关于举行以色列本古里安大学Ira A. Weinstock教授学术报告的通知
学术通知
关于举行以色列本古里安大学Ira A. Weinstock教授学术报告的通知
发布时间:2019-12-27        浏览次数:225

报告题目: Polyoxometalate complexes of metal-oxide cores

报告人: Prof. Ira A. Weinstock, Ben-Gurion University of the Negev 

邀请人:殷盼超教授

报告时间:2020110日(周五)上午10:00

报告地点:软物质研究院324报告厅(北区科技园2号楼)

欢迎广大师生踊跃参加。

分子科学与工程学院

华南软物质科学与技术高等研究院

20191227

报告摘要:

Building on our use of polyoxometalate (POM) cluster-anions as ligands for gold-nanoparticles, POMs are now covalently attached to reactive metal-oxide nanocrystals (NCs), giving soluble assemblies uniquely positioned between molecular macroanions and solid-state metal oxides. For example, redox-active POMs coordinated to anatase titanium-oxide nanocrystals control H2 formation by rationally tuning rates of visible-light driven electron injection into the TiO2 cores, while soluble POM complexes of -Fe2O3 serve as oxidatively and hydrolytically stable catalysts for visible-light driven water oxidation. Notably, the aqueous solubility and remarkable stability of these POM-complexed 275 iron-atom hematite cores make it possible to investigate visible-light driven water oxidation at this frontier area using the versatile toolbox of solution-state methods typically reserved for molecular catalysis. These methods reveal a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid-state metal oxides and freely diffusing fragments of the same material.More recently, we prepared anionic POM complexes of 2-nm -MnO2 cores that, via interactions with alkali-metal cations, M, serve as building blocks for the hierarchical assembly of cubic nanostructures whose sizes increase with M in the order: Li+ < Na+ < K+ < Rb+ < Cs+, and which include water-soluble 200-nm cubes comprised of over 600,000 POM-complexed MnO2 cores. This hierarchical assembly induces a shift of UV-vis absorbance into the visible, resulting in enhanced visible-light semiconductor properties, and leading to the first example of visible-light water oxidation by MnO2 in the absence of added photosensitizers. The alkali-metal cation induced assembly is reversible via dialysis against pure water, giving individual POM-complexed cores.

报告人简介:

Prof. Ira A. Weinstock is currently the Irene Evans Professor of Inorganic Chemistry in Ben-Gurion University of the Negev. He obtained his Ph.D. in 1990 from the Massachusetts Institute of Technology (MIT), where he worked on alkyne metathesis with Richard R. Schrock. After one year at the Sandia National Laboratory, Albuquerque, New Mexico, he served as Team Leader at the U.S. Department of Agriculture, Madison, Wisconsin, where he initiated the use of polyoxometalates as green catalysts for aerobic oxidations of biomass in water. In 2006, he joined the Ben-Gurion University of the Negev, where his research concerns the use of polyoxometalates in molecular and supramolecular chemistry and nanoscience and more recently as redox-active ligands for metal-oxide nanocrystals.

 


地址:中国广东省广州市天河区华南理工大学北区科技园2号楼 邮编:510640

2019©华南理工大学华南软物质科学与技术高等研究院 版权所有

粤ICP备05084312号

技术支持 维程互联

微信公众号