Co-N-C in porous carbon with enhanced lithium ion storage properties

Shenghong Lian, Zhiping Lin, Feng Xiao, Jiakui Zhang, Dan Wang, Xianghong Chen, Yanming Zhao, Jiantie Xu

Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510640, China

School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

South China Institute of Collaborative Innovation, Dongguan 523808, China

HIGHLIGHTS

• Co-N-C hybrids were prepared by a simple and efficient approach.
• Co-N-C hybrids display outstanding lithium storage properties.
• Co-N-C and porous structure are beneficial for transportation and storage of Li+.}

ARTICLE INFO

Keywords:
Single atom cobalt
Co-N-C
Carbon
Anodes
Lithium ion batteries

ABSTRACT

Carbon materials as promising anodes for lithium ion batteries (LIBs) have attracted great attentions owing to their high theoretical capacities and rich natural resources. To improve anode performance of carbon, several common strategies have been developed, such as the fabrication of carbon with various nanostructures and modification of carbon frameworks by heteroatoms doping. Besides, the introduction of transition metal single atom or atom clusters embedded in nitrogen-doped carbon frameworks is also a feasible route. Herein, we report a simple and effective approach for synthesis of Co-N-C hybrids (i.e., Co@N-C-0, Co@N-C-1 and Co@N-C-2) with interconnected porous carbon nanostructures and numerous active sites (e.g., Co-N-C). When it was measured as anode for LIBs, the Co@N-C-1 hybrid displayed outstanding lithium storage properties with a high initial reversible capacity of 1587 mAh g−1 at 0.1 C and maintained a high reversible capacity of 1000 mAh g−1 at 5 C after 800 cycles. Both experimental and theoretical results reveal that Co-N-C with high specific activity along with interconnected porous carbon nanostructures synergistically promote the transportation and storage of Li+.

1. Introduction

With ever-growing application of lithium ion batteries (LIBs) in electric vehicles (EVs) and stationary energy-storage systems (ESSs), it requires LIBs with much higher energy and power densities [1]. The development of electrode materials is one key to large-scale application of high-performance LIBs. Although the graphite has dominated in LIB market since 1991, its low theoretical specific capacity of 372 mAh g−1 and poor rate capability severely limit its application in EVs and ESSs [2]. In order to replace the graphite, various promising anode candidates with high theoretical capacities have been widely explored, such as transition metal oxides/sulfides/carbides/nitrides (i.e., Fe2O3, MoS2, Ti3C2 and VN) [3–6], C-family based anodes (i.e., carbon, Si, Ge, and Sn) [7–9] and N-family anodes (i.e., P, Sb and Bi) [10]. Among above-mentioned candidates, carbon materials have attracted great attentions due to their high theoretical capacities and rich natural resources. Unfortunately, carbon as anodes for LIBs still suffer from major obstacles, such as low initial Coulombic efficiency (CE) caused by the formation of a solid-electrolyte interphase (SEI) in the initial cycles and limited lithium storage properties. To offset the loss of lithium in the initial cycles, many efforts have been made to prelithiate the electrodes of LIBs, including electrochemical and chemical pre-lithiation, and the use of prelithiation additives (e.g., Li2O/Co, LiF and Li2S) [11]. Apart from the progress achieved on the electrode pre-lithiation, the strategies to improve lithium storage properties of carbon mainly focus on the fabrication of various nanostructures (e.g., hollow...
nanospheres, nanotubes and hierarchical nanostructures) [12], modification of carbon frameworks by heteroatoms (e.g., N, S, P) [13,14] doping and in combination of them have been commonly developed. The nanostructures endow carbon with large accessible surface area and pore volume, which are favorable for the quick penetration of electrolyte, rapid diffusion of ions and numerous active sites for Li\(^+\) storage. The heteroatom doping enables carbon with the enhanced electronic and ionic conductivities, additional active sites for Li\(^+\) storage, and better wettability between electrolyte and electrode. Recent studies have also revealed that transition metal (e.g., Fe [15–17], Ni [18–20] and Co [21–23]) single atom (SA) or atom clusters embedded in nitrogen-doped carbon frameworks (M-N-C) demonstrate promising electrochemical properties in catalytic applications. This is because metal single atom/clusters not only could possess amazing electronic and reactive properties, but also max a theoretical 100% atom utilization efficiency [24]. In addition, the interaction between M and N is energetically favorable for the adsorption and reduction of charge/mass at M-N site. For example, based on their remarkable oxygen reduction reaction (ORR) activities, M-N-C as cathodes for various metal (e.g., Zn, Al and Li)-air batteries have been intensively reported so far [25–29]. Moreover, the M-N-C as cathodes for lithium sulfur batteries have also been found to deliver high capacity and cycling stability. This is not only due to the improved electrical conductivity of the hybrid, but also strong adsorption ability of lithium polysulfides between M-N-C and sulfur significantly reducing the “shuttle effect” of polysulfide during the cycles [30–32]. Compared to the progress achieved on M-N-C as cathodes for lithium batteries, however, the study on the atomic metal in carbon as anode for LIBs, as well as the interaction between Li\(^+\) and M-N, is rarely scare.

Herein, we developed a template-sacrificed approach to synthesize three-dimensional (3D) porous Co\(_n\)@N-C (i.e., Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2) hybrids consisting of atomically dispersed Co-N sites and Co atomic clusters by a thermal treatment method and subsequent acid leaching process. As a result, the Co\(_n\)@N-C as anodes for LIBs exhibit outstanding lithium storage properties. Both experimental results and DFT calculations indicate that the outstanding anode performance is attributed to interconnected porous carbon nanostructures together with the formation of Co-N-C coordination centers serving as active sites to facilitate Li\(^+\) storage/release.

2. Experimental

2.1. Synthesis of Co\(_n\)@N-C

SiO\(_2\) nanospheres (50 nm) were purchased from Macklin without any other treatment. In a typical procedure, cobalt chloride hexahydrate (CoCl\(_2\)·6H\(_2\)O, 200 mg), dicyanamide (C\(_2\)H\(_4\)N\(_4\), 600 mg) and as-prepared SiO\(_2\) nanospheres (100 mg) were mixed in N-methyl-2-pyrrolidone (NMP, 40 mL). The obtained mixtures were stirred and heated at 80 °C for several hours to form the bulk solids. After that, the solids were heated at 500 °C for 2 h and then heated up to 750 °C for 2 h at a temperature rate of 3 °C min\(^{-1}\) under Ar. Subsequently, the resulted samples were further leached in 0.15 M HF acid and washed using deionized water for several times to completely remove the SiO\(_2\) spheres. Finally, the above samples were further treated with 0.5 M HCl overnight to remove excess Co. The resulted samples are denoted as Co\(_n\)@N-C-1. For comparison, the Co\(_n\)@N-C-0 and Co\(_n\)@N-C-2 samples were prepared by similar process with adding different amount of SiO\(_2\) (0, 1, and 2 are prepared to the use of 0, 100 and 200 mg SiO\(_2\), respectively). The scheme of synthesis process of Co\(_n\)@N-C is illustrated in Fig. 1a.

2.2. Materials characterizations

The phases of Co\(_n\)@N-C samples were analyzed using powder X-ray diffraction (XRD, Bruker D8 advance diffractometer) with Cu-Kα radiation (λ = 1.5406 Å). The morphologies of all samples were observed by scanning electron microscopy (SEM, JEOL JSM-6360LV) and transmission electron microscopy (TEM, FEI Titan G2 Themis). The thermogravimetric analysis (TGA, TA Instruments 2000) was carried out in air in the temperature range of 25–800 °C with a ramping rate of 10 °C min\(^{-1}\). The surface chemistry and carbon states of the samples were analyzed by X-ray photoelectron spectra (XPS, Perkin-Elmer PHI X) and Raman spectrometer (Horiba), respectively. The specific surface area and pore distribution were calculated from the N\(_2\) adsorption/desorption isotherms.

2.3. Electrochemical measurements

The electrochemical characterizations of the samples were performed using CR 2032 coin-type cells. For the preparation of working electrodes, a homogeneous slurry was obtained by mixing the active materials, carbon black and polyvinylidenedifluoride binder, in a mass ratio of 8:1:1, respectively, with the NMP as the blending solvent. Then, the obtained slurry was uniformly coated on Cu foil, and then dried at 90 °C for 12 h in a vacuum oven. The mass of punched electrode pellet was controlled at ~1.2 mg cm\(^{-2}\). The cells were assembled in glove box with high-purity Ar-filled atmosphere using punched electrode as the cathode, lithium pellet as the counter and reference electrode, porous polypropylene as the separator and 1 M LiPF\(_6\) in a mixture of EC/DEC (ethylene carbonate/diethyl carbonate, 1:2 (v/v)) as the electrolyte. The discharged/charged performance of the cells were evaluated using Land\(^®\) battery tester system (Wuhan, China) in the voltage range of 0.01–3.0 V. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were recorded on an AUTOLAB PGSTAT302N electrochemical workstation (Metrohm, Netherlands).

2.4. DFT calculation

DFT calculations were performed based on the density functional theory implemented in the VASP [33]. PBE pseudopotentials was used to describing the electron-ion interactions [34,35]. E\(_{\text{cut}}\) is set to 350 eV and allowed error in total energy is 10\(^{-4}\). The k-point is 3 × 3 × 1 in single-layer Graphene with 66 atoms. The vacuum region of 20 Å along with Z-axis direction is adopted to avoid interaction between images caused by periodic boundary conditions.

3. Results and discussion

SEM images of Co\(_n\)@N-C-0 (Fig. 1b) indicate that the Co\(_n\)@N-C-0 is composed by multi-walled carbon tubes with several micrometers length and ~5 nm thickness. Different from Co\(_n\)@N-C-0, however, both Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2 have their agglomeration patterns and sphere-like (Figs. 1e and S3a) in morphologies. Despite this, all elemental mappings of Co\(_n\)@N-C-0 (Fig. S1), Co\(_n\)@N-C-1 (Figs. 1h–k and S2), Co\(_n\)@N-C-2 (Fig. S3) clearly display the Co, N and O elements homogeneously distributed through the whole structure and no other impurities detected. The presence of Co in Co\(_n\)@N-C suggests that the Co atoms/clusters are bonded with carbon and stable in a strong acid environment.

TEM images of Co\(_n\)@N-C-0 reveal that Co based nanoparticles (NPs) with a particle-size of 20 nm (Fig. 1c) and high crystallinity (Fig. 1d) are well encapsulated in carbon tubes. Fig. 1f and g (from magnified red rectangular area) show TEM images of Co\(_n\)@N-C-1. It can be seen that the hollow sphere carbon with a diameter of ~100 nm are interconnected to forming a 3D cross-linked carbon frameworks. This is attributed to the removal of stacked SiO\(_2\) nanospheres during the acid leaching process. High resolution TEM (HR-TEM) image and selected area electron diffraction (SAED) pattern further reveal Co\(_n\)@N-C-1 with the amorphous pattern as well as small amounts of nanocrystal structures (Fig. 1l). As shown in inset of Fig. 1l, the lattice spacing of nanocrystal is estimated to be 0.20 nm, corresponding to the (1 1 1) of Co.
To determine the detailed structure at atomic scale of Co$_n$@N-C-1, advanced spherical aberration-corrected electron microscopy was employed. As atomic-resolution aberration corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image (Fig. 1m) shown, the Co$_n$@N-C-1 presents a number of bright spots in a bar range of 0.2–1 nm uniformly dispersed on the carbon matrix, which should belong to SA-Co (red circles) and Co clusters (green circles). It can be deduced that the existence of SA-Co and Co clusters are most likely due to the breaking of Si–O–Co bond at the interfaces between SiO$_2$ and Co during the removal of SiO$_2$ process. This is also consistent with the formation of part discontinuous lattice (red-dot rectangle in Fig. 1l). Such point defects could be regarded as active sites for ions storage [37].

Fig. 1. (a) Illustration of the synthesis process of Co$_n$@N-C. SEM images of (b) Co@N-C-0 and (e) Co$_n$@N-C-1. Elemental mapping of Fig. 1e: (h) Co, (i) C, (j) N and (k) O. (c, d) TEM images of Co@N-C-0. (f, g and l) TEM images and (m) HAADF-STEM image of Co$_n$@N-C-1. Insets of Fig. 1d and l: SAED of Fig. 1d and l.

Fig. S4 compares XRD patterns of Co@N-C-0, Co$_n$@N-C-1 and Co$_n$@N-C-2 before the acid leaching. As can be seen, all the samples have major Co NPs (ICSD #52934) rather than CoO$_x$. Even after acid treatment, the Co@N-C-0 remains the existence of the Co NPs (ICSD #52934) in the carbon matrix, which is consistent with the SEM and TEM observation (Fig. 1c and d). Different from that in Co@N-C-0, there is no existence of Co NPs found in Co$_n$@N-C-1 and Co$_n$@N-C-2. This is due to the SiO$_2$ template leading the Co NPs initially formed on the carbon surface in an open framework, which is easy to be removed in the following leaching process. As a result, both Co$_n$@N-C-1 and Co$_n$@N-C-2 (Fig. 2a) display a broad XRD peak at ~26.5°, corresponding to an amorphous carbon pattern [24]. Raman spectra of Co@N-C-0, Co$_n$@N-C-1 and Co$_n$@N-C-2 (Fig. 2b) show all samples with two
characteristic D and G band located at ~1350 and ~1595 cm\(^{-1}\), corresponding to the defects/disorder and graphitic carbon, respectively [38]. The intensity ratio of ID/IG for Co\(_n\)@N-C-1 (1.04) and Co\(_n\)@N-C-2 (1.02) are higher than that for Co@N-C-0 (0.94), indicating more amounts of defects in the carbon matrix induced by etching SiO\(_2\) template.

In order to estimate the carbon content, TGA measurements were carried out in air. As shown in Fig. 2c, the Co@N-C-2 has a higher decomposition temperature compared to Co\(_n\)@N-C-1 and Co@N-C-0. This is most likely due to its lower surface area as well as plenty of Co-N-C, which make heat diffusion and carbon left difficult, and thus leading to a high decomposition temperature. Based on the detailed calculation in ESI (Fig. S5 and Eqs. (S1)–(S3)), the carbon contents of Co@N-C (Co@N-C-0, Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2) are 79.6, 90.7 and 92.6 wt%, respectively [39]. The specific area and pore size distribution of the samples are determined by the BET method. As determined by nitrogen adsorption/desorption isotherms (Fig. 2d), the Co\(_n\)@N-C-1 shows a higher surface area of 597.1 m\(^2\) g\(^{-1}\) than Co@N-C-0 (284.6 m\(^2\) g\(^{-1}\)) and Co\(_n\)@N-C-2 (252.1 m\(^2\) g\(^{-1}\)). Meanwhile, the Co@N-C-1 (1.37 cm\(^3\) g\(^{-1}\)) exhibits a larger pore volume and mesopore size than Co@N-C-0 (0.38 cm\(^3\) g\(^{-1}\)), 15.2 nm) and Co\(_n\)@N-C-0 (0.48 cm\(^3\) g\(^{-1}\), 21.2 nm). This is due to the use of SiO\(_2\) as the template and an optimized mass ratio of SiO\(_2\) (CoCl\(_2\) and C\(_2\)H\(_4\)N\(_4\)) as the starting materials. It should be noted that the excessive use of SiO\(_2\) (i.e., Co\(_n\)@N-C-2) could probably lead to the precursor agglomeration and then the decreased surface area after the removal of SiO\(_2\). Overall, the larger surface area and pore volume are favorable for the electrolyte penetration and ions transportation (storage).

XPS survey was performed to analyse the elemental compositions and their oxidation states of Co@N-C-0, Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2. As shown in Fig. 2e, the full XPS surveys confirm the presence of C, N, O and Co elements in the hybrids, as evidenced by the XPS peaks of C 1s at ~284 eV, N 1s at ~400 eV, O 1s at ~532 eV and Co 2p at ~780 eV. According to the XPS analysis, the Co element contents in the Co@N-C-0, Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2 are 0.59, 0.83 and 0.77 at.%, respectively. Other element contents (C, N and O) are listed in Table S1. The low content level of Co is probably attributed to the XPS technique with limited detection depth and Co mostly encapsulated by thick carbon shells. In order to more accurately estimate the Co content, the samples were dissolved by acid and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. It was found that the Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2 had much lower Co content of 1.52 at.% and 1.41 at.%, respectively, than Co@N-C-0 (4.41 at.%). Such results together with XPS results suggest Co NPs well capsulated in carbon matrix of Co@N-C-0. The content levels of Co\(_n\)@N-C-1 and Co\(_n\)@N-C-2 are similar to the TGA results and close to the single-atom catalysts distributing through carbon reported previously [40–43].

Figs. 2f–i and S6 demonstrate high resolution XPS spectra of the hybrids. It can be seen that the C 1s spectra can be splitted into four peaks: C=C at 284.7 eV, C–N at 285.5 eV, C=O at 287.3 eV and O=C–O at 290.8 eV. The Co 2p spectra (Figs. 1g and S6) are deconvoluted into Co 2p\(_{3/2}\) and 2p\(_{1/2}\), Co(II), Co-N and the satellite peaks [44]. The satellite peaks locate at 785.7 and 805.6 eV. The peak at 779.3 eV is attributed to the zero-valent Co (Co°). The Co 2p\(_{3/2}\) at 781.3 eV and Co 2p\(_{1/2}\) of Co\(_{2+}\) at 795.5 eV is due to the surface oxidation of the hybrid. It should be noted that the Co-N at 797.5 eV verifies the formation of Co-N bond, which is resistant to acid etching in a certain extent [36,45]. Many reports have indicated that the catalysts containing uniformly
distributed Co-N moieties could significantly promote the catalytic properties [22,24,46,47]. This is mainly due to the Co-N bond can serve as active sites to facilitate the adsorption and transfer of mass (e.g., O_2, Li^+, H^+, OH^- and H_2O). In addition to the results from Co XPS peak, the Co-N bond can be also observed from the fitted pyridinic peak of N/Co at ~398.8 eV, along with other two typical N peaks of pyrrolic N (~400.8 eV), and graphitic N (~403.5 eV), from the N 1 s spectra. The presence of N is originally from the raw material of dicyanamide.

Fig. 3a reproduces the 1st discharge-charge profiles of Co@N-C-0, Co$_n$@N-C-1 and Co$_n$@N-C-2 measured at 0.1 C (1 C = 372 mAh g$^{-1}$) between 0.01 and 3 V. Compared to Co@N-C-0, both Co$_n$@N-C-1 and Co$_n$@N-C-2 exhibit two more obvious plateaus at ~0.6 and ~1.6 V in the initial discharge process. After measurement at 0.1 C, the discharge-charge profiles of all samples at various C-rates from 0.2 to 5 C are shown in Figs. 3b and S7. As can be seen, the discharge-charge profiles of Co$_n$@N-C-1 and Co$_n$@N-C-2, similar to that of Co@N-C-0, are typical electrochemical behavior of carbonaceous materials [48]. Such electrochemical behaviours are further confirmed by cyclic voltammetry (CV) measurement of Co$_n$@N-C-1 and Co$_n$@N-C-2 at a scan rate of 0.1 mV s$^{-1}$ for initial five cycles (Figs. 3c, and S7). During the first cathodic scan, the irreversible reduction peaks at ~1.6 and ~0.6 V are ascribed to the decomposition of electrolytes and the formation of solid electrolyte interfaces (SEI) and the Li^+ storage mainly occurs at below 0.6 V [49–51]. Notably, unlike many reported carbon materials as anodes for LIBs [52–54], the Co$_n$@N-C display an unusual reduction peak at ~1.6 V. This should belong to the Co NPs and Co-N-C activating preliminary decomposition of electrolytes and the formation of SEI films [49,50]. Moreover, the Co$_n$@N-C-1 and Co$_n$@N-C-2 presents larger reduction peaks at 1.6 V than Co@N-C-0, indicating the stronger catalytic activity of Co-N-C than Co NPs. In addition, the Co$_n$@N-C-1 also shows stronger “capacitive” pattern than “intercalation” pattern due to its higher surface area. This is evidenced by no obvious oxidation peak in the characteristic “intercalation” voltage region at ~0.1 V compared to Co$_n$@N-C-2 and Co@N-C-0 (Figs. S7b and f). In the subsequent 4 cycles, the disappearance of the reduction peaks at ~0.6 and ~1.6 V, as well as highly overlapped CV curves, further confirm the formation of a strong and stable SEI film on the electrode surfaces in the first cycle and excellent cycling stability of the electrodes during the cycles.

Fig. 3d shows rate capability of the electrodes at various C-rates from 0.1 to 5 C. At 0.1 C, the Co$_n$@N-C-1 and Co$_n$@N-C-2 deliver high initial reversible capacities of 1587 and 903 mAh g$^{-1}$ with initial Coulombic efficiencies (CEs) of 48.6% and 48.1%, respectively. In spite of the low initial CEs of the Co$_n$@N-C-1 and Co$_n$@N-C-2, they are still higher than 33.3% for the Co@N-C-0 with an initial discharge capacity of 407 mAh g$^{-1}$. As the C-rate gradually increases from 0.1 to 5 C, the Co$_n$@N-C-1 delivers the highest average reversible capacities of 1459 (0.2 C), 1289 (0.5 C), 1027 (1 C), 877 (2 C) and 750 (5 C) mAh g$^{-1}$ among all the electrodes. Compared to Co@N-C-0, the Co$_n$@N-C-1 together with Co$_n$@N-C-2 also exhibit excellent rate capability (inset of
represents the charge accumulate and loss regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

This could be attributed to more rich porous structures of Co@N-C than Co@N-C-0. Since the C-rate is switched back to 0.1 C, all the electrodes exhibit good reversibility, as evidenced by their reversible capacities close to the values at initial cycles.

To evaluate long-term cycling stability of the Co@N-C-0, Co@N-C-1 and Co@N-C-2 electrodes, the cells were discharged-charged at 5 C for 800 cycles (Fig. 3f). Before the long-term cycling, the electrodes were activated at 0.1 C for two cycles. As can be seen, the activated Co@N-C-1 and Co@N-C-2 electrodes measured at 5 C could still maintain a high reversible capacities of 760 and 583 mAh g⁻¹ in the third cycle. Over the rest long-term cycles, the Co@N-C-1 experiences a gradual increase in capacity and reaches the highest reversible capacities of 1091 mAh g⁻¹ after 500 cycles. The ever-growing capacities are attributed to the carbon nanostructure with higher specific surface area, and rich mesopores, leading to the electrolyte-electrode activation at a relatively high C-rates [55–57]. After 800 cycles, a high reversible capacity of 1000 mAh g⁻¹ without evident capacity decay can be still observed from the Co@N-C-1 electrode, further indicating its excellent cycling stability. Compared to Co@N-C-2, Co@N-C-1 displays higher reversible capacity over 800 cycles mainly due to its higher surface area of Co@N-C-1 (597.1 m² g⁻¹) than Co@N-C-2 (252.1 m² g⁻¹), and more rich Co-N active sites (Co@N-C-1 (13.70%) than Co@N-C-2 (10.86%)) as evidenced by XPS. Despite the large differences in capacity, cycling stability, and rate capability, both Co@N-C-1 and Co@N-C-2 electrodes present high average CE approaching 99.0% over 500 cycles. As examined by electrochemical impedance spectra (EIS), the electrode kinetic of the Co@N-C-0, Co@N-C-1 and Co@N-C-2 electrodes before cycling and after 800 cycles were compared in Figs. 3e and S8, 9. The detailed analysis information and fabricated equivalent model (inset of Fig. 3e) are summarized in ESI. Fitting results indicate that the charge-transfer kinetics-controlled resistance (Rct), a key indicator of electrode kinetics, of Co@N-C-1 and Co@N-C-2 are apparently reduced from 50.4 and 90.5 Ω to 33.7 and 54.2 Ω, respectively, once again confirming the electrolyte-electrode activation of Co@N-C.

In order to better understand the lithium storage mechanism of the Co@N-C, we performed density functional theory (DFT) calculations in Figs. 4 and S10–S14 [33,34]. As can be seen, three different structure models (i.e., graphene (G), nitrogen doped graphene (N-G) and Co@N-C, Fig. 4a–c) and their interaction with Li⁺ ion (Fig. 4d–f) are configured. Based on the calculation, the Co@N-C exhibits the larger Li adsorption energy (−1.43 eV) than N-G (−0.95 eV) and G (−0.93 eV), indicating its stronger Li⁺ adsorption ability [58,59]. Moreover, it was also found that there are about 0.03–0.04 electrons transferred to nearby N atoms or C atoms in the model of Co@N-C during the Li⁺ adsorption, which is larger than those in G (0.01e) and N-G (0.01–0.02e). It indicates that the Co doping makes electron transfer in the Co-N-C more favorable. Along with Li⁺ adsorption, the change of N-C bond length in Li1-site (0.0168 Å) and Li2-site (0.0181 Å) in the model of Co@N-C is also smaller than that of NG (0.0173 Å and 0.0187 Å), as shown in Table S2. The less change of bond length between N and C atoms in the Co@N-C during the lithiation-delithiation process could facilitate the stability of Co-N-C structures, leading to the cycling stability of electrode.

4. Conclusions

In conclusion, we have developed a simple and effective approach to the synthesis of Co@N-C hybrids (i.e., Co@N-C-1 and Co@N-C-2) with single Co atom and small Co clusters. The Co atoms and clusters are well-distributed through three-dimensional (3D) interconnected N-doped carbon framework. When it was used as anodes for LIBs, the Co@N-C-1 hybrid displayed outstanding lithium storage properties with a high initial reversible capacity of 1587 mAh g⁻¹ at 0.1 C and a high reversible capacity of 1000 mAh g⁻¹ at 5 C after 800 cycles. This is because that the 3D interconnected N-doped carbon framework Co-N are not only favorable for the quick penetration of electrolyte and rapid diffusion of Li⁺, but also provide numerous active sites (e.g., Co-N-C) with high specific activity and large accessible surface area for Li⁺ storage. As expected, the approach to synthesis of Co@N-C could pave an important way to design other metals (M)-N-C as anodes toward high-performance LIBs in future.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

The authors are grateful for financial support from the “Young Talent Fellowship” program through South China University of Technology, China; the Fundamental Research Funds for the Central Universities (2018JQ06, China); the Foundation (No. 2017B030308005, No. 2018A03031227) supported through the Science and Technology Bureau of Guangdong Government, the project (No. 2019622163008) of the Science and Technology Bureau from Dongguan Government and Grant (No. 51672086) through NSFC, China.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2020.124377.

References

