工作经历
教育背景
2012年9月-2017年7月:中国科学院数学与系统科学研究院,基础数学,硕博连读
2008年9月-2012年6月:湖南师范大学,数学与统计学院(原数学与计算机科学学院),数学与应用数学,本科
非线性偏微分方程:液晶及生物学中的非线性PDE问题、流体动力学极限
硕士研究生招生专业
应用数学专业,非线性偏微分方程方向
主要研究内容:
流体力学(Hydrodynamics)、生物数学(Mathematics in Biology)以及动理学理论(Kinetic theory)中的非线性偏微分方程解的定性理论研究,包括解的渐进行为、稳定性分析以及从Kinetic到Hydrodynamics的极限问题。
研究基础:
首先热爱数学研究是基础,然后需要本科熟练掌握《数学分析》、《高等代数》、《实变函数》、《泛函分析》、《数学物理方程》等相关基础知识,同时也需要基本了解《拓扑学》、《微分几何》、《黎曼几何》等相关课程的基本概念和结论。

研究成果可见链接:https://orcid.org/0000-0003-4465-2417
[1] N. Jiang and Y.-L. Luo. Global classical solutions to the two-fluid incompressible Navier-Stokes-
Maxwell system with Ohm’s law. Commun. Math. Sci., 16 (2018), no.2, 561–578.
DOI:10.4310/CMS.2018.v16.n2.a12.
[2] N. Jiang, Y.-L. Luo and S. Tang. Zero inertia density limit for the hyperbolic system of Ericksen-
Leslie’s liquid crystal flow with a given velocity. Nonlinear Anal. Real World Appl., 45 (2019),
590–608. DOI:10.1016/j.nonrwa.2018.07.023.
[3] N. Jiang; Y.-L. Luo and S. Tang. On well-posedness of Ericksen-Leslie’s parabolic-hyperbolic
liquid crystal model in compressible flow. Math. Models Methods Appl. Sci., 29 (2019), no. 1,
121-183. DOI:10.1142/S0218202519500052.
[4] N. Jiang and Y.-L. Luo. On well-Posedness of Ericksen-Leslie’s hyperbolic incompressible liquid
crystal model. SIAM J. Math. Anal., 51 (2019), no. 1, 403-434. DOI:10.1137/18M1167310.(Featured Article)
[5] N. Jiang, Y.-L. Luo, S. Tang and A. Zarnescu. Scaling limit from the wave map to heat flow on
S2. Commun. Math. Sci., 17 (2019), no. 2, 353-375. DOI:10.4310/CMS.2019.v17.n2.a3.
[6] N. Jiang, Y.-L. Luo and T.-F. Zhang. Coupled Self-Organized Hydrodynamics and Navier-Stokes
models: well-posedness and the limit from the Self-Organized Kinetic fluid models. Arch. Rational
Mech. Anal., 236 (2020), no. 1, 329-387. DOI:10.1007/s00205-019-01470-w.
[7] N. Jiang, Y.-L. Luo and S. Tang. Convergence from two-fluid incompressible Navier-Stokes-
Maxwell system with Ohm’s law to solenoidal Ohm’s law: classical solutions. J. Differential Equa-
tions, 269 (2020), no. 1, 349-376. DOI:10.1016/j.jde.2019.12.006.
[8] Y.-L. Luo and Y. Ma. Low Mach number limit for the compressible inertial Qian-Sheng model
of liquid crystals: Convergence for classical solutions. Discrete Contin. Dyn. Syst., 41 (2021), no.
2, 921-966. DOI:10.3934/dcds.2020304.
[9] J. X. Huang, N. Jiang, Y.-L. Luo and L. F. Zhao. Small data global regularity for 3-D Ericksen-
Leslie’s hyperbolic liquid crystal model without kinematic transport. SIAM J. Math. Anal., 53
(2021), no. 1, 530-573. DOI:10.1137/20M1322625.
[10] F. Cheng, N. Jiang and Y.-L. Luo. On dissipative solutions to a simplified hyperbolic Ericksen-
Leslie system of liquid crystals. Commun. Math. Sci., 19 (2021), no. 1, 175-192.
DOI:10.4310/CMS.2021.v19.n1.a7.
[11] N. Jiang, Y.-L. Luo, Y. Ma and S. Tang. Entropy inequality and energy dissipation of inertial
Qian-Sheng model for nematic liquid crystals. J. Hyperbolic Differ. Equ., 18 (2021), no. 1, 221- 256.DOI: 10.1142/S0219891621500065.
[12] N. Jiang, Y.-L. Luo and X. Zhang. Stability of equilibria to the model for non-isothermal elec-
trokinetics. Commun. Math. Sci., 19 (2021), no. 3, 687-720. DOI: 10.4310/CMS.2021.v19.n3.a6.
[13] N. Jiang and Y.-L. Luo. The zero inertia limit of Ericksen-Leslie’s model for liquid crystals. J.
Funct. Anal., 282 (2022), no. 1, 109280. DOI: 10.1016/j.jfa.2021.109280.
电子邮箱: luoylmath@scut.edu.cn
办公室:华南理工大学四号楼4228