all t ∈ (0, Tmax). (3.9)

Proof We rewrite the second equation of (1.3) as

vt = d2vxx − d2v − (ξvux )x + (d2 + u)v − (b2w + θ1)v. (3.10)

Applying the variation-of-constants formula to (3.10), one has

v(·, t) =etd2(�−1)v0 − ξ

∫ t

0
e(t−s)d2(�−1)(vux )xds +

∫ t

0
e(t−s)d2(�−1)(d2 + u)vds

−
∫ t

0
e(t−s)d2(�−1)(b2w + θ1)vds,

which, combined with the facts b2, w, v > 0 and the semigroup estimates (Winkler
2010, Lemma 1.3), entails us to find two constants σ3 > 0 and σ4 > 0 depending only
on � such that

‖v(·, t)‖L∞ ≤ ‖etd2(�−1)v0‖L∞ + ξ

∫ t

0
‖e(t−s)d2(�−1)(vux )x‖L∞ds

+
∫ t

0
‖e(t−s)d2(�−1)(u + d1 − θ1)v‖L∞ds

≤ σ3‖v0‖L∞ + ξσ4

∫ t

0
e−(λ1+1)d2(t−s)(1 + (t − s)−

5
6 )‖vux‖

L
3
2
ds

+ σ3

∫ t

0
e−(λ1+1)d2(t−s)(1 + (t − s)−

1
2 )‖(u + d2)v‖L1ds

=: σ3‖v0‖L∞ + J1 + J2. (3.11)

Choosing q = 6 in (2.12), we can find a constant 
2 > 0 independent of χ and ξ such
that

‖ux (·.t)‖L6 ≤σ2M0 (|�|(d1 + 1 + M0) + M1b1 + M2γ1)

(λ1 + 1)d1

(

1 + 


(
1

12

)

((λ1 + 1)d1)
11
12

)

+ σ1‖∂x u0‖L6
=:
2,

which, along with Hölder inequality, and (3.1), indicates

‖vux‖
L

3
2

≤ ‖v‖L2‖ux‖L6 ≤ M
1
2
4 (ξ6 + ξ2 + 1)

1
2 
2,
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and hence,

J1 : = σ4ξ

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t − s)−

5
6 )‖vux‖

L
3
2
ds

≤ σ4M
1
2
4 ξ(ξ6 + ξ2 + 1)

1
2 
2

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t − s)−

5
6 )ds

≤ σ4M
1
2
4 ξ(ξ6 + ξ2 + 1)

1
2 
2

∫ ∞

0
e−d2(λ1+1)z

(
1 + z−1+ 1

6

)
ds

≤ k1ξ(ξ6 + ξ2 + 1)
1
2 ,

(3.12)

where k1 := σ4M
1
2
4 
2

d2(λ1+1)

(

1 + 

( 1
6

)
d

5
6
2 (λ1 + 1)

5
6

)

is independent of χ and ξ . Noting

the facts 0 < u ≤ M0 and ‖v(·, t)‖L1 ≤ M1, one derives

J2 : = σ3

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t − s)−

1
2 )‖(u + d2)v‖L1ds

≤ σ3

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t − s)−

1
2 )‖u + d2‖L∞‖v‖L1ds

≤ σ3(M0 + d2)M1

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t − s)−

1
2 )ds

≤ k2,

(3.13)

with

k2 := σ3(M0 + d2)M1

λ1d2 + d2

(

1 + 


(
1

2

)

(λ1d2 + d2)
1
2

)

.

Then substituting (3.12) and (3.13) into (3.11), we have

‖v(·, t)‖L∞ ≤ σ3‖v0‖L∞ + k1ξ(ξ6 + ξ2 + 1)
1
2 + k2,

which gives (3.9) by choosing

M5 := σ4M
1
2
4 
2

d2(λ1 + 1)

(

1 + 


(
1

6

)

d
5
6
2 (λ1 + 1)

5
6

)

+ σ3(M0 + d2)M1

λ1d2 + d2

(

1 + 


(
1

2

)

(λ1d2 + d2)
1
2

)

+ σ3‖v0‖L∞ .

(3.14)

Hence, the proof of Lemma 3.2 is finished. ��
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3.2 Boundedness of ‖w(·, t)‖L∞

To establish the boundedness of ‖w(·, t)‖L∞ , we first prove the space-time bound for
w based on some ideas in Tao and Winkler (2019).

Lemma 3.3 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a constant M6 > 0 such that

∫ t+τ

t

∫

�

w2(·, s)dxds ≤ M6, for all t ∈ (0, Tmax − τ), (3.15)

where τ = min{1, Tmax
2 }.

Proof Applying Gagliardo–Nirenberg inequality, Cauchy–Schwarz inequality and the
fact ‖√w + 1‖2

L2 = ∫

�
(w + 1) ≤ M2 + |�|, we obtain

∫

�

w2 ≤
∫

�

(w + 1)2

=‖√w + 1‖4L4

≤k1‖∂x
√

w + 1‖2L1‖
√

w + 1‖2L2 + k1‖
√

w + 1‖4L2

≤k1(M2 + |�|)
4

(∫

�

|wx |√
w + 1

)2

+ k1(M2 + |�|)2

≤k1(M2 + |�|)2
4

∫

�

w2
x

(w + 1)2
+ k1(M2 + |�|)2.

(3.16)

On the other hand, we use the third equation of (1.3), (2.3) and Young’s inequality to
derive that

d

dt

∫

�
ln(w + 1) =

∫

�

wt

w + 1

=
∫

�

w2
x

(w + 1)2
− χ

∫

�

wφ(u, v)x · wx

(w + 1)2
+

∫

�

(v + γ2u)w

w + 1
− θ2

∫

�

w

w + 1

≥
∫

�

w2
x

(w + 1)2
− χ

∫

�

wφ(u, v)x · wx

(w + 1)2
− θ2|�|

≥ 1

2

∫

�

w2
x

(w + 1)2
− χ2

2

∫

�

w2|φ(u, v)x |2
(w + 1)2

− θ2|�|. (3.17)

Noting the facts 0 ≤ ln(w + 1) ≤ w and w2

(w+1)2
≤ 1 for all w ≥ 0 and integrating

(3.17) from t to (t + τ), one has

∫ t+τ

t

∫

�

w2
x

(w + 1)2
≤2θ2|�| + χ2

∫ t+τ

t

∫

�

w2|φ(u, v)x |2
(w + 1)2

+ 2
∫

�
ln(w + 1)(·, t + τ)

≤2θ2|�| + 2M2 + χ2
∫ t+τ

t

∫

�
|φuux + φvvx |2.

(3.18)
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Furthermore, by (H0) and the L∞-boundedness of u, v (see (2.1) and (3.9)), there
exists a constant γ > 0 independent of t such that

|φu | + |φv| ≤ γ for all t ∈ (0, Tmax), (3.19)

and then using (3.2) and (3.4), one derives

χ2
∫ t+τ

t

∫

�

|φuux + φvvx |2 ≤ 2χ2γ 2
∫ t+τ

t

∫

�

(u2x + v2x )

≤ 2χ2γ 2
(


2
1 + 2M4

d2

(
ξ6 + ξ2 + 1

))

.

(3.20)

We substitute (3.20) into (3.18) to obtain that for all t ∈ (0, Tmax − τ)

∫ t+τ

t

∫

�

w2
x

(w + 1)2
≤ 2θ2|�| + 2M2 + 2χ2γ 2

(


2
1 + 2M4

d2

(
ξ6 + ξ2 + 1

))

. (3.21)

Hence, integrating (3.16) from t to (t + τ) and applying (3.21), we get (3.15)
directly. Then the proof of Lemma 3.3 is finished. ��
Lemma 3.4 Let (u, v, w) be the solution to the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant M7 such that

∫ t+τ

t

∫

�

u2xx (·, s)dxds ≤ M7, for all t ∈ (0, Tmax − τ), (3.22)

where τ := min{1, 1
2Tmax}.

Proof We multiply the first equation by −uxx and use Young’s inequality and (3.4) to
derive

1

2

d

dt

∫

�
u2x + d1

∫

�
u2xx + 2

∫

�
uu2x =

∫

�
u2x + b1

∫

�
uvuxx + γ1

∫

�
uwuxx

≤
∫

�
u2x + d1

2

∫

�
u2xx + b21

d1

∫

�
u2v2 + γ 2

1
d1

∫

�
u2w2

≤d1
2

∫

�
u2xx + γ 2

1 M
2
0

d1

∫

�
w2

+b21M
2
0M4(ξ

6 + ξ2 + 1)

d1
+ 
2

1 ,

which gives

d

dt

∫

�

u2x + d1

∫

�

u2xx ≤ 2γ 2
1 M

2
0

d1

∫

�

w2 + 2b21M
2
0M4(ξ

6 + ξ2 + 1)

d1
+ 2
2

1 .

(3.23)
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Then integrating (3.23) with respect to t and using (3.15) and (3.4) imply that for all
t ∈ (0, Tmax − τ),

∫ t+τ

t

∫

�
u2xx (·, s)dxds ≤ 2γ 2

1 M
2
0

d21

∫ t+τ

t

∫

�
w2 + 1

d1

∫

�
u2x (·, t) + 2b21M

2
0M4(ξ

6 + 1)

d21
+ 2
2

1
d1

≤ 2γ 2
1 M

2
0M6

d21
+ 3
2

1
d1

+ 2b21M
2
0M4(ξ

6 + ξ2 + 1)

d21

=: M7,

which entails (3.22) immediately. Then the proof of Lemma 3.4 is completed. ��

Lemma 3.5 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a positive constant M8 such that for all t ∈ (0, Tmax),

∫

�

v2x (·, t) ≤ M8, for all t ∈ (0, Tmax − τ). (3.24)

Proof Multiplying the second equation of (1.3) by −vxx , integrating the result over
�, and using Hölder inequality and ‖u(·, t)‖L∞ +‖v(·, t)‖L2 +‖v(·, t)‖L∞ ≤ k1, one
obtains

d

dt

∫

�

v2x+2d2

∫

�

v2xx =2ξ
∫

�

vuxxvxx

+2ξ
∫

�

vxuxvxx+2θ1

∫

�

vvxx

+2b2

∫

�

vwvxx−2
∫

�

uvvxx

≤2ξk1‖uxx‖L2‖vxx‖L2 +2ξ‖vxux‖L2‖vxx‖L2

+2k1(θ1+k1)‖vxx‖L2 |�| 12 +2b2k1‖w‖L2‖vxx‖L2

≤d2‖vxx‖2L2 + 4ξ2k21
d2

‖uxx‖2L2 + 4ξ2

d2
‖vxux‖2L2 + 4b22k

2
1

d2
‖w‖2L2

+ 4k21(θ1+k1)2|�|
d2

,

which yields

d

dt

∫

�

v2x + d2

∫

�

v2xx ≤4ξ2k21
d2

‖uxx‖2L2 + 4ξ2

d2
‖vxux‖2L2 + 4b22k

2
1

d2
‖w‖2L2

+ 4k21(θ1 + k1)2|�|
d2

.

(3.25)
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Furthermore, choosing q = 4 in Lemma 2.4 and using Hölder inequality and
Gagliardo–Nirenberg inequality, we derive

4ξ2

d2
‖vx ux‖2L2 ≤ 4ξ2

d2
‖ux‖2L4‖vx‖2L4 ≤ k2‖vxx‖L2‖v‖L∞ + k2‖v‖2L∞ ≤ d2

2
‖vxx‖2L2 + k3,

(3.26)

and
∫

�

v2x = ‖vx‖2L2 ≤ k4
(
‖vxx‖L2‖v‖L2 + ‖v‖2L2

)
≤ d2

2
‖vxx‖2L2 + k5. (3.27)

Substituting (3.26) and (3.27) into (3.25), one has

d

dt

∫

�

v2x +
∫

�

v2x ≤4ξ2k21
d2

‖uxx‖2L2 + 4b22k
2
1

d2
‖w‖2L2 + k6, (3.28)

with k6 = k3 + k5 + 4k21(θ1+k1)2|�|
d2

. Letting

h(t) := 4ξ2k21
d2

‖uxx‖2L2 + 4b22k
2
1

d2
‖w‖2L2 + k6

and then using Lemma 3.4 and Lemma 3.3, we have

∫ t+τ

t
h(s)ds = 4ξ2k21

d2

∫ t+τ

t

∫

�

u2xx (·, s)dxds

+ 4b22k
2
1

d2

∫ t+τ

t

∫

�

w2(·, s)dxds + k6τ ≤ k7.

(3.29)

Applying Lemma 2.5 to (3.28) and using (3.29), one gets (3.24). Then, we complete
the proof of Lemma 3.5. ��
Lemma 3.6 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then it holds that

‖w(·, t)‖L4 ≤ M9, for all t ∈ (0, Tmax), (3.30)

where M9 > 0 is a constant independent of t .

Proof We multiply the third equation of (1.3) by w3, integrate the results over � and
use Young’s inequality with the boundedness of ‖u(·, t)‖L∞ and ‖v(·, t)‖L∞ to derive

1

4

d

dt

∫

�
w4 + 3

∫

�
w2w2

x = 3χ
∫

�
w3(φuux · wx + φvvx · wx ) +

∫

�
w4(v + γ2u − θ2)

≤ 3χ
∫

�
w3(|φu ||ux | + |φv ||vx |)|wx | + k1

∫

�
w4

≤ 3

2

∫

�
w2w2

x + 3χ2

2

∫

�
w4(|φu ||ux | + |φv ||vx |)2 + k1

∫

�
w4,

123



56 Page 18 of 47 Journal of Nonlinear Science (2025) 35 :56

which, together with the basic inequality (y + z)2 ≤ 2(y2 + z2) and the fact
1
4

∫

�
|(w2)x |2 = ∫

�
w2w2

x , gives

d

dt

∫

�

w4 +
∫

�

w4 + 3

2

∫

�

|(w2)x |2

≤ 12χ2
∫

�

w4(φ2
uu

2
x + φ2

vv2x ) + (4k1 + 1)
∫

�

w4

≤ ‖w‖4L∞
(
12χ2‖φu‖2L∞‖ux‖2L2 + ‖φv‖2L∞‖vx‖2L2 + (4k1 + 1)|�|

)

≤ k2‖w‖4L∞ ,

(3.31)

wherewehave usedHölder inequality, (3.19) and (3.24) aswell as (3.4). ByGagliardo–
Nirenberg inequality, Young’s inequality and (2.3), one has

k2‖w‖4L∞ = k2‖w2‖2L∞ ≤k3‖(w2)x‖
8
5
L2‖w2‖

2
5

L
1
2

+ k3‖w2‖2
L

1
2

=k3‖(w2)x‖
8
5
L2‖w‖

4
5
L1 + k3‖w‖4L1

≤3

2
‖(w2)x‖2L2 + k4,

which, substituted into (3.31), gives

d

dt

∫

�

w4 +
∫

�

w4 ≤ k4,

and then (3.30) follows by Grönwall’s inequality. Hence, the proof of Lemma 3.6 is
completed. ��

Lemma 3.7 Let (u, v, w) be the solution of the system (1.3) obtained in Lemma 2.1.
Then there exists a constant M10 > 0 independent of t such that

‖w(·, t)‖L∞ ≤ M10, for all t ∈ (0, Tmax). (3.32)

Proof Applying the variation-of-constants formula to the third equation of (1.3) and
using the well-known semigroup estimates, we have

‖w(·, t)‖L∞ ≤ k1‖w0‖L∞ + k2

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

7
8 )‖φ(u, v)xw‖

L
4
3
ds

+ k3

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

1
4 )‖(v + γ2u + 1 − θ2)w‖L2ds

≤k1‖w0‖L∞ + I1 + I2. (3.33)
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Noting the facts ‖w(·, t)‖L4 ≤ M9, (3.19), (3.24) and (3.4) and using Hölder
inequality, one has

‖φ(u, v)xw‖
L

4
3

=‖(φuux + φvvx )w‖
L

4
3

≤‖φuux + φvvx‖L2‖w‖L4

≤M2
9

2
+ ‖φu‖2L∞‖ux‖2L2 + ‖φv‖2L∞‖vx‖2L2

≤M2
9

2
+ γ 2(M8 + 
2

1) =: k4,

and hence,

I1 := k2

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

7
8 )‖φ(u, v)xw‖

L
4
3
ds

≤ k2k4

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

7
8 )ds

≤ k5.

(3.34)

On the other hand, using Hölder inequality and the boundedness of u, v and ‖w‖L4 ,
we can find a constant k6 > 0 such that

‖(v + γ2u − θ2 + 1)w‖L2 ≤ ‖v + γ2u − θ2 + 1‖L4‖w‖L4 ≤ k6,

and hence,

I2 :=k3

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

1
4 )‖(v + γ2u − θ2 − α2w + 1)w‖L2ds

≤k3k6

∫ t

0
e−(λ1+1)(t−s)(1 + (t − s)−

1
4 )ds

≤k7.

(3.35)

Substituting (3.34) and (3.35) into (3.33) gives (3.32), and hence, the proof of Lemma
3.7 is completed. ��

3.3 Proof of Theorem 1.1

Noting (2.1) and (3.4), we derive

‖u(·, t)‖W 1,2 ≤ k1, for all t ∈ (0, Tmax). (3.36)

And the combination of (3.9) and (3.24) gives

‖v(·, t)‖W 1,2 ≤ k2, for all t ∈ (0, Tmax). (3.37)
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Then combining (3.36), (3.37) and (3.32) and using Lemma 2.1, we directly prove
Theorem 1.1.

4 Global Stability: Proof of Theorem 1.3

In this section, we use Lyapunov functionals and LaSalle’s invariant principle to
establish global stability of constant steady states for the system (1.3).

4.1 Case of Prey-Only

In this subsection, we shall study the global stability of (1, 0, 0) (i.e., prey-only steady
state) provided θ1 > 1 and θ2 > γ2. To this end, we introduce the energy functional
as below:

F1(t) := F1(u, v, w) = α1

∫

�

(u − 1 − ln u) + b1

∫

�

v + b1b2

∫

�

w,

where

α1 :=
⎧
⎨

⎩

1, if γ1 = γ2 = 0,

min
{

θ1−1
4 ,

b1b2(θ2−γ2)
4γ1

}
, if γ1, γ2 > 0.

Lemma 4.1 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. Then if
θ1 > 1 and θ2 > γ2, one has

lim
t→∞ (‖u(·, t) − 1‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t)‖L∞) = 0.

Proof Letting g(z) = z − z∗ ln z and noting g′(z∗) = 0, we use Taylor’s expansion to
obtain that for all z, z∗ > 0

z − z∗ − z∗ ln
z

z∗
= g(z) − g(z∗) = 1

2
g′′(z̃)(z − z∗)2 = z∗

2z̃2
(z − z∗)2 ≥ 0, (4.1)

where z̃ is between z and z∗. Choosing z = u and z∗ = 1, from (4.1) one has

u − 1 − ln u = 1

2y21
(u − 1)2 ≥ 0, (4.2)

where y1 is between u and 1. Hence, using (4.2) and the definition ofF1(t), we derive
that F1(t) ≥ 0 and F1(t) = 0 if and only if (u, v, w) = (1, 0, 0). Moreover, some
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calculations give

d

dt
F1(t) = α1

∫

�

u − 1

u
ut + b1

∫

�

vt + b1b2

∫

�

wt

= −α1d1

∫

�

u2x
u2

− α1

∫

�

(u − 1)2 − α1b1

∫

�

uv − α1γ1

∫

�

uw

+ b1

∫

�

(u − θ1 + α1)v +
∫

�

(b1b2γ2u − b1b2θ2 + α1γ1)w.

(4.3)

Case 1: γ1 = γ2 = 0. In this case, substituting α1 = 1 and γ1 = γ2 = 0 into (4.3),
one has

d

dt
F1(t) = −d1

∫

�

u2x
u2

−
∫

�

(u − 1)2 − b1(θ1 − 1)
∫

�

v − b1b2θ2

∫

�

w,

which, along with θ1 > 1, gives

d

dt
F1(t) ≤ 0.

Case 2: γ1, γ2 > 0.Noting the facts lim sup
t→∞

u(x, t) ≤ 1 in (2.2) and θ1 > 1 as well

as θ2 > γ2, for ε1 := min
{

θ1−1
2 ,

θ2−γ2
2γ2

}
, we can find a t1 > 0 such that

u(x, t) ≤ 1 + ε1 for any x ∈ �̄ and t > t1,

which, together with α1 := min
{

θ1−1
4 ,

b1b2(θ2−γ2)
4γ1

}
, entails

u − θ1 + α1 ≤ 1 + ε1 + α1 − θ1

≤ 1 + θ1 − 1

2
− θ1 + θ1 − 1

4

= −θ1 − 1

4
< 0 for all t > t1,

(4.4)

and

b1b2γ2u − b1b2θ2 + α1γ1 ≤ b1b2γ2(1 + ε1) − b1b2θ2 + α1γ1

≤ b1b2(γ2 − θ2) + b1b2γ2
θ2 − γ2

2γ2
+ b1b2(θ2 − γ2)

4γ1
γ1

= −b1b2(θ2 − γ2)

4
< 0 for all t > t1. (4.5)
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The combination of (4.3), (4.4) and (4.5) gives

d

dt
F1(t) ≤ −α1d1

∫

�

u2x
u2

− α1

∫

�

(u − 1)2 − α1b1

∫

�

uv − α1γ1

∫

�

uw

− b1(θ1 − 1)

4

∫

�

v − b1b2(θ2 − γ2)

4

∫

�

w,

and thus, d
dtF1(t) ≤ 0 for all t > t1.

Moreover, all the above cases indicate that d
dtF1(t) = 0 iff (u, v, w) = (1, 0, 0).

Hence, by LaSalle’s invariance principle (e.g., see (Shankar 1999, pp.198–199, The-
orem 5.24)), we know that (u, v, w) converges to (1, 0, 0) in L∞ as t → ∞.

��

4.2 Case of Semi-coexistence

In this subsection, we first study the global stability of semi-coexistence E12 :=(
θ1,

1−θ1
b1

, 0
)
based on the following energy functional:

F2(t) := F2(u, v, w) =
∫

�

(

u − θ1 − θ1 ln
u

θ1

)

+ b1

∫

�

(
v − V − V ln

v

V

)

+b1b2

∫

�

w,

where V := 1−θ1
b1

.

Lemma 4.2 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. If 0 < θ1 <

1 and

θ2 >
γ1

b1b2
θ1 − θ1

b1
+ 1

b1
+ max{b1b2γ2 − γ1, 0}

b1b2
=: 
1, (4.6)

then there exists ξ0 > 0 such that for all ξ ∈ (0, ξ0), it holds that

lim
t→∞

(

‖u(·, t) − θ1‖L∞ + ∥
∥v(·, t) − 1 − θ1

b1

∥
∥
L∞ + ‖w(·, t)‖L∞

)

= 0. (4.7)

Proof Using (4.1), we can check that F2(t) ≥ 0 and F2(t) = 0 iff (u, v, w) =(
θ1,

1−θ1
b1

, 0
)
. Applying the equations of (1.3) and using the fact 1 = θ1 + b1V , one

has
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d

dt
F2(t) =

∫

�

u − θ1

u
ut + b1

∫

�

v − V

v
vt + b1b2

∫

�

wt

= −θ1d1

∫

�

u2x
u2

− b1d2V
∫

�

v2x

v2
+ b1ξV

∫

�

ux · vx

v

+
∫

�

(u − θ1)(1 − u − b1v − γ1w)

+ b1

∫

�

(v − V )(u − b2w − θ1) + b1b2

∫

�

w(v + γ2u − θ2)

= −
∫

�

Y T
1 B1Y1 +

∫

�

h1(x, t)w −
∫

�

(u − θ1)
2,

(4.8)

where

Y1 =
( ux

v

vx
v

)

, B1 :=
(

θ1d1 − b1V ξu
2

− b1V ξu
2 b1d2V

)

and

h1(x, t) := (b1b2γ2 − γ1)u + b1b2V + γ1θ1 − b1b2θ2.

After some calculations, one can check that B1 is a positive definite matrix provided
that

ξ2(1 − θ1)‖u‖2L∞ < 4θ1d1d2. (4.9)

Since 0 < θ1 < 1 and ‖u‖L∞ is independent of ξ , we can find an appropriate constant
ξ0 > 0 such that if 0 < ξ < ξ0, then (4.9) holds, which entails us to find a constant
k1 > 0 such that

−
∫

�

Y T
1 B1Y1 ≤ −k1

∫

�

(
u2x
u2

+ v2x

v2

)

. (4.10)

Next, we shall show that under condition (4.6), there exists a constant k2 > 0 such
that

∫

�

h1(x, t)w ≤ −b1b2k2
2

∫

�

w. (4.11)

We divide our proof into two cases: b1b2γ2 ≤ γ1 and b1b2γ2 > γ1.
Case 1: b1b2γ2 ≤ γ1. In this case, from (4.6), one has

θ2 >
γ1

b1b2
θ1 − θ1

b1
+ 1

b1
,
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which indicates

h1(x, t) = (b1b2γ2 − γ1)u + b1b2V + γ1θ1 − b1b2θ2

≤ b1b2
1 − θ1

b1
+ γ1θ1 − b1b2θ2

= −b1b2

(

θ2 − γ1

b1b2
θ1 + θ1

b1
− 1

b1

)

< 0.

(4.12)

Case 2: b1b2γ2 > γ1. For this case,
(4.6) and the fact lim sup

t→∞
u(x, t) ≤ 1 in (2.2) can guarantee that for the positive

constant ε2 := b1b2
2(b1b2γ2−γ1)

(θ2 − 
1), there exists a constant t2 > 0 such that

u(x, t) ≤ 1 + ε2 for any x ∈ �̄ and t > t2,

and hence,

h1(x, t) = (b1b2γ2 − γ1)u + b1b2V + γ1θ1 − b1b2θ2

≤ (b1b2γ2 − γ1) + b1b2
2

(θ2 − 
1) + b1b2
1 − θ1

b1
+ γ1θ1 − b1b2θ2

= −b1b2
2

(θ2 − 
1) < 0. (4.13)

Combining (4.12) with (4.13) and letting

k2 = θ2 − γ1

b1b2
θ1 + θ1

b1
− 1

b1
− max{b1b2γ2 − γ1, 0}

b1b2
,

we directly obtain (4.11). Then substituting (4.10) and (4.11) into (4.8), one has

d

dt
F2(t) ≤ −k1

∫

�

(
u2x
u2

+ v2x

v2

)

−
∫

�

(u − θ1)
2 − b1b2k2

2

∫

�

w ≤ 0,

and “=" holds iff (u, vx , w) = (θ1, 0, 0). Furthermore, the fact vx = 0 entails v = ṽ,
where ṽ is a positive constant. Hence, (u, v, w) = (θ1, ṽ, 0) satisfies

0 = θ1(1 − θ1 − b1ṽ),

which yields ṽ = 1−θ1
b1

= V . Then d
dtF2(t) = 0 implies (u, v, w) =

(
θ1,

1−θ1
b1

, 0
)
.

Applying LaSalle’s invariance principle, one obtains that the semi-coexistence(
θ1,

1−θ1
b1

, 0
)
is globally asymptotically stable, which gives (4.7). ��
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Next, we shall study the global stability of the semi-coexistence steady state(
θ2
γ2

, 0, γ2−θ2
γ1γ2

)
based on the following energy functional:

F3(t) := F3(u, v, w) = b1b2γ2
γ1

∫

�

(

u − θ2

γ2
− θ2

γ2
ln

uγ2

θ2

)

+ b1b2

∫

�

(
w − W − W ln

w

W

)

+ b1

∫

�
v +

∫

�
v2,

(4.14)

where W := γ2−θ2
γ1γ2

.

Lemma 4.3 Let (u, v, w) be the solution of (1.3) obtained in Theorem 1.1. Then if
θ1 > 1, θ2 < γ2 and

θ2 <
γ1γ2

b1b2γ2 + b2
θ1 + b2γ2

b1b2γ2 + b2
+ γ2 min{b1b2γ2 − γ1, 0}

b1b2γ2 + b2
=: 
2, (4.15)

there exist ξ1 > 0 and χ1 > 0 such that if ξ ∈ (0, ξ1) and χ ∈ (0, χ1), the following
holds:

lim
t→∞

(
∥
∥u(·, t) − θ2

γ2

∥
∥
L∞ + ‖v(·, t)‖L∞ + ∥

∥w(·, t) − γ2 − θ2

γ1γ2

∥
∥
L∞

)

= 0.

Proof Applying (4.1), we can verify that F3(t) ≥ 0 and “=” holds iff (u, v, w) =(
θ2
γ2

, 0, γ2−θ2
γ1γ2

)
. Moreover, by the definition ofF3(t) in (4.14), we utilize the equations

of (1.3) and the fact 1 = θ2
γ2

+ γ1W to derive

d

dt
F3(t) = b1b2γ2

γ1

∫

�

u − θ2
γ2

u
ut + b1b2

∫

�

w − W

w
wt + b1

∫

�
vt + 2

∫

�
vvt

= − b1b2d1θ2
γ1

∫

�

u2x
u2

− b1b2W
∫

�

w2
x

w2 + b1b2Wχ

∫

�

φuux · wx + φvvx · wx

w

+ b1b2γ2
γ1

∫

�

(

u − θ2

γ2

)

(1 − u − b1v − γ1w) + b1b2

∫

�
(w − W )(v + γ2u − θ2)

+ b1

∫

�
v(u − b2w − θ1) − 2d2

∫

�
v2x + 2ξ

∫

�
vux · vx + 2

∫

�
v2(u − b2w − θ1)

= −
∫

�
Y T
2 B2Y2 − b1b2γ2

γ1

∫

�

(

u − θ2

γ2

)2
+ b1

∫

�
vh2(x, t) + 2

∫

�
v2h3(x, t),

(4.16)

where

Y2 =

⎛

⎜
⎜
⎝

ux
u
vx
v

wx
w

⎞

⎟
⎟
⎠ , B2 :=

⎛

⎜
⎜
⎝

b1b2d1θ2
γ1

−ξuv2 − b1b2χWuφu
2

−ξuv2 2d2v2 − b1b2χWvφv

2

− b1b2χWuφu
2 − b1b2χWvφv

2 b1b2W ,

⎞

⎟
⎟
⎠
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and

h2(x, t) :=(1 − b1b2γ2
γ1

)u − θ1 − b2W + b1b2θ2
γ1

and h3(x, t) :=u − b2w − θ1.

(4.17)

After some calculations, we can check that B2 is positive definite if

∣
∣
∣
∣
∣

b1b2d1θ2
γ1

−ξuv2

−ξuv2 2d2v2

∣
∣
∣
∣
∣
=

(
2b1b2d1d2θ2

γ1
− ξ2u2v2

)

v2 > 0, (4.18)

and

|B2| =b1b2Wv2
(
2b1b2d1d2θ2

γ1
− ξ2u2v2

)

− b21b
2
2χ

2W 2v2

4

(

2uvφuφvξu + 2u2φ2
ud2 + φ2

v

d1θ2b1b2
γ1

)

> 0.

(4.19)

Indeed, it can be verified that (4.18) and (4.19) hold if

2b1b2d1d2θ2 > ξ2γ1M
2
0K

2
0 + χ2Mc∗, (4.20)

where M0 and K0 are defined in (1.4) and (1.5), respectively, and

Mc∗ := b1b2(γ2 − θ2)

4γ2

(

2ξM2
0 K0‖φv‖L∞‖φu‖L∞ + 2d2M

2
0‖φu‖2L∞ + d1θ2b1b2

γ1
‖φv‖2L∞

)

.

Since M0 ≥ ‖u‖L∞ is independent of ξ , χ and K0 ≥ ‖v‖L∞ is independent of χ ,
for any given φ(u, v) ∈ C2([0,∞)), we can obtain the upper bounds of ‖φu‖L∞ and
‖φv‖L∞ are independent of χ . Then there exist ξ1 > 0 and χ1 > 0 such that (4.20)
holds if ξ ∈ (0, ξ1) and χ ∈ (0, χ1). Hence, we can find a constant k1 > 0 such that

−
∫

�

Y T
2 B2Y2 ≤ −k1

∫

�

(
u2x
u2

+ v2x

v2
+ w2

x

w2

)

. (4.21)

Next, we shall show h3(x, t) < 0 and h2(x, t) < 0, respectively. Noting θ1 > 1
and (4.15), we can take

ε3 :=
⎧
⎨

⎩

θ1−1
2 , if γ1 ≤ b1b2γ2,

min
{

θ1−1
2 ,

(
2−θ2)(b1b2γ2+b2)
2(γ1−b1b2γ2)γ2

}
, if γ1 > b1b2γ2.

From (2.2), we can find a constant t3 > 0 such that

u(x, t) ≤ 1 + ε3 for all x ∈ �̄ and t > t3, (4.22)
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and hence,

h3(x, t) := u − b2w − θ1 ≤ 1 + ε3 − θ1 ≤ θ1 − 1

2
+ 1 − θ1 = − θ1 − 1

2
< 0. (4.23)

As for h2, we need to distinguish in two cases:
Case 1: γ1 ≤ b1b2γ2. This case means 1 − b1b2γ2

γ1
≤ 0; thus, it follows from (4.15)

and (4.17) that

h2(x, t) ≤ −θ1 − b2γ2 − b2θ2
γ1γ2

+ b1b2θ2
γ1

= −b1b2γ2 + b2
γ1γ2

(
2 − θ2) < 0.
(4.24)

Case 2: γ1 > b1b2γ2. In this case, we have 1 − b1b2γ2
γ1

> 0, which along with (4.17),
(4.22) and (4.15) gives

h2(x, t) ≤ (1 − b1b2γ2
γ1

) + (1 − b1b2γ2
γ1

)
(
2 − θ2)(b1b2γ2 + b2)

2(γ1 − b1b2γ2)γ2
− θ1 − b2W + b1b2θ2

γ1

= (b1b2γ2 + b2)(
2 − θ2)

2γ1γ2
+ γ1 − b1b2γ2

γ1
− θ1 − b2γ2 − b2θ2

γ1γ2
+ b1b2θ2

γ1

= − b1b2γ2 + b2
2γ1γ2

(
2 − θ2) < 0.

(4.25)

Then combining (4.23), (4.24) and (4.25), we derive that

b1

∫

�

vh2(x, t) + 2
∫

�

v2h3(x, t) ≤ −b1b2(b1γ2 + 1)(
2 − θ2)

2γ1γ2

∫

�

v,

which, along with (4.21) and (4.16), gives

d

dt
F3(t) ≤ −k1

∫

�

(
u2x
u2

+ v2x

v2
+ w2

x

w2

)

− b1b2γ2
γ1

∫

�

(

u − θ2

γ2

)2

− b1(b1b2γ2 + b2)(
2 − θ2)

2γ1γ2

∫

�

v

≤ 0.

Thus, d
dtF3(t) = 0 iff (u, v, wx ) =

(
θ2
γ2

, 0, 0
)
. This indicates w = w̃, where w̃ > 0

is a constant. Since
(

θ2
γ2

, 0, w̃
)
is a solution of (1.6), then one has

θ2

γ2

(

1 − θ2

γ2
− γ1w̃

)

= 0,
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which implies w̃ = γ2−θ2
γ1γ2

. Hence, d
dtF3(t) = 0 iff (u, v, w) =

(
θ2
γ2

, 0, γ2−θ2
γ1γ2

)
. Then,

one obtains that
(

θ2
γ2

, 0, γ2−θ2
γ1γ2

)
is globally asymptotically stable by applying LaSalle’s

invariance principle. ��

4.3 Case of Coexistence

In this subsection, we shall study the global stability of coexistence steady state
(u∗, v∗, w∗) defined in (1.7) under the condition (1.8). To this end, we introduce
the energy function as follows

F4(t) := F4(u, v, w) = Fu(t) + b1Fv(t) + b1b2Fw(t),

where

Fy(t) =
∫

�

(

y − y∗ − y∗ ln
y

y∗

)

, y = u, v, w.

Lemma 4.4 Let (u, v, w)be the solution of (1.3)obtained inTheorem1.1. If (1.8)holds
and γ1 = b1b2γ2, then there exist ξ2 > 0 and χ2 > 0 such that for all ξ ∈ (0, ξ2) and
χ ∈ (0, χ2), it holds that

lim
t→∞ (‖u(·, t) − u∗‖L∞ + ‖v(·, t) − v∗‖L∞ + ‖w(·, t) − w∗‖L∞) = 0.

Proof Using (4.1), we can check that F(t) ≥ 0 and F(t) = 0 iff (u, v, w) =
(u∗, v∗, w∗).

Next, we shall show d
dtF4(t) ≤ 0 under certain conditions for the parameters. In

fact, using the first equation of (1.3) and u∗ + b1v∗ + γ1w∗ = 1, we derive

d

dt
Fu(t) =

∫

�

u − u∗
u

ut

= −u∗d1
∫

�

u2x
u2

+
∫

�

(u − u∗)(1 − u − b1v − γ1w)

= −u∗d1
∫

�

u2x
u2

−
∫

�

(u − u∗)2 − b1

∫

�

(u − u∗)(v − v∗)

− γ1

∫

�

(u − u∗)(w − w∗).

(4.26)

Applying u∗ − b2w∗ = θ1 and the second equation of (1.3), one has

b1
d

dt
Fv(t) = b1

∫

�

v − v∗
v

vt

= −b1v∗d2
∫

�

v2x

v2
+ b1ξv∗

∫

�

ux · vx

v
+ b1

∫

�

(v − v∗)(u − b2w − θ1)

123



Journal of Nonlinear Science (2025) 35 :56 Page 29 of 47 56

= −b1v∗d2
∫

�

v2x

v2
+ b1ξv∗

∫

�

ux · vx

v
+ b1

∫

�

(v − v∗)(u − u∗)

− b1b2

∫

�

(v − v∗)(w − w∗). (4.27)

Similarly, noting v∗ + γ2u∗ = θ2 and applying the third equation of (1.3), we derive
that

b1b2
d

dt
Fw(t) = b1b2

∫

�

w − w∗
w

wt

= −b1b2w∗
∫

�

w2
x

w2 + b1b2w∗χ
∫

�

φuux · wx + φvvx · wx

w

+ b1b2

∫

�

(w − w∗)(v + γ2u − θ2)

= −b1b2w∗
∫

�

w2
x

w2 + b1b2w∗χ
∫

�

φuux · wx + φvvx · wx

w

+ b1b2

∫

�

(w − w∗)(v − v∗) + b1b2γ2

∫

�

(w − w∗)(u − u∗).

(4.28)

We combine (4.26), (4.27) and (4.28) and use b1b2γ2 − γ1 = 0 to obtain

d

dt
F4(t) = −u∗d1

∫

�

u2x
u2

− b1v∗d2
∫

�

v2x

v2
− b1b2w∗

∫

�

w2
x

w2

+ b1ξv∗
∫

�

ux · vx

v
+ b1b2w∗χ

∫

�

φuux · wx + φvvx · wx

w
−

∫

�
(u − u∗)2

= −
∫

�
Y T
3 B3Y3 −

∫

�
(u − u∗)2,

(4.29)

where

Y3 =

⎛

⎜
⎜
⎝

ux
u
vx
v

wx
w

⎞

⎟
⎟
⎠ and B3 =

⎛

⎜
⎜
⎝

u∗d1 − b1ξv∗u
2 −χb1b2w∗φuu

2

− b1ξv∗u
2 b1v∗d2 −χb1b2w∗φvv

2

−χb1b2w∗φuu
2 −χb1b2w∗φvv

2 b1b2w∗

⎞

⎟
⎟
⎠ .

After some calculations, one can verify that the matrix B3 is positive definite if and
only if

∣
∣
∣
∣

u∗d1 − b1ξv∗u
2

− b1ξv∗u
2 b1v∗d2

∣
∣
∣
∣ = v∗b1(4u∗d1d2 − b1v∗ξ2u2)

4
> 0, (4.30)
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and

|B3| = b21b2w∗
4

(4d1d2u∗v∗ − b1ξ
2v2∗u2)

− b21b2w∗χ2

4
(u∗d1b2w∗φ2

vv2 + ξv∗uw∗φvv · b1b2φuu + b1b2v∗d2w∗φ2
uu

2)

> 0.

(4.31)

Since M0 ≥ ‖u‖L∞ is independent of ξ , χ and K0 ≥ ‖v‖L∞ is independent of χ

(see Remark 1.2), we can find appropriate numbers ξ2 > 0 and χ2 > 0 such that if
ξ ∈ (0, ξ2) and χ ∈ (0, χ2), then

4d1d2u∗v∗ > b1v
2∗M2

0 ξ2 + χ2M∗(ξ, u, v),

where

M∗(ξ, u, v) := u∗w∗b2d1‖φv‖2L∞K 2
0 + ξv∗w∗b1b2‖φv‖L∞‖φu‖L∞M2

0K0

+ b1b2v∗w∗d2‖φu‖2L∞K 2
0 ,

which gives (4.30) and (4.31). Hence, there exists a constant k1 > 0 such that (4.29)
can be updated as

d

dt
F4(t) ≤ −k1

∫

�

(
u2x
u2

+ v2x

v2
+ w2

x

w2

)

−
∫

�

(u − u∗)2 ≤ 0. (4.32)

Then (4.32) implies d
dtF4(t) ≤ 0 and “=” holds iff (u, vx , wx ) = (u∗, 0, 0), this

indicates v = ṽ∗ and w = w̃∗, where ṽ∗ and w̃∗ are positive constants satisfying

⎧
⎪⎨

⎪⎩

0 = u∗(1 − u∗ − b1ṽ∗ − γ1w̃∗),
0 = ṽ∗(u∗ − b2w̃∗ − θ1),

0 = w̃∗(ṽ∗ + γ2u∗ − θ2).

This together with the definition of u∗ in (1.7) gives

ṽ∗ = γ1(θ2 − γ2θ1) + b2(θ2 − γ2)

b2
= v∗,

and

w̃∗ = b1(γ2θ1 + θ2) + (1 − θ1)

b2
= w∗.

Therefore, we conclude that d
dtF4(t) ≤ 0 and d

dtF4(t) = 0 iff (u, v, w) =
(u∗, v∗, w∗). Then, LaSalle’s invariance principle yields that (u∗, v∗, w∗) is globally
asymptotically stable. ��
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4.4 Proof of Theorem 1.3

The combination of Lemmas 4.1–4.4 immediately implies Theorem 1.3.

5 Linear Stability/Instability Analysis

In this section, we shall study the possible pattern formation for the system (1.3). In
fact, for the space-absent ordinary differential equation (ODE) system of (1.3)

⎧
⎪⎨

⎪⎩

ut = u(1 − u) − b1uv − γ1uw,

vt = uv − b2vw − θ1v,

wt = vw + γ2uw − θ2w,

it has been proved in Hsu et al. (2015) that:

(1) The trivial steady state E0 := (0, 0, 0) is always linearly unstable.
(2) The prey-only steady state E1 := (1, 0, 0) is linearly stable if θ1 > 1 and θ2 > γ2.

(3) The semi-coexistence steady state E12 :=
(
θ1,

1−θ1
b1

, 0
)
exists if θ1 < 1 and it is

linearly stable provided

θ2 >
b1γ2 − 1

b1
θ1 + 1

b1
. (5.1)

(4) The semi-coexistence steady state E13 :=
(

θ2
γ2

, 0, γ2−θ2
γ1γ2

)
exists if θ2 < γ2 and it

is linearly stable provided

θ2 <
γ1γ2

b2 + γ1
θ1 + b2γ2

b2 + γ1
. (5.2)

For the system (1.3) with spatial movement, by the linear analysis, we can show
that the steady states E1, E12 and E13 are still linearly stable and hence no pattern
formation occurs. More precisely, we have the following results:

Proposition 5.1 Assume (H0) and φu ≥ 0, φv ≥ 0 hold. Then for the system (1.3), it
holds that

(a) If θ1 > 1 and θ2 > γ2, the prey-only steady state E1 is linearly stable.
(b) If θ1 < 1 and (5.1) hold, the semi-coexistence steady state E12 is linearly stable.
(c) If θ2 < γ2 and (5.2) hold, the semi-coexistence steady state E13 is linearly stable.

Proof The proof can be found in the Appendix, see Sect. 7. ��
And it has been shown in Hsu et al. (2015) that if the coexistence steady state
(u∗, v∗, w∗) exists for the corresponding ODE system of (1.3), then it is linearly
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stable if and only if

{
b2 + γ1 − b1b2γ2 > 0,

γ1γ2u∗w∗ + b1u∗v∗ > (γ1 − γ2b1b2)v∗w∗.
(5.3)

Hence, in the following, we focus only on whether pattern formation emerges from
the coexistence steady state (u∗, v∗, w∗) under the conditions (5.3) and (1.8).

As discussed in Appendix, the linear stability/instability of the constant steady state
(u∗, v∗, w∗) is determined by the eigenvalue of the following characteristic equation

μ3 + P1(χ, λk)μ
2 + P2(χ, λk)μ + P3(χ, λk) = 0,

where {λk}∞k=0 : 0 = λ0 < λ1 ≤ λ2 ≤ λ3 . . . denote the sequence of eigenvalues of
−� under Neumann boundary conditions and Pi (χ, λk) (i = 1, 2, 3) are given by the
following equalities

P1(χ, λk) :=λk(d1 + d2 + 1) + u∗ > 0,

P2(χ, λk) :=λ2k(d1d2 + d1 + d2) + λk[(d2 + 1)u∗
+ χφ∗

uγ1u∗w∗ + χφ∗
vb2v∗w∗ + ξb1u∗v∗]

+ γ1γ2u∗w∗ + b2v∗w∗ + b1u∗v∗,

P3(χ, λk) :=λ3kd1d2

+ λ2k(d2u∗ + χφ∗
ud2γ1u∗w∗ + χφ∗

vd1b2v∗w∗
+ ξb1u∗v∗ + χφ∗

v ξγ1u∗v∗w∗)
+ λk

[
γ1ξu∗v∗w∗ + χ(b2φ

∗
v + γ1φ

∗
v − φ∗

ub1b2)u∗v∗w∗
]

+ λk(γ1γ2d2u∗w∗ + b2d1v∗w∗ + b1u∗v∗)
+ (b2 + γ1 − γ2b1b2)u∗v∗w∗,

(5.4)

with φ∗
u = φu(u∗, v∗) and φ∗

v = φv(u∗, v∗). From Routh–Hurwitz criterion (e.g.,
Appendix B.1 in Murray (2002)), the coexistence steady state (u∗, v∗, w∗) is linearly
stable if and only if for each k ∈ N, it holds that

P1(χ, λk) > 0, P3(χ, λk) > 0, P1(χ, λk)P2(χ, λk) − P3(χ, λk) > 0.

A direct calculation gives

H(χ, λk ) := P1(χ, λk )P2(χ, λk ) − P3(χ, λk ) = λ3k K1 + λ2k K2 + λk K3 + K4, (5.5)
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where

K1 :=(d1d2 + d1 + d2 + 1)(d1 + d2) > 0,

K2 :=(d1d2 + d1)u∗ + ξ(d1 + d2)b1u∗v∗ + (d1 + d2 + 1)(d2 + 1)u∗
+ (d1 + 1)χφ∗

uγ1u∗w∗ + (d2 + 1)χφ∗
vb2v∗w∗ − χφ∗

v ξγ1u∗v∗w∗,

K3 :=(d2 + 1)u2∗ + (d1 + 1)γ1γ2u∗w∗ + (d2 + 1)b2v∗w∗
+ (d1 + d2)b1u∗v∗ + b1ξu

2∗v∗
+ χφ∗

uγ1u
2∗w∗ + χφ∗

ub1b2u∗v∗w∗ − (χφ∗
v + ξ)γ1u∗v∗w∗,

K4 :=u∗[γ1γ2u∗w∗ + b1u∗v∗ − (γ1 − γ2b1b2)v∗w∗].

(5.6)

When χ = ξ = 0, one can easily check that P3(χ, λk) > 0 and H(χ, λk) > 0 for
all k ∈ N, which indicates that the coexistence steady state (u∗, v∗, w∗) is linearly
stable. Hence, in the following we will study whether or not the taxis mechanisms can
induce the pattern formations. H(χ, λk) depends on the values of φ∗

u = φu(u∗, v∗),
φ∗

v = φv(u∗, v∗), γ1 and γ2. For a better understanding of the difference between the
effect of prey-taxis and alarm-taxis in the food chain model with intraguild predation,
we shall focus on the linear stability/instability of coexistence steady state for two types
of φ(u, v): φ(u, v) = v and φ(u, v) = uv, both under the conditions γ1, γ2 ≥ 0.

5.1 Linear Stability/Instability Analysis: �1 = �2 = 0

In this subsection, we shall study the linear stability/instability of coexistence steady
state (u∗, v∗, w∗) to (1.3)withφ(u, v) = v orφ(u, v) = uv in the case ofγ1 = γ2 = 0.
In this case, (1.3) can be simplified as

⎧
⎪⎨

⎪⎩

ut = d1uxx + u(1 − u) − b1uv,

vt = d2vxx − ξ(vux )x + uv − b2vw − θ1v,

wt = wxx − χ(wφ(u, v)x )x + vw − θ2w,

(5.7)

which is the classical Lotka–Volterra food chain model with taxis mechanisms (i.e.,
ξ, χ > 0). The coexistence steady state (u∗, v∗, w∗) = (1−b1θ2, θ2,

1−θ1−b1θ2
b2

) exists
provided

θ1 + b1θ2 < 1. (5.8)

It has been proved in Jin et al. (2022) that if φ(v) = v, the coexistence steady state
of the system (5.7) is globally stable if ξ > 0 and χ > 0 are both small. Thus, it is
natural to ask whether or not (u∗, v∗, w∗) is linearly unstable and pattern formation
occurs for large ξ and χ . In fact, we have the following results.

Lemma 5.2 (Linear stability: φ(u, v) = v) Let φ(u, v) = v and assume (5.8) holds,
then (u∗, v∗, w∗) of (5.7) is linearly stable for all χ, ξ ≥ 0.
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Proof Since φ(u, v) = v, we have φ∗
u = 0 and φ∗

v = 1. Then noting γ1 = γ2 = 0, it
follows from (5.4) that for each k ∈ N

P3(χ, λk) = λ3kd1d2 + λ2k (d2u∗ + χd1b2v∗w∗ + ξb1u∗v∗)
+ λk (b2d1v∗w∗ + b1u∗v∗ + χb2u∗v∗w∗)
+ b2u∗v∗w∗ > 0.

On the other hand, by Ki (i = 1, 2, 3, 4) in (5.6), one can check that

Ki > 0 for i = 1, 2, 3, 4,

which implies for each k ∈ N

H(χ, λk) = P1(χ, λk)P2(χ, λk) − P3(χ, λk) = λ3k K1 + λ2k K2 + λk K3 + K4 > 0.

Then Routh–Hurwitz criterion implies that (u∗, v∗, w∗) is linearly stable. ��
Remark 5.3 The results in Lemma 5.2 imply that no pattern formation occurs for
the classical Lotka–Volterra food chain model with prey-taxis mechanisms for any
ξ, χ ≥ 0.

In the following, we shall study the possibility of pattern formation for the Lotka–
Volterra food chain model incorporating the alarm-taxis mechanism. The main results
are as follows.

Lemma 5.4 (Linear stability/instability: φ(u, v) = uv) Let φ(u, v) = uv and assume
(5.8) holds. It holds that

(1) If 2b1θ2 ≤ 1, then (u∗, v∗, w∗) is linearly stable for all χ > 0.

(2) If 2b1θ2 > 1, then (u∗, v∗, w∗) is linearly unstable providedχ > 0 is large enough
and there exists some k ∈ N

+ such that

0 < λk <
2b1θ2 − 1

d1
. (5.9)

Proof For φ(u, v) = uv, one has φ∗
u = φu(u∗, v∗) = v∗ and φ∗

v = φv(u∗, v∗) = u∗.
Noting γ1 = γ2 = 0 and the definitions of Ki (i = 1, 2, 3, 4) in (5.6), we have

Ki > 0 for all i = 1, 2, 3, 4,

which implies that for each k ∈ N

H(χ, λk) = P1(χ, λk)P2(χ, λk) − P3(χ, λk) > 0.

Moreover, using u∗ −b1v∗ = 1−2b1θ2 and the facts γ1 = γ2 = 0, φ∗
u = v∗, φ∗

v = u∗
again, we deduce from (5.4) that
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P3(χ, λk) = λ3kd1d2 + λ2k(d2 + ξb1v∗)u∗ + λk(d1b2w∗ + b1u∗)v∗ + b2u∗v∗w∗
+ λkχb2u∗v∗w∗(λkd1 + 1 − 2b1θ2). (5.10)

Then if 2b1θ2 ≤ 1, one has P3(χ, λk) > 0 for any k ∈ N, and hence, (u∗, v∗, w∗) is
linearly stable by Routh–Hurwitz criterion.

On the other hand, if 2b1θ2 > 1 and (5.9) holds, we get thatλkd1+1−2b1θ2 < 0 for
some k ∈ N

+. Since λk, u∗, v∗, w∗ are independent of χ , it follows that P3(χ, λk) ≤
0 for sufficiently large χ > 0. Therefore, according to Routh–Hurwitz criterion,
(u∗, v∗, w∗) is linearly unstable. ��
Remark 5.5 For the Lotka–Volterra food chain model (5.7), our results imply that the
taxis function φ(u, v) plays an important role on the pattern formation. If φ(u, v) = v

(i.e., prey-taxis mechanism), no pattern formation occurs. If φ(u, v) = uv (i.e., alarm-
taxis mechanism), the potential steady state bifurcations generated from the constant
coexistence (u∗, v∗, w∗) may happen. Compared with the results obtained in Haskell
and Bell (2021), our results confirm that the alarm-taxis mechanism can trigger the
pattern formation by itself even without logistic growth source.

5.2 Linear Stability/Instability Analysis: �1,�2 > 0

In this subsection, we shall study the possibility of pattern formation for the system
(1.3) with intraguild predation (i.e., γ1, γ2 > 0). To this end, we analyze the linear
stability/instability of the coexistence steady state (u∗, v∗, w∗) defined in (1.7). In the
case of γ1, γ2 > 0, we rewrite P3(χ, λk) in (5.4) as follows:

P3(χ, λk) =λ3kd1d2 + λ2k(d2u∗ + ξb1u∗v∗)
+ λk(γ1u∗w∗γ2d2 + b2v∗w∗d1 + b1u∗v∗ + γ1u∗v∗w∗ξ)

+ λ2kχ(φ∗
ud2γ1u∗w∗ + φ∗

vd1b2v∗w∗ + φ∗
v ξγ1u∗v∗w∗)

+ λkχu∗v∗w∗(b2φ∗
v + γ1φ

∗
v − φ∗

ub1b2) + (b2 + γ1 − γ2b1b2)u∗v∗w∗.

(5.11)

Lemma 5.6 (Linear stability/instability: φ(u, v) = v) Let φ(u, v) = v and assume
(1.8) and (5.3) hold. Then we have the following results:

(1) (u∗, v∗, w∗) is linearly stable provided

χ + ξ ≤ K̃3

γ1u∗v∗w∗
and d2 + 1 ≥ ξγ1u∗

b2
, (5.12)

with K̃3 > 0 defined in (5.16).
(2) (u∗, v∗, w∗) is linearly unstable provided χ > 0 large enough and one of the

following conditions holds:

⎧
⎨

⎩

d2 + 1 >
ξγ1u∗
b2

,

0 < λk <
γ1u∗

(d2+1)b2−ξγ1u∗ for some k ∈ N
+,

(5.13)
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or

d2 + 1 ≤ ξγ1u∗
b2

for all k ∈ N
+. (5.14)

Proof Since φ(u, v) = v, one has φ∗
v = 1 and φ∗

u = 0. Noting b2 + γ1 − γ2b1b2 > 0,
it follows from (5.11) that P3(χ, λk) > 0 for all k ∈ N.

Since (1.8) and (5.3) hold, we derive from (5.6) that K1 > 0 and K4 > 0. Hence,
to determine the sign of H(χ, λk), we only need to consider the values of K2 and K3.
Using the facts φ∗

v = 1 and φ∗
u = 0, we rewrite K2 and K3 defined in (5.6) as follows:

K2 = K̃2 + χv∗w∗[(d2 + 1)b2 − ξγ1u∗] and K3 = K̃3 − (χ + ξ)γ1u∗v∗w∗,

where K̃2 > 0 and K̃3 > 0 are defined by

K̃2 := (d1d2 + d1)u∗ + ξ(d1 + d2)b1u∗v∗ + (d1 + d2 + 1)(d2 + 1)u∗ (5.15)

and

K̃3 := (d2 + 1)u2∗ + (d1 + 1)γ1γ2u∗w∗ + (d2 + 1)b2v∗w∗
+(d1 + d2)b1u∗v∗ + b1ξu

2∗v∗. (5.16)

Then we can derive from (5.12) that K2 and K3 are positive and hence H(χ, λk) > 0
for all k ∈ N, which implies that (u∗, v∗, w∗) is linearly stable by usingRouth–Hurwitz
criterion.

Next, we shall show that (u∗, v∗, w∗) is linearly unstable for large χ under
conditions (5.13) or (5.14). To this end, we rewrite H(χ, λk) (see in (5.5)) as follows:

H(χ, λk ) = λ3k K1 + λ2k K̃2 + λk K̃3 + K4 + λkχv∗w∗ (λk [(d2 + 1)b2 − ξγ1u∗] − γ1u∗)

− λkξγ1u∗v∗w∗,
(5.17)

where K̃2 and K̃3 are defined by (5.15) and (5.16), respectively.
Since λk and the value of (u∗, v∗, w∗) are independent of χ , then if (5.13) or (5.14)

holds, we can find χ > 0 large enough such that

H(χ, λk) ≤ 0,

and hence, the coexistence steady state (u∗, v∗, w∗) is linearly unstable by applying
Routh–Hurwitz criterion again. ��
Remark 5.7 Compared with the results obtained in Lemma 5.2 and Lemma 5.6, we
found that the intraguild predation (i.e., γ1, γ2 > 0) plays an important role for the
pattern formation.

Next, we shall study the possible pattern formation in the system (1.3) with alarm-taxis
in the sense of φ(u, v) = uv.
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Lemma 5.8 (Linear stability/instability: φ(u, v) = uv) Let φ(u, v) = uv, χ > 0 and
ξ ≥ 0. Assume (1.8) and (5.3) hold. Then it holds that:

(1) (u∗, v∗, w∗) is linearly stable provided

b2u∗ + γ1u∗ − v∗b1b2 ≥ 0 (5.18)

and

0 < ξ ≤ min

{
K̃3

γ1u∗v∗w∗
,
d1 + 1

u∗
+ (d2 + 1)b2

u∗γ1

}

, (5.19)

where K̃3 > 0 defined in (5.16).
(2) (u∗, v∗, w∗) is linearly unstable provided χ > 0 large enough and one of the

following conditions holds:

b2u∗ + γ1u∗ − v∗b1b2 < 0 and

0 < λk0 <
|b2u∗ + γ1u∗ − v∗b1b2|
d2γ1 + d1b2 + u∗ξγ1

for some k0 ∈ N, (5.20)

or

ξ >
d1 + 1

u∗
+ (d2 + 1)b2

u∗γ1
and

λk0 >
v∗b1b2

|(d1 + 1)γ1 + (d2 + 1)b2 − u∗ξγ1| for some k0 ∈ N. (5.21)

Proof From φ(u, v) = uv, one has φ∗
v = u∗ and φ∗

u = v∗. Hence, we can derive that

P3(χ, λk)

=λ3kd1d2 + λ2k(d2u∗ + ξb1u∗v∗) + λk(γ1u∗w∗γ2d2 + b2v∗w∗d1
+ b1u∗v∗ + γ1u∗v∗w∗ξ)

+ λkχu∗v∗w∗[λk(d2γ1 + d1b2 + u∗ξγ1) + (b2u∗ + γ1u∗ − v∗b1b2)]
+ (b2 + γ1 − γ2b1b2)u∗v∗w∗,

(5.22)

and

H(χ, λk) = λ3k K1 + λ2k K̃2 + λk(K̃3 − ξγ1u∗v∗w∗) + K4

+ λkχu∗v∗w∗ (λk[(d1 + 1)γ1 + (d2 + 1)b2 − u∗ξγ1] + v∗b1b2) .
(5.23)

Then if (5.18) and (5.19) hold, one can verify that P3(χ, λk) > 0 and H(χ, λk) > 0
for each k ∈ N, and hence, by applying Routh–Hurwitz criterion, we obtain that
(u∗, v∗, w∗) is linearly stable.

On the contrary, if (5.20) holds,we can chooseχ large enough such that P3(χ, λk) <

0. Thus, we derive fromRouth–Hurwitz criterion that (u∗, v∗, w∗) is linearly unstable.
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Similarly, if (5.21) holds, we have H(χ, λk) < 0 for large χ , and hence, (u∗, v∗, w∗)
is linearly unstable. ��
Remark 5.9 Comparedwith the Lotka–Volterra food chainmodel (5.7) withφ(u, v) =
uv, the intraguild predation model (i.e., γ1, γ2 > 0) has richer dynamics. Specifically,
the intraguild predation model has not only the potential of steady state bifurcations
but also that of Hopf bifurcations.

Remark 5.10 The instability results of the intraguild predation model with φ(u, v) =
uv indicate that the alarm-taxis mechanism can promote potential steady state bifur-
cations, which cannot be induced by the intraguild predation model with φ(u, v) =
v.

6 Spatiotemporal Patterns: Numerical Simulations

In this section, we shall give some numerical simulations to verify our theoretical
analysis in Section 5. As shown in Lemma 5.4, Lemma 5.6 and Lemma 5.8, with
suitable conditions, as long as χ > 0 is large enough, pattern formations possibly
occur for the system (1.3) even in the case of ξ = 0, which are verified in Figs. 1,
3a and 4b. Furthermore, with fixed χ > 0, our numerical simulations show that
the parameter ξ plays a very different effect for the system (1.3) between the cases
that γ1 = γ2 = 0 and γ1, γ2 > 0. For the food chain model with alarm-taxis, ξ

has a stabilization effect on the homogeneous steady state (see Fig. 2), while it has a
destabilization effect in the food chain model with intraguild predation and prey-taxis
(see Fig. 3). As for the food chain model with intraguild predation and alarm-taxis, the
effects of ξ on pattern formations aremore complicated. The systemmay subsequently
undergo steady state bifurcations, no pattern formations and Hopf bifurcations as ξ

increases from 0 to 4 and then to 45, see Fig. 4.
Moreover, comparing the linear stability results in Lemma 5.2 with Lemma 5.6, we

conclude that the intraguild predation is of importance for inducing pattern formations,
which is verified in Fig. 3a, while it is still unclear whether taxis mechanisms or
intraguild predation have essential effects on triggering pattern formations. As shown
in Fig. 4a, there is no pattern formation in the case of χ = ξ = 0, γ1, γ2 > 0. This
fact along with Figs. 1, 3a and 4b demonstrates that signal taxis mechanism plays an
indispensable and essential role in promoting spatially inhomogeneous patterns.

6.1 Food Chain Model with Alarm-Taxis: �1 = �2 = 0 and�(u, v) = uv

In this subsection, we shall give some numerical simulations to the system (1.3) with
φ(u, v) = uv in the case of γ1 = γ2 = 0. To this end,we fix the value of the parameters
in all simulations as follows:

d1 = 0.1, d2 = b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7, γ1 = γ2 = 0,

which gives (u∗, v∗, w∗) = (0.3, 0.7, 0.2) and θ1 + b1θ2 < 1 as well as 2b1θ2 > 1.
Hence, fromLemma5.4,with the fact H(χ, λk) > 0weexpect only the spatiotemporal
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Fig. 1 Numerical simulation of spatiotemporal patterns generated by (1.3) with φ(u, v) = uv and γ1 =
γ2 = 0. The parameter values are: χ = 80, ξ = 0, d1 = 0.1, d2 = b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7. The
initial datum (u0, v0, w0) is set as a small random perturbation of the homogeneous coexistence steady
state (0.3, 0.7, 0.2)

steady state (aggregation) pattern occurs when

χ ≥ χ
S1
k (ξ) := 5

21(4 − λk)

(

100λ2k + 30(10 + 7ξ)λk + 224 + 42

λk

)

, (6.1)

for some k ∈ N
+ such that 0 < λk < 4 and here χ

S1
k (ξ) is the root of P3(χ, λk) = 0

in (5.10). Taking � = (0, 10π), with allowable wavenumber satisfying 0 < λk =
(k/10)2 < 4, we get the allowable unstable modes for k = 1, 2, 3 · · · , 18, 19. We
choose λk = (5/10)2, then χ

S1
k (ξ) in (6.1) can be updated as

χ
S1
5 (ξ) = 631 + 70ξ

21
.

We first pick ξ = 0 to find a value χ
S1
5 (0) ≈ 30.0476 for the possibility of pattern

formations. As shown in Fig. 1, by letting χ = 80 > 30.0476 and we can find the
spatiotemporal pattern. Particularly, from Fig. 1, we obtain that the time evolutionary
profiles of solutions are horizontal lines, which indicates that the bifurcation might be
the steady state bifurcation. Moreover, the space profiles show that all species reach
an inhomogeneous coexistence state in space (see the last picture in Fig. 1).
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Fig. 2 Numerical simulation of spatiotemporal patterns for (1.3) with φ(u, v) = uv. The fixed param-
eter values are: d1 = 0.1, d2 = b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7 and γ1 = γ2 = 0. The initial
datum (u0, v0, w0) is set as a small random perturbation of the homogeneous coexistence steady state
(0.3, 0.7, 0.2).

The expression in (6.1) implies that the critical value χ
S1
k (ξ) > 0 is increasing in

terms of ξ ≥ 0, and the spatiotemporal patterns generated due to any fixed large χ

and fixed mode k will disappear as the value of ξ ≥ 0 increases, which implies the
prey-taxis has a stabilization effect on the homogeneous steady state. To verify this
fact, we use numerical simulations to find that the spatiotemporal patterns gradually
evolve into the spatially homogeneous patterns as ξ increases from 0 to 10, then to
20, and finally disappear at ξ = 40, see more details in Fig. 2.

6.2 Food Chain Model with Intraguild Predation and Prey-Taxis: �1,�2 > 0 and
�(u, v) = v

In this subsection, we shall give some numerical simulations to the system (1.3) with
φ(u, v) = v and γ1, γ2 > 0. We fix the value of the parameters as follows:

d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9.

Then the coexistence steady state is (u∗, v∗, w∗) = (0.15, 0.75, 0.05). As discussed
in Lemma 5.6, only Hopf bifurcations can occur by noting the fact P3(χ, λk) > 0.
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Fig. 3 Numerical simulation of spatiotemporal patterns generated by (1.3)withφ(u, v) = v and γ1, γ2 > 0.
The parameter values are: d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9. The initial
datum (u0, v0, w0) is set as a small random perturbation of the homogeneous coexistence steady state
(0.15, 0.75, 0.05).

Under the above parameters, we derive that H(χ, λk) = 0 in (5.17) is equivalent
to

χ = χ
H1
k (ξ) := 9680λ2k + (2640 + 495ξ)λk + 54

λk
+ 1041 + 90ξ

15(3 + 3λkξ − 20λk)
, (6.2)

which is positive provided λk(20 − 3ξ) < 3. Taking � = (0, 10π), the allowable
wavenumber λk = (k/10)2 satisfying λk(20−3ξ) < 3, then k = 1, 2, 3 are allowable
unstable modes for any ξ ≥ 0. Fixing k = 2 and (6.2) can be simplified as
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Fig. 4 Numerical simulation of spatiotemporal patterns generated by (1.3) with φ(u, v) = uv and γ1, γ2 >

0. The parameter values are: d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9. The
initial datum (u0, v0, w0) is set as a small random perturbation of the homogeneous coexistence steady
state (0.15, 0.75, 0.05)

χ
H1
2 (ξ) = 61 + 62386

75(55 + 3ξ)
. (6.3)

We first choose ξ = 0 to obtain a value χ
H1
2 (0) ≈ 76.124 for possible pattern

formations. As shown in Fig. 3a, with χ = 100 > 76.124 in hand, we can find the
spatiotemporal patterns. In particular, the time evolutionary profiles of solutions are
periodically oscillatory, which indicates the bifurcation might be of Hopf bifurcation
type (see the last picture in Fig. 3a). Moreover, the expression (6.3) indicates that for
fixed unstable mode k = 2, the critical value χ

H1
2 (ξ) > 0 is decreasing about ξ ≥ 0,

which implies the prey-taxis might have a destabilization effect on patterns. This is
an interesting phenomenon, which is different from the food chain model without
intraguild predation.

To verify this fact, we take ξ = 10 and ξ = 20 and find that the patterns become
unstable as ξ increases from 0 to 10 and then to 20, and the chaotic spatiotemporal
patterns may happen, see Fig. 3c.

6.3 Food Chain Model with Intraguild Predation and Alarm-Taxis: �1,�2 > 0 and
�(u, v) = uv

In this case, we fix the parameters as follows for simulations:

d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9.
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Then (u∗, v∗, w∗) = (0.15, 0.75, 0.05). From Lemma 5.8, we know the steady state
and Hopf bifurcations are both possible. Under the above parameters, we first derive
from (5.22) and (5.23) in Lemma 5.8 that P3(χ, λk) = 0 and H(χ, λk) = 0, which
are equivalent to

χ = χ
S2
k (ξ) := 1600λ2k + 600λk(4 + 3ξ) + 180

λk
+ 2100 + 180ξ

27 − 27λk(7 + ξ)
, (6.4)

and

χ = χ
H2
k (ξ) := 77440λ2k + 120λk(176 + 33ξ) + 432

λk
+ 8328 + 180ξ

54λk(ξ − 14) − 135
. (6.5)

From (5.23) in Lemma 5.8, we know that if

0 ≤ ξ ≤ min

{
K̃3

γ1u∗v∗w∗
,
d1 + 1

u∗
+ (d2 + 1)b2

u∗γ1

}

= min

{
347

15
+ 3ξ

2
, 14

}

= 14,

then H(χ, λk) > 0 for any k ∈ N and hence no Hopf bifurcation occurs, which
motivates us to study the possibility of steady state pattern formation. To illustrate this
case, we take � = (0, 10π), then from (5.20), the allowable unstable modes k ∈ N

+
must satisfy 0 < λk = (k/10)2 < 1

7+ξ
.

We take k = 3 and ξ = 0, then (6.4) implies that

χ
S2
3 (0) ≈ 433.329,

which is a value for possible pattern formations. As shown in Fig. 4b, choosing
χ = 450 > 433.329, we can find the spatiotemporal patterns. Particularly, the time
evolutionary profiles of solutions are horizontal lines, which indicates the bifurcation
might be the steady state bifurcation. Furthermore, for the fixed unstable mode k = 3,
the bifurcations will disappear as ξ increases from 0 to 4, see Fig. 4c.

For relatively large ξ > 14, from Lemma 5.8 and the definition of χ
H2
k in (6.5),

the Hopf bifurcations possibly occur as long as the allowable unstable modes k ∈ N
+

satisfying λ = (k/10)2 > 5
2(ξ−14) . With χ = 450 in hand, for the same unstable mode

k = 3, we pick ξ = 45 to find the spatiotemporal patterns, see Fig. 4d.
Our results demonstrate that for the fixed large χ = 450, as the parameter ξ

increases, the steady state patterns (see Fig. 4b) evolve first into the constant state
(see Fig. 4c) and then further develop into the Hopf bifurcation patterns (see Fig. 4d).
Moreover, from Fig. 4a, we observe that no pattern formation occurs when χ = ξ = 0
and γ1, γ2 > 0. This, together with Figs. 1, 3a, 4b and Lemma 5.2, indicates that the
signal taxis mechanism plays an essential role in promoting pattern formation.

123



56 Page 44 of 47 Journal of Nonlinear Science (2025) 35 :56

7 Appendix: Linear Analysis

In this section, we are devoted to giving some basic linear analysis on the linear
stability/instability of constant steady state for the system (1.3). To this end, we first
linearize the system (1.3) at constant steady state (uc, vc, wc) to obtain

⎧
⎪⎨

⎪⎩

�t = A�� + B�, x ∈ �, t > 0,

∇� · ν = 0, x ∈ ∂�, t > 0,

�(x, 0) = (u0 − uc, v0 − vc, w0 − wc)
T , x ∈ �,

where T denotes the transpose matrix and

� :=

⎛

⎜
⎜
⎝

u − uc

v − vc

w − wc

⎞

⎟
⎟
⎠ , A =

⎛

⎜
⎜
⎝

d1 0 0

−ξvc d2 0

−χwcφ
c
u −χwcφ

c
v 1

⎞

⎟
⎟
⎠ and B =

⎛

⎜
⎜
⎝

−uc −b1uc −γ1uc

vc B22 −b2vc

γ2wc wc B33

⎞

⎟
⎟
⎠ ,

with φc
u := φu(uc, vc), φc

v := φv(uc, vc) and

B22 := uc − b2wc − θ1 and B33 := vc + γ2uc − θ2. (7.1)

Let the sequence {λn}∞n=0 : 0 = λ0 < λ1 ≤ λ2 ≤ λ3 . . . denotes the sequence
of eigenvalues of −� under Neumann boundary condition. Then, the linear stability
of (uc, vc, wc) is determined by the eigenvalues of the matrix (−λkA + B), which
satisfies the following characteristic equation

μ3 + P1μ
2 + P2μ + P3 = 0,

where Pi := Pi (λk) (i = 1, 2, 3) are defined as below

P1(λk) :=λk(d1 + d2 + 1) + uc − B22 − B33,

P2(λk) :=λ2k(d1d2 + d1 + d2) + λk {(d2 + 1)uc − (d1 + 1)B22 − (d1 + d2)B33}
+ λk(χφc

uγ1ucwc + χφc
vb2vcwc + ξb1ucvc)

+ γ1γ2ucwc + b2vcwc + b1ucvc
− ucB22 − ucB33 + B22B33,

P3(λk) :=λ3kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22)

+ λ2k(χφc
ud2γ1ucwc + χφc

vd1b2vcwc + ξb1ucvc + χφc
vξγ1ucvcwc)

+ λk(−ucB22 − d2ucB33 + d1B22B33)

+ λk
{
γ1ucwc(γ2d2 − χφc

u B22) + b2vcwc(d1 + χφc
vuc)

+b1ucvc(1 − ξ B33) + γ1ucvcwc(χφc
v + ξ) − χφc

ub1b2ucvcwc
}

+ ucB22B33 − γ1γ2ucwcB22 − b1ucvcB33 + (b2 + γ1 − γ2b1b2)ucvcwc.

(7.2)
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Based on Routh–Hurwitz criterion (e.g., Appendix B.1 in Murray (2002)), the
nonnegative constant steady states (uc, vc, wc) are linearly stable if and only if for
each k ∈ N, it holds that

P1 > 0, P3 > 0, P1P2 − P3 > 0.

Calculating directly, one obtains

P1P2 − P3 =: λ3k K
c
1 + λ2k K

c
2 + λk K

c
3 + Kc

4 + χ(λ2k K
c
5 + λk K

c
6),

where

Kc
1 :=(d1d2 + d1 + d2 + 1)(d1 + d2) > 0,

Kc
2 :=(d1d2 + d1)uc + (d1 + d2)(−B33) + (d1d2 + d2)(−B22) + ξ(d1 + d2)b1ucvc

+ (d1 + d2 + 1){(d2 + 1)uc − (d1 + 1)B22 − (d1 + d2)B33},
Kc
3 :=(uc − B22 − B33){(d2 + 1)us − (d1 + d2)B33 − (d1 + 1)B22}

+ (d2 + 1)B22B33 − (d1 + 1)ucB33 − (d1 + d2)us B22

+ [(d1 + 1)γ2 − ξ ]γ1ucwc + (d2 + 1)b2vcwc

+ (d1 + d2)b1ucvc + (uc − B22)b1ξucvc,

Kc
4 := − (B22 + B33)(B22B33 + b2vsws) − uc(uc − B22 − B33)(B22 + B33)

+ (uc − B33)γ1γ2ucwc + (uc − B22)b1ucvc − (γ1 − γ2b1b2)ucvcwc.

Also

Kc
5 := (d1 + 1)φc

uγ1ucwc + (d2 + 1)φc
vb2vcwc − φc

vξγ1ucvcwc, (7.3)

and

Kc
6 :=(uc − B33)φ

c
uγ1ucwc + (−B22 − B33)φ

c
vb2vcwc

+ φc
ub1b2ucvcwc − φc

vγ1ucvcwc.
(7.4)

Proof of Proposition 5.1 For the correspondingODE systemof (1.3), it has been proved
in Hsu et al. (2015) that the constant steady state (uc, vc, wc) is linearly stable under
the following conditions:

(uc, vc, wc) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1, 0, 0), if θ1 > 1 and θ2 > γ2,
(
θ1,

1−θ1
b1

, 0
)

, if θ1 < 1 and θ2 >
b1γ2−1

b1
θ1 + 1

b1
,

(
θ2
γ2

, 0, γ2−θ2
γ1γ2

)
, if θ2 < γ2 and θ2 <

γ1γ2
b2+γ1

θ1 + b2γ2
b2+γ1

.

(7.5)

Under the conditions (7.5), we can derive from (7.1) that B22 ≤ 0 and B33 ≤ 0, which
gives Kc

j > 0 ( j = 1, 2, 3, 4).
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For the prey-only steady state (1, 0, 0) or semi-coexistence steady state(
θ1,

1−θ1
b1

, 0
)
, one obtainswc = 0, which together with the facts B22 ≤ 0 and B33 ≤ 0

substituted into P3 in (7.2) implies that for any k ∈ N

0 < P3 = λ3kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22 + ξb1ucvc)

+ λk[−ucB22 − d2ucB33 + d1B22B33 + b1ucvc(1 − ξ B33)]
+ ucB22B33 − b1ucvcB33.

Sincewc = 0, according to the definitions in (7.3)-(7.4), one has Kc
5 = Kc

6 = 0, which
together with Kc

i > 0 (i = 1, 2, 3, 4) implies P1P2 − P3 > 0. Hence, by Routh–
Hurwitz criterion, the prey-only steady state E1 and the semi-coexistence steady state
E12 are linearly stable.

As for E13 :=
(

θ2
γ2

, 0, γ2−θ2
γ1γ2

)
, one has vc = 0 which, together with φu ≥ 0, gives

Kc
5 = (d1 + 1)γ1χφc

uucwc ≥ 0 and Kc
6 = (uc − B33)χφc

uγ1ucwc ≥ 0.

Using the facts Kc
i > 0 ( j = 1, 2, 3, 4) again, one obtains P1P2 − P3 > 0 for

each k ∈ N. On the other hand, noting the facts B22 ≤ 0, B33 ≤ 0, vc = 0 and
φc
u ≥ 0, φc

v ≥ 0, from (7.2), we get that

0 < P3 :=λ3kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22 + χφc
ud2γ1ucwc)

+ λk{−ucB22 − d2ucB33 + d1B22B33 + (γ2d2 − χφc
u B22)γ1ucwc}

+ ucB22B33 − γ1γ2ucwcB22.

Therefore,
(

θ2
γ2

, 0, γ2−θ2
γ1γ2

)
is linearly stable by applyingRouth–Hurwitz criterion. Then

we complete the proof of Proposition 5.1.
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