Boundedness of the attraction–repulsion Keller–Segel system

Hai-Yang Jin

Department of Mathematics, South China University of Technology, Guangzhou 510640, China

ARTICLE INFO

Article history:
Received 27 April 2014
Available online 28 September 2014
Submitted by J.J. Nieto

Keywords:
Chemotaxis
Attraction–repulsion
Boundedness
Large initial data

ABSTRACT

This paper considers the initial–boundary value problem of the attraction–repulsion Keller–Segel model describing aggregation of Microglia in the central nervous system in Alzheimer’s disease due to the interaction of chemoattractant and chemorepellent. If repulsion dominates over attraction, we show the global existence of classical solution in two dimensions and weak solution in three dimensions with large initial data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

This paper is concerned with the initial–boundary value problem of the following attraction–repulsion chemotaxis system

\[
\begin{align*}
&u_t = \Delta u - \nabla \cdot (\chi u \nabla v) + \nabla \cdot (\xi u \nabla w), \quad x \in \Omega, \; t > 0, \\
&\tau v_t = \Delta v + \alpha u - \beta v, \quad x \in \Omega, \; t > 0, \\
&\tau w_t = \Delta w + \gamma u - \delta w, \quad x \in \Omega, \; t > 0, \\
&\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = \frac{\partial w}{\partial \nu} = 0, \quad x \in \partial \Omega, \; t > 0, \\
&u(x, 0) = u_0(x), \quad \tau v(x, 0) = \tau v_0(x), \quad \tau w(x, 0) = \tau w_0(x), \quad x \in \Omega,
\end{align*}
\]

(1.1)

where \(\Omega\) is a bounded domain in \(\mathbb{R}^2\) with smooth boundary \(\partial \Omega\). The model (1.1) was proposed in [18] to describe how the combination of chemicals might interact to produce aggregates of cells. A documented example is the motion of Microglia in the central nervous system (CNS) in Alzheimer’s disease (AD) which is affected by the interaction of chemoattractant (e.g., \(\beta\)-amyloid) and chemorepellent (e.g., TNF-\(\alpha\)) which are secreted by Microglia, where the concentrations of Microglia, chemoattractant and chemorepellent are

E-mail address: majinhaiyang@sina.com.
denoted by \(u(x,t), v(x,t) \) and \(w(x,t) \) in the model (1.1) respectively. The positive parameters \(\chi \) and \(\xi \) are called the chemosensitivity coefficients, and \(\chi, \beta, \gamma, \delta > 0 \) are chemical production and depredation rates. It is noted that the chemotaxis model with attractive and repulsive chemicals was also proposed in the paper [22] to interpret the quorum sensing effect in the chemotactic movement.

Proposed first by Keller and Segel [13], the classical (attractive) chemotaxis model was a system of two partial differential equations (i.e. the first two equations of (1.1) with \(\xi = 0 \)) which possesses an apparent Lyapunov functional. This particular structure motivated a vast amount of mathematical studies in the past (see review articles [7,9,27]) and recent studies [3,8,26,28,29], where most of works were focused at whether the solution blows up or not (see some early works in [10,19,20] in this area). On the other hand, for the repulsive Keller–Segel model (i.e. the coupling of first and third equations of (1.1) with \(\chi = 0 \)), a Lyapunov function (which was different from that of the attractive Keller–Segel model) was found in [4] which leads to the global existence of classical solutions in two dimensions and weak solutions in three and four dimensions. Compared to the classical Keller–Segel model, the three-component system of attraction–repulsion Keller–Segel (ARKS) model (1.1) is much harder to analyze due to the lack of an apparent Lyapunov functional. Since after a preliminary result on the linear stability analysis in one-dimensional space in the work [18], no progress has been made until a recent work by Tao and Wang [25] where the main contribution has three folds: (1) \(\tau = 0 \), the parameter regime of global boundedness and blowup of solutions were successfully identified by the Moser iteration method, which reveals the competing effect of attraction and repulsion plays a central role in determining the dynamics of solutions; (2) when \(\tau = 1 \) and \(\beta = \delta \), numerous clean transformations were introduced to reduce the ARKS model (1.1) to the classical chemotaxis model so that the existing mathematical techniques (like Lyapunov functional) and results could be employed to derive various behaviors of solutions; (3) when \(\tau = 1 \) and \(\beta \neq \delta \), an entropy inequality was provided to establish the time dependent global boundedness of solutions when the initial mass \(\int_{\Omega} u_0 dx \) is small and repulsion prevails (i.e. \(\xi \gamma - \chi \alpha > 0 \)).

The study of [25] leaves two evident gaps in the case of \(\tau = 1 \) and \(\beta \neq \delta \): (a) existence of global solutions with uniform-in-time boundedness or with large data of initial value \(u_0 \) if the repulsion dominates; (b) behavior of solutions if the attraction prevails. All the past and current methods (e.g. see [10,19,20,28,29]) of proving the blowup of solutions of the attractive Keller–Segel model essentially depend on the existence of a Lyapunov functional. It appears to be hopeless at present due to the failure of finding a Lyapunov functional to establish the blowup of solutions for the case where the attraction prevails (i.e. \(\xi \gamma - \chi \alpha < 0 \)). This paper is devoted to explore the questions left in the first gap. We specifically obtain the following main results in the present paper.

Theorem 1.1. Assume that \(0 \leq (u_0, v_0, w_0) \in [W^{1,\infty}(\Omega)]^3 \) with \(u_0 \neq 0 \) and \(\xi \gamma > \chi \alpha \). Then the ARKS model (1.1) with \(\tau = 1 \) has a unique nonnegative classical solution \((u, v, w) \in C^0(\Omega \times [0, \infty); \mathbb{R}^3) \cap C^{1,1}(\Omega \times (0, \infty); \mathbb{R}^3) \) such that \(u > 0 \) in \(\Omega \times (0, \infty) \). Furthermore, there exists a constant \(C \) independent of \(t \) such that

\[
\|u(\cdot, t)\|_{L^\infty} \leq C.
\]

Remark 1.1. In the above theorem, we do not impose the smallness assumption on the initial mass \(\int_{\Omega} u_0(x) dx \) for the global existence of solutions with uniform-in-time bound, which substantially improves the results of [25, Theorem 2.7].

In three dimensions, we introduce the notion of weak solutions to (1.1) to be used later.

Definition 1.1. A global weak solution to (1.1) is a triple of nonnegative functions

\[
(u, v, w) \in C([0, \infty); weak - L^1(\Omega; \mathbb{R}^3))
\]
such that

\[\nabla u, \nabla v, u \nabla v, u \nabla w \in L^1((0,T) \times \Omega) \]

and

\[
\begin{align*}
\int_{\Omega} (u(t) - u_0) \phi dx &+ \int_0^t \int_{\Omega} \nabla u \cdot \nabla \phi dx dt + \int_0^t \int_{\Omega} u \nabla \phi \cdot (\xi \nabla w - \chi \nabla v) dx dt = 0, \\
\int_{\Omega} (v(t) - v_0) \phi dx &+ \int_0^t \int_{\Omega} \nabla v \cdot \nabla \phi dx dt + \int_0^t \int_{\Omega} (\beta v - \alpha u) \phi dx dt = 0, \\
\int_{\Omega} (w(t) - w_0) \phi dx &+ \int_0^t \int_{\Omega} \nabla w \cdot \nabla \phi dx dt + \int_0^t \int_{\Omega} (\delta w - \gamma u) \phi dx dt = 0, \tag{1.2}
\end{align*}
\]

for each \(t \geq 0 \) and \(\phi \in W^{1,\infty}(\Omega) \).

The second result of this paper is concerned with the global existence of weak solutions to (1.1) in three dimensions.

Theorem 1.2. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with smooth boundary \(\partial \Omega \). Assume \(0 \leq (u_0, v_0, w_0) \in [W^{1,\infty}(\Omega)]^3 \) and \(\xi \gamma - \chi \alpha > 0 \). Then there exists a global weak solution \((u, v, w)\) to (1.1) with \(\tau = 1 \) such that

\[(u, v, w) \in L^4((0,T); W^{1,\frac{5}{4}}(\Omega; \mathbb{R}^3)) \]

for any \(T > 0 \).

Before concluding this section, let’s mention some other works related to the attraction–repulsion chemotaxis model. First in the one-dimensional space, the stationary solution and asymptotic behavior of the attraction–repulsion chemotaxis model were established in [12,17]. Furthermore the time-periodic orbits have been found recently in [16] by employing the local and global Hopf bifurcation theory. When \(\beta \neq \delta \) and \(\tau = 0 \), the critical mass problem has been studied in [5] for the case where the attraction prevails (i.e. \(\xi \gamma - \chi \alpha < 0 \)) in two dimensions. Moreover the traveling wave solutions of an attraction–repulsion chemotaxis system with a volume-filling effect were obtained in [23].

2. Local existence and preliminaries

Hereafter, \(\tau = 1 \) in model (1.1) and \(c_i \) denotes a generic constant which may change from one section to another, where \(i = 1, 2, 3, \ldots \). First we give the following local existence theorem which was proved in [25] by the fixed point theorem and maximum principle.

Lemma 2.1. Assume that \(0 \leq (u_0, v_0, w_0) \in [W^{1,\infty}(\Omega)]^3 \). Then there exist \(T_{\text{max}} \in (0,\infty) \) and a unique triple \((u, v, w)\) of nonnegative functions from \(C^0(\bar{\Omega} \times [0,T_{\text{max}}); \mathbb{R}^3) \cap C^{2,1}(\Omega \times (0,T_{\text{max}}); \mathbb{R}^3) \) solving (1.1) classically in \(\Omega \times (0,T_{\text{max}}) \). Moreover \(u > 0 \) in \(\Omega \times (0,T_{\text{max}}) \) and

\[
\text{if } T_{\text{max}} < \infty, \text{ then } \|u(\cdot,t)\|_{L^\infty} \to \infty \text{ as } t \nearrow T_{\text{max}}. \tag{2.1}
\]
The following properties on mass can be easily derived by integrating each equation of (1.1) over \(\Omega \).

Lemma 2.2. The solution \((u, v, w)\) of (1.1) satisfies the following properties

\[
\|u(\cdot,t)\|_{L^1} = \|u_0\|_{L^1},
\]

\[
\|v(\cdot,t)\|_{L^1} = \frac{\alpha}{\beta} \|u_0\|_{L^1} - \left(\frac{\alpha}{\beta} \|u_0\|_{L^1} - \|v_0\|_{L^1} \right) e^{-\beta t},
\]

\[
\|w(\cdot,t)\|_{L^1} = \frac{\gamma}{\delta} \|u_0\|_{L^1} - \left(\frac{\gamma}{\delta} \|u_0\|_{L^1} - \|0\|_{L^1} \right) e^{-\delta t}.
\]

Next, we give a result which was derived first in [11, Lemma 4.1] and subsequently improved in [14, Lemma 1]. This result applied to the model (1.1) reads as follows:

Lemma 2.3. (See [14].) Let \(\Omega \) be a bounded domain in \(\mathbb{R}^2 \) with smooth boundary. Assume \(0 \leq (v_0, w_0) \in W^{1,\infty}(\Omega) \). Moreover

\[
\|u\|_{L^r} \leq c_1, \quad \text{for all } t \in (0,T).
\]

Then there exists some constant \(c_2 \) such that for every \(t \in (0,T) \) and \(1 \leq r < 2 \), the solution components \(v \) and \(w \) of (1.1) satisfy

\[
\|(v,w)(t)\|_{W^{1,r}} \leq c_2
\]

for all \(q < \frac{2r}{r-2} \). If \(r = 2 \), then (2.6) is true for all \(q < \infty \), and if \(r > 2 \), then (2.6) is true with \(q = \infty \). Here \(c_1 \) and \(c_2 \) are positive constants that do not depend on \(T \).

Lemma 2.4. (See [21].) Let \(\Omega \) be a bounded domain in \(\mathbb{R}^2 \) with smooth boundary. Then for any \(\varepsilon > 0 \), there exists a constant \(c_1 > 0 \) such that

\[
\|u\|_{L^3} \leq \varepsilon \|\nabla u\|_{L^2}^2 \|u\ln u\|_{L^1}^{\frac{1}{2}} + c_1 \left(\|u\ln u\|_{L^1} + \|u\|_{L^1}^\varepsilon \right).
\]

3. Proof of Theorem 1.1

To estimate the cross-diffusive terms in system (1.1), we use the transformation \(s = \xi w - \chi v \) such that (1.1) can be transformed into the following system

\[
\begin{align*}
 u_t &= \Delta u + \nabla \cdot (u \nabla s), & x \in \Omega, \ t > 0, \\
 s_t &= \Delta s - \delta s + (\xi \chi - \chi \alpha)u + \chi(\beta - \delta)v, & x \in \Omega, \ t > 0, \\
 v_t &= \Delta v + \alpha u - \beta v, & x \in \Omega, \ t > 0, \\
 \frac{\partial u}{\partial \nu} = \frac{\partial s}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, & x \in \partial \Omega, \ t > 0, \\
 u(x,0) &= u_0(x), \quad s(x,0) = \xi w_0(x) - \chi v_0(x) =: s_0(x), \quad v(x,0) = v_0(x), \quad x \in \Omega.
\end{align*}
\]

Then, we have the following estimates for the solution of the transformed system (3.1).

Lemma 3.1. Assume that \(0 \leq (u_0, v_0, w_0) \in [W^{1,\infty}(\Omega)]^3 \) and \(\xi \chi > \chi \alpha \). Then there exists \(C > 0 \) such that the solution of (3.1) satisfies

\[
\|u\ln u\|_{L^1} + \|\nabla s\|_{L^2} \leq C.
\]
Proof. Multiplying the first equation of (3.1) by \(\ln u \) and integrating with respect to \(x \) over \(\Omega \) yields that
\[
\frac{d}{dt} \int_{\Omega} u \ln u \, dx + \int_{\Omega} \frac{|\nabla u|^2}{u} \, dx = -\int_{\Omega} \nabla u \cdot \nabla s \, dx. \tag{3.3}
\]
Multiplying the second equation of (3.1) by \(-\frac{1}{\xi \gamma - \chi \alpha} \Delta s \) and integrating over \(\Omega \), we have
\[
\frac{1}{2(\xi \gamma - \chi \alpha)} \frac{d}{dt} \int_{\Omega} |\nabla s|^2 \, dx + \frac{1}{\xi \gamma - \chi \alpha} \int_{\Omega} |\Delta s|^2 \, dx + \frac{\delta}{\xi \gamma - \chi \alpha} \int_{\Omega} |\nabla s|^2 \, dx
= \int_{\Omega} \nabla u \cdot \nabla s \, dx - \frac{\chi (\beta - \delta)}{\xi \gamma - \chi \alpha} \int_{\Omega} v \Delta s \, dx
\leq \int_{\Omega} \nabla u \cdot \nabla s \, dx + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\Delta s|^2 \, dx + \frac{\chi^2 (\beta - \delta)^2}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} v^2 \, dx. \tag{3.4}
\]
From Lemma 2.3 and (2.2), we can find a constant \(c_1 > 0 \) such that \(\|v\|_{W^{1,1}} \leq c_1 \). Hence using the Sobolev inequality (cf. [6, p. 265]), we have
\[
\|v\|_{L^2} \leq c_2 \|v\|_{W^{1,1}} \leq c_1 c_2. \tag{3.5}
\]
The combination of (3.3), (3.4) and (3.5) entails
\[
\frac{d}{dt} \left\{ \int_{\Omega} u \ln u \, dx + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s|^2 \, dx \right\} + \int_{\Omega} \frac{|\nabla u|^2}{u} \, dx
\leq \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\Delta s|^2 \, dx + \frac{\delta}{\xi \gamma - \chi \alpha} \int_{\Omega} |\nabla s|^2 \, dx \leq \frac{c_1^2 c_2^2 \chi^2 (\beta - \delta)^2}{2(\xi \gamma - \chi \alpha)}. \tag{3.6}
\]
Using the Gagliardo–Nirenberg inequality and the fact that \((X + Y)^d \leq 2^d (X^d + Y^d)\) for all \(X \geq 0 \) and \(Y \geq 0 \), we have
\[
\|u^\frac{2}{3}\|_{L^3}^3 \leq c_3 (\|\nabla u^\frac{2}{3}\|_{L^2} \|u^\frac{2}{3}\|_{L^2}^2 + \|u^\frac{2}{3}\|_{L^2}^3) \leq 4 \|\nabla u^\frac{2}{3}\|_{L^2}^2 + \frac{c_2^2}{16} \|u_0\|_{L^2}^2 + c_4 \|u_0\|_{L^1}^2 + c_5 \|u_0\|_{L^1}^3, \tag{3.7}
\]
where we have used the fact that \(\|u^\frac{2}{3}\|_{L^2} = \|u^\frac{1}{3}\|_{L^1} = \|u_0\|_{L^1}^\frac{1}{3} \). From (3.7) we can derive that
\[
\int_{\Omega} u \ln u \, dx \leq \int_{\Omega} u^\frac{2}{3} \, dx + c_4 = \|u^\frac{2}{3}\|_{L^3}^3 + c_4
\leq 4 \|\nabla u^\frac{2}{3}\|_{L^2}^2 + \frac{c_3^2}{16} \|u_0\|_{L^2}^2 + c_4 \|u_0\|_{L^1}^3 + c_4
\leq \int_{\Omega} \frac{|\nabla u|^2}{u} \, dx + c_5, \tag{3.8}
\]
where \(c_5 = \frac{c_3^2}{16} \|u_0\|_{L^1}^2 + c_3 \|u_0\|_{L^1}^\frac{2}{3} + c_4 \). Substituting (3.8) into (3.6) and letting \(c_6 = c_5 + \frac{c_1^2 c_2^2 \chi^2 (\beta - \delta)^2}{2(\xi \gamma - \chi \alpha)} \), we have
\[
\frac{d}{dt} \left\{ \int_{\Omega} u \ln u \, dx + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s|^2 \, dx \right\} + \int_{\Omega} u \ln u \, dx + \frac{\delta}{\xi \gamma - \chi \alpha} \int_{\Omega} |\nabla s|^2 \, dx \leq c_6. \tag{3.9}
\]
Then applying the Gronwall’s inequality to (3.9), we obtain (3.2). \(\square \)
Lemma 3.2. Assume the conditions in Lemma 3.1 are satisfied. Then there exists a constant $C > 0$ such that

$$\|u\|_{L^2} \leq C. \quad (3.10)$$

Proof. Multiplying the first equation of (3.1) by u, integrating the result with respect to x over Ω, we have

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} u^2 dx + \int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} u^2 \Delta s dx \leq \|u\|_{L^2}^2 \|\Delta s\|_{L^3}. \quad (3.11)$$

Using the Gagliardo–Nirenberg inequality and (3.2), one has

$$\|\Delta s\|_{L^3} \leq c_2 (\|\nabla \Delta s\|_{L^2}^{\frac{2}{3}} \|\nabla s\|_{L^2}^{\frac{1}{3}} + \|\nabla s\|_{L^3}) \leq c_3 (\|\nabla \Delta s\|_{L^2}^{\frac{2}{3}} + 1). \quad (3.12)$$

Moreover, using (2.7) and the fact $\|u \ln u\|_{L^1} \leq C$ (see (3.2)), for any $\varepsilon > 0$, we have

$$\|u\|_{L^3}^2 = (\|u\|_{L^2}^3)^{\frac{2}{3}} \leq (\varepsilon \|\nabla u\|_{L^2}^2 + c_4)^{\frac{2}{3}}. \quad (3.13)$$

Collecting (3.12) and (3.13), and taking ε small enough, we obtain

$$\|u\|_{L^3}^2 \|\Delta s\|_{L^3} \leq c_5 (\varepsilon \|\nabla u\|_{L^2}^2 + c_4)^{\frac{2}{3}} (\|\nabla \Delta s\|_{L^2}^{\frac{2}{3}} + 1) \leq c_5 (\varepsilon \|\nabla u\|_{L^2}^2 + 1) (\|\nabla \Delta s\|_{L^2}^{\frac{2}{3}} + 1) \leq \frac{1}{2} \|\nabla u\|_{L^2}^2 + \varepsilon \|\nabla \Delta s\|_{L^2}^2 + c_6. \quad (3.14)$$

Substituting (3.14) into (3.11) yields

$$\frac{d}{dt} \int_{\Omega} u^2 dx + \int_{\Omega} |\nabla u|^2 dx \leq 2\varepsilon \|\nabla \Delta s\|_{L^2}^2 + 2c_6. \quad (3.15)$$

We differentiate the second equation of (3.1) first and then multiply it by $-\nabla(\Delta s)$ and integrate the product in Ω to obtain

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\Delta s|^2 dx + \int_{\Omega} |\nabla \Delta s|^2 dx + \delta \int_{\Omega} |\Delta s|^2 dx$$

$$= (\chi \alpha - \xi \gamma) \int_{\Omega} \nabla u \cdot \nabla \Delta s dx + \chi (\delta - \beta) \int_{\Omega} \nabla v \cdot \nabla \Delta s dx$$

$$\leq \frac{1}{2} \int_{\Omega} |\nabla \Delta s|^2 dx + (\chi \alpha - \xi \gamma)^2 \int_{\Omega} |\nabla u|^2 dx + \chi^2 (\delta - \beta)^2 \int_{\Omega} |\nabla v|^2 dx. \quad (3.16)$$

Multiplying the third equation of (3.1) by v and integrating the product in Ω, and using (3.5), one obtains

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} v^2 dx + \int_{\Omega} |\nabla v|^2 dx + \beta \int_{\Omega} v^2 dx = \alpha \int_{\Omega} uv dx \leq \|u\|_{L^2}^2 + \frac{\alpha^2}{4} \|v\|_{L^2}^2$$

$$\leq \varepsilon \|\nabla u\|_{L^2}^2 + \frac{\alpha^2}{4} \|v\|_{L^2}^2 + c_7$$

$$= \varepsilon \|\nabla u\|_{L^2}^2 + c_8, \quad (3.17)$$
where we have used
\[\int_\Omega u^2 dx \leq c_9 (\|\nabla u\|_{L^2} \|u\|_{L^1} + \|u\|_{L^1}^2) \leq \varepsilon \|\nabla u\|_{L^2}^2 + c_{10}. \] (3.18)

Multiplying (3.15) and (3.18) by \(2(\chi \alpha - \xi \gamma)^2\), (3.17) by \(\chi^2(\delta - \beta)^2\), adding them to (3.16) and taking \(\varepsilon\) sufficiently small, we have
\[\frac{d}{dt} \left(2(\chi \alpha - \xi \gamma)^2 \int_\Omega u^2 dx + \frac{1}{2} \int_\Omega |\Delta u|^2 + \frac{\chi^2(\delta - \beta)^2}{2} \int_\Omega v^2 dx \right) \]
\[+ 2(\chi \alpha - \xi \gamma)^2 \int_\Omega u^2 dx + \delta \int_\Omega |\Delta u|^2 + \beta \chi^2(\delta - \beta)^2 \int_\Omega v^2 dx \leq c_{11}, \] (3.19)

which implies (3.10) by using the Grönwall’s inequality. \(\square\)

Lemma 3.3. Assume the conditions in Lemma 3.1 are satisfied. Then there exists a constant \(C > 0\) such that
\[\|\nabla v\|_{L^\infty} + \|\nabla w\|_{L^\infty} \leq C. \] (3.20)

Proof. Multiplying the first equation of (1.1) by \(u^2\) to get that
\[\frac{1}{3} \frac{d}{dt} \int_\Omega u^3 dx + \frac{8}{9} \int_\Omega |\nabla u|^2 \cdot \nabla v dx = 2\chi \int_\Omega u^2 \nabla u \cdot \nabla v dx - 2\xi \int_\Omega u^2 \nabla u \cdot \nabla w dx \]
\[\leq \frac{4\chi}{3} \int_\Omega |u^3 \nabla u^2 \cdot \nabla v| dx + \frac{4\xi}{3} \int_\Omega |u^2 \nabla u^2 \cdot \nabla w| dx. \] (3.21)

Using (3.10) and Lemma 2.3, we have \(\|(\nabla v, \nabla w)\|_{L^4} \leq c_1\). Then, applying the Cauchy–Schwarz inequality and the Gagliardo–Nirenberg inequality to the right terms of (3.21) we have
\[\frac{4\chi}{3} \int_\Omega |u^3 \nabla u^2 \cdot \nabla v| dx + \frac{4\xi}{3} \int_\Omega |u^2 \nabla u^2 \cdot \nabla w| dx \]
\[\leq \frac{1}{9} \int_\Omega |\nabla u^2|^2 dx + 16\chi^2 \int_\Omega u^3 |\nabla v|^2 dx + \frac{2}{9} \int_\Omega |\nabla u|^2 dx + 8\xi^2 \int_\Omega |u^2|^2 dx \]
\[\leq \frac{1}{3} \|\nabla u^2\|^2_{L^2} + 16\chi^2 \|u^2\|^2_{L^4} \|\nabla v\|^2_{L^4} + 8\xi^2 \|u^2\|^2_{L^2} \||\nabla w\||^2_{L^4} \]
\[= \frac{1}{3} \|\nabla u^2\|^2_{L^2} + (16c_1\chi^2 + 8c_1\xi^2) \|u^2\|^2_{L^4} \]
\[\leq \frac{1}{3} \|\nabla u^2\|^2_{L^2} + c_2(\|\nabla u^2\|^2_{L^2} \|u^2\|^2_{L^4} + \|u^2\|^2_{L^4}) \]
\[\leq \frac{1}{3} \|\nabla u^2\|^2_{L^2} + c_2c_3^2 \|\nabla u^2\|^4_{L^2} + c_2c_3^2 \]
\[\leq \frac{5}{9} \|\nabla u^2\|^2_{L^2} + c_4, \] (3.22)

where we have used \(\|u^2\|^4_{L^2} = \|u^2\|^2_{L^4} \leq c_3\). Substituting (3.22) into (3.21), we can derive that
Using the Gagliardo–Nirenberg inequality and the fact that \((X + Y)^d \leq 2^d(X^d + Y^d)\) for all \(X \geq 0\) and \(Y \geq 0\), we can derive that

\[
\|u^2\|_{L^2}^6 \leq \left[c_5 \left(\|\nabla u^2\|_{L^2}^2 \|u^2\|_{L^2}^{3/4} + \|u^2\|_{L^2}^{3/4} \right) \right]^6
\leq 2^6c_5^6\|u^2\|_{L^2}^2 \|\nabla u^2\|_{L^2}^2 + 2^6c_5^6\|u^2\|_{L^2}^6
\leq 2^6c_3^6c_5^6\|\nabla u^2\|_{L^2}^2 + 2^6c_3^6c_5^6
= \frac{1}{c_6} \|\nabla u^2\|_{L^2}^2 + c_7. \tag{3.24}
\]

Inserting (3.24) into (3.23) and using \(\|u^2\|_{L^2}^6 = \|u\|_{L^3}^3\), we have

\[
\frac{d}{dt}\|u\|_{L^3}^3 + c_6\|u\|_{L^3}^3 \leq 3c_4 + c_6c_7 = c_8,
\]

which implies

\[
\|u\|_{L^3}^3 \leq e^{-c_6t}\|u_0\|_{L^3}^3 + \frac{c_8}{c_6} = c_9. \tag{3.25}
\]

Then using Lemma 2.3 and (3.25), we obtain \(\|(v, w)\|_{W^{1, \infty}} \leq c_{10}\) which implies (3.20). Then the proof of this lemma is completed. \(\square\)

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Multiplying the first equation of (1.1) by \(u^{p-1}\), and integrating the result equation with respect to \(x\) over \(\Omega\), using (3.20) and applying the Cauchy–Schwarz inequality, we have

\[
\frac{1}{p} \frac{d}{dt} \int_{\Omega} u^p \, dx = -\frac{4(p-1)}{p^2} \int_{\Omega} |\nabla u|^2 \, dx + (p-1) \int_{\Omega} u^{p-1} \nabla u \cdot (\chi \nabla v - \xi \nabla w) \, dx
\leq -\frac{4(p-1)}{p^2} \int_{\Omega} |\nabla u|^2 \, dx + c_1(p-1)(\chi + \xi) \int_{\Omega} u^{p-1} |\nabla u| \, dx
= -\frac{4(p-1)}{p^2} \int_{\Omega} |\nabla u|^2 \, dx + c_1(\chi + \xi) \frac{2(p-1)}{p} \int_{\Omega} u^{\frac{p}{2}} |\nabla u^{\frac{p}{2}}| \, dx
\leq -\frac{4(p-1)}{p^2} \int_{\Omega} |\nabla u|^2 \, dx
+ c_1(\chi + \xi) \frac{2(p-1)}{p} \left(\frac{1}{pc_1(\chi + \xi)} \int_{\Omega} |\nabla u|^2 \, dx + \frac{pc_1(\chi + \xi)}{4} \int_{\Omega} u^p \, dx \right)
= -\frac{2(p-1)}{p^2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{c_1^2(\chi + \xi)^2}{2} (p-1) \int_{\Omega} u^p \, dx, \tag{3.26}
\]

which implies
\[
\frac{d}{dt} \int_{\Omega} u^p dx + p(p-1) \int_{\Omega} u^p dx \leq \frac{2(p-1)}{p} \int_{\Omega} |\nabla u^\varepsilon|^2 dx + c_2 p(p-1) \int_{\Omega} u^p dx
\]

(3.27)

for all \(t \in (0, T_{\text{max}})\) and for all \(p \geq 2\), where \(c_2 = 1 + \frac{\varepsilon^2}{2} (x_0 + \varepsilon)^2\). Then it follows from (3.27) and the well-known Moser–Alikakos iteration procedure (cf. [1], [25, Lemma 4.1]) that there exists a constant \(c_3 > 0\) such that

\[
\|u(\cdot,t)\|_{L^\infty} \leq c_3 \quad \text{for all } t \in (0,T).
\]

(3.28)

Theorem 1.1 is an immediate consequence of (3.28) and Lemma 2.1. \(\square\)

4. Proof of Theorem 1.2

In this section, we are devoted to proving Theorem 1.2 by constructing a global weak solution as the limit of global classical solution of appropriately ‘regularized’ problems. By using a similar argument as in [4], we consider the following approximate system of (3.1) for each \(\varepsilon \geq 0\)

\[
\begin{align*}
 u_i^\varepsilon &= \Delta u^\varepsilon + \nabla \cdot (u^\varepsilon \chi(x) - \varepsilon u^\varepsilon \nabla s^\varepsilon), \quad x \in \Omega, \ t > 0, \\
 s_i^\varepsilon &= \Delta s^\varepsilon - \delta s^\varepsilon + (\xi_1 - \chi \alpha) u^\varepsilon + \chi(\beta - \delta) v^\varepsilon, \quad x \in \Omega, \ t > 0, \\
 v_i^\varepsilon &= \Delta v^\varepsilon + \alpha u^\varepsilon - \beta v^\varepsilon, \quad x \in \Omega, \ t > 0, \\
 \frac{\partial u^\varepsilon}{\partial \nu} &= \frac{\partial s^\varepsilon}{\partial \nu} = \frac{\partial v^\varepsilon}{\partial \nu} = 0, \quad x \in \partial \Omega, \ t > 0, \\
 u^\varepsilon(x,0) &= u_0(x), \quad s^\varepsilon(x,0) = \xi w_0(x) - \chi v_0(x) =: s_0(x), \quad v^\varepsilon(x,0) = v_0(x), \quad x \in \Omega.
\end{align*}
\]

(4.1)

Observe that system (3.1) is obtained by taking \(\varepsilon = 0\) in the approximate system (4.1). We have the following proposition for the approximate system (4.1).

Proposition 4.1. Assume \(0 \leq (u_0, v_0, w_0) \in [W^{1,\infty}(\Omega)]^3\). Then the system (4.1) has a local unique classical solution

\[
\left(u^\varepsilon, s^\varepsilon, v^\varepsilon\right) \in C(\bar{\Omega} \times [0,T_{\text{max}}^\varepsilon]; \mathbb{R}^3) \cap C^{2,1}(\bar{\Omega} \times (0,T_{\text{max}}^\varepsilon); \mathbb{R}^3)
\]

and \(u^\varepsilon(x,t), v^\varepsilon(x,t), s^\varepsilon(x,t) \geq 0\) for each \((x,t) \in \bar{\Omega} \times [0,T_{\text{max}}^\varepsilon]\), \(T_{\text{max}}^\varepsilon\) denoting the maximal existence time. Furthermore, if there is a function \(\omega : (0, \infty) \to (0, \infty)\) such that for each \(T > 0\)

\[
\|\left(u^\varepsilon, s^\varepsilon, v^\varepsilon\right)(t)\|_{L^\infty} \leq \omega(T), \quad 0 < t < \min\{T,T_{\text{max}}^\varepsilon\}
\]

then \(T_{\text{max}}^\varepsilon = \infty\). In particular, if \(\varepsilon \in (0,\varepsilon_0]\) with \(\frac{1}{\varepsilon_0} = \max\{\|u_0\|_{L^\infty}, \frac{\beta}{\alpha} \|v_0\|_{L^\infty}\} \) then \(0 \leq u^\varepsilon \leq \frac{1}{\varepsilon}, \ 0 \leq v^\varepsilon \leq \frac{2}{\varepsilon} \) and \(\|s^\varepsilon\|_{L^\infty} \leq \frac{C}{\varepsilon}\), hence \(T_{\text{max}}^\varepsilon = +\infty\).

Remark 4.1. We should emphasize that the initial data \(s_0(x) = \xi w_0(x) - \chi v_0(x)\) might be negative for our present setting.

Proof. First, we can apply [2, Theorem 14.6] to conclude the system (4.1) has a local unique classical solution for \(\varepsilon \geq 0\). The non-negativity of \(u^\varepsilon\) and \(v^\varepsilon\) by using [2, Theorem 15.1] and the standard maximum principle for parabolic equations. The global existence criterion can be deduced from [2, Theorem 15.5]. At last, if \(\varepsilon \in (0,\varepsilon_0]\) then \(\frac{1}{\varepsilon} \geq \frac{1}{\varepsilon_0}\) hence \(p^\varepsilon(x,0) = -u_0 + \frac{1}{\varepsilon} \geq 0\). Substituting \(p^\varepsilon = -u^\varepsilon + \frac{1}{\varepsilon}\) into the first equation of system (4.1), one has

\[
p_i^\varepsilon = \Delta p^\varepsilon + \nabla \cdot (p^\varepsilon (1 - \varepsilon p^\varepsilon) \nabla s^\varepsilon).
\]
Moreover, we use [2, Theorem 15.1] to obtain \(p^\varepsilon \geq 0 \) which yields \(u^\varepsilon \leq \frac{1}{\varepsilon} \). Similarly, substituting \(h^\varepsilon = -v^\varepsilon + \frac{\alpha}{\varepsilon} \) into the third equation of system (4.1) yields that

\[
h^\varepsilon_t = \Delta h^\varepsilon - \beta h^\varepsilon + \alpha p^\varepsilon.
\]

Using the classical maximum principle and \(p^\varepsilon \geq 0 \) entails that \(v^\varepsilon \leq \frac{\alpha}{\beta^\varepsilon} \). Letting \(q^\varepsilon = (\xi \gamma - \chi \alpha)u^\varepsilon + \chi (\beta - \delta)v^\varepsilon \), we have \(||q^\varepsilon||_{L^\infty} \leq \frac{C}{\varepsilon} \). Noting that \(s^\varepsilon \) solves

\[
\begin{cases}
\frac{d}{dt} s^\varepsilon_t - \Delta s^\varepsilon + \delta s^\varepsilon = q^\varepsilon, \\
\frac{\partial s^\varepsilon}{\partial \nu} = 0, \\
s^\varepsilon(x,0) = \xi w_0(x) - \chi v_0(x) =: s_0(x), \quad x \in \Omega.
\end{cases}
\]

By a simple energy estimate we have \(||s^\varepsilon||_{L^\infty} \leq \frac{C}{\varepsilon} \). Then we complete the proof of Proposition 4.1. \(\square \)

Next, we will derive some \(\varepsilon \)-independent estimates for these solutions obtained in Proposition 4.1. First, we derive the following useful inequality which is the core of the argument concerning the global existence of weak solutions.

Lemma 4.2. Let \(n = 3 \) and \(\xi \gamma > \chi \alpha \). For each \(T_0 > 0 \), there exists \(C(T) > 0 \), which may depend on \(T := \min \{T_0, T_{max}^\varepsilon\} \) such that for any \(\varepsilon \in (0, \varepsilon_0] \) the solution of (4.1) satisfies

\[
\int_0^t \int_\Omega \frac{|\nabla u^\varepsilon|^2}{u^\varepsilon} \, dx \, dt \leq C(T) \quad \text{for all } t \in (0,T) \tag{4.2}
\]

and

\[
\int_\Omega |\nabla s^\varepsilon|^2 \, dx + \int_0^t \int_\Omega |\Delta s^\varepsilon|^2 \, dx \, dt + 2\delta \int_0^t \int_\Omega |\nabla s^\varepsilon|^2 \, dx \, dt \leq C(T) \quad \text{for all } t \in (0,T). \tag{4.3}
\]

Proof. Multiplying the first equation of (4.1) by \(\ln u^\varepsilon - \ln(1 - \varepsilon u^\varepsilon) \) and the second by \(-\frac{1}{\xi \gamma - \chi \alpha} \Delta s^\varepsilon \), and adding them, we end up with the following equation after integrating the result with respect to \(x \) over \(\Omega \)

\[
\frac{d}{dt} \left\{ \int_\Omega \left(u^\varepsilon \ln u^\varepsilon + \frac{1}{\varepsilon} \left(1 - \varepsilon u^\varepsilon \right) \ln(1 - \varepsilon u^\varepsilon) \right) \, dx \right\} + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_\Omega |\nabla s^\varepsilon|^2 \, dx \right\}
\]

\[
+ \int_\Omega \frac{|\nabla u^\varepsilon|^2}{u^\varepsilon(1 - \varepsilon u^\varepsilon)} \, dx + \frac{1}{(\xi \gamma - \chi \alpha)} \int_\Omega |\Delta s^\varepsilon|^2 \, dx \, dt + \frac{\delta}{(\xi \gamma - \chi \alpha)} \int_\Omega |\nabla s^\varepsilon|^2 \, dx \, dt
\]

\[
= -\frac{\chi (\beta - \delta)}{\xi \gamma - \chi \alpha} \int_\Omega v^\varepsilon \Delta s^\varepsilon \, dx \leq \frac{1}{2(\xi \gamma - \chi \alpha)} \int_\Omega |\Delta s^\varepsilon|^2 \, dx + \frac{\chi^2 (\beta - \delta)^2}{\xi \gamma - \chi \alpha} \int_\Omega (v^\varepsilon)^2 \, dx. \tag{4.4}
\]

Since \(u^\varepsilon \in L^1(\Omega) \), then from Lemma 2.3, we can find a constant \(c_1 > 0 \) such that \(||v^\varepsilon||_{W^{1,6}_\Omega} \leq c_1 \). Hence using the Sobolev inequality (cf. [6, p. 265]), we have

\[
||v^\varepsilon||_{L^2} \leq c_2 ||v^\varepsilon||_{W^{1,6}_\Omega} \leq c_1 c_2. \tag{4.5}
\]

Substituting (4.5) into (4.4), we can find a constant \(c_3 > 0 \) such that
\[
\begin{align*}
\frac{d}{dt}\left\{ \int_{\Omega} \left(u^\varepsilon \ln u^\varepsilon + \frac{1}{\varepsilon} (1 - \varepsilon u^\varepsilon) \ln(1 - \varepsilon u^\varepsilon) \right) dx + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s^\varepsilon|^2 dx \right\} \\
+ \int_{\Omega} \frac{|\nabla u^\varepsilon|^2}{u^\varepsilon(1 - \varepsilon u^\varepsilon)} dx + \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\Delta s^\varepsilon|^2 dx + \frac{\delta}{(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s^\varepsilon|^2 dx \leq c_3. \tag{4.6}
\end{align*}
\]

Since \(r + \frac{1}{\varepsilon}(1 - \varepsilon r) \ln(1 - \varepsilon r) \geq 0 \) for \(r \in [0, \frac{1}{\varepsilon}] \) and \(r \ln r \geq -\frac{1}{\varepsilon} \) for \(r \in [0, 1] \), we have

\[
\begin{align*}
\int_{\Omega} \left(u^\varepsilon \ln u^\varepsilon + \frac{1}{\varepsilon} (1 - \varepsilon u^\varepsilon) \ln(1 - \varepsilon u^\varepsilon) \right) dx \\
= \int_{\Omega} \left(u^\varepsilon \ln u^\varepsilon - u^\varepsilon + u^\varepsilon + \frac{1}{\varepsilon} (1 - \varepsilon u^\varepsilon) \ln(1 - \varepsilon u^\varepsilon) \right) dx \\
\geq \int_{\Omega} (u^\varepsilon \ln u^\varepsilon - u^\varepsilon) dx \geq \int_{\Omega} u^\varepsilon \ln u^\varepsilon|dx - \left(\|u_0\|_{L^1} + \frac{|\Omega|}{\varepsilon} \right). \tag{4.7}
\end{align*}
\]

Furthermore, we have

\[
\frac{|\nabla u^\varepsilon|^2}{u^\varepsilon(1 - \varepsilon u^\varepsilon)} \geq \frac{|\nabla u^\varepsilon|^2}{u^\varepsilon}. \tag{4.8}
\]

Integrating (4.4) with respect to \(t \) and using (4.7) and (4.8) to obtain

\[
\begin{align*}
\int_{\Omega} u^\varepsilon \ln u^\varepsilon| dx + \int_{\Omega} \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s^\varepsilon|^2 dx \\
\int_{\Omega} \int_{\Omega} \int_{\Omega} \frac{1}{2(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s^\varepsilon|^2 dx + \frac{\delta}{(\xi \gamma - \chi \alpha)} \int_{\Omega} |\nabla s^\varepsilon|^2 dx \leq C(T), \tag{4.9}
\end{align*}
\]

which entails (4.2) and (4.3).

Next, we prove that at least a subsequence of the classical solutions \((u^\varepsilon, s^\varepsilon, v^\varepsilon)\) to (4.1) converge in suitable topologies towards a (weak) solution to (1.1) as \(\varepsilon \to 0 \). First we deduce some bounds on \((u^\varepsilon, s^\varepsilon, v^\varepsilon)\).

Lemma 4.3. Let \(n = 3 \) and \(\varepsilon \in (0, \varepsilon_0] \). For \(T > 0 \), the sequences \((u^\varepsilon, s^\varepsilon, v^\varepsilon)\) have the following properties:

\[
\begin{align*}
(u^\varepsilon)_\varepsilon \text{ is bounded in } L^{\frac{n}{2}}((0, T);W^{1,\frac{n}{2}}(\Omega)), \tag{4.10} \\
(u_t^\varepsilon)_\varepsilon \text{ is bounded in } L^1((0, T);C_0^1(\Omega)^t), \tag{4.11} \\
(v^\varepsilon)_\varepsilon \text{ is bounded in } L^{\frac{n}{2}}((0, T);W^{2,\frac{n}{2}}(\Omega)), \tag{4.12} \\
(v_t^\varepsilon)_\varepsilon \text{ is bounded in } L^{\frac{n}{2}}(\Omega \times (0, T)), \tag{4.13} \\
(s^\varepsilon)_\varepsilon \text{ is bounded in } L^{\infty}((0, T);W^{1,2}(\Omega)) \cap L^2((0, T);W^{2,2}(\Omega)), \tag{4.14} \\
(s_t^\varepsilon)_\varepsilon \text{ is bounded in } L^{\frac{3n}{2}}(\Omega \times (0, T)), \tag{4.15} \\
(u^\varepsilon \nabla s^\varepsilon)_\varepsilon \text{ is bounded in } L^{\frac{3n}{4}}(\Omega \times (0, T)). \tag{4.16}
\end{align*}
\]
Proof. First, we can obtain (4.14) from (4.3) directly. Next, we will show (4.10) and (4.11) hold. First, integrating the first equation of (4.1) and using the boundary conditions, one has

\[\| u^\varepsilon(t) \|_{L^1} \leq C \quad \text{for } t \in (0, T). \]

(4.17)

Using (4.2) and (4.17), we have

\[\int_0^T \| \sqrt{u^\varepsilon(t)} \|_{W^{1,2}}^2 \, dt = \int_0^T \| u^\varepsilon(t) \|_{L^1}^2 \, dt + \frac{1}{4} \int_0^T \int_\Omega \frac{\| \nabla u^\varepsilon \|}{u^\varepsilon} \, dx \, dt \leq C(T), \]

(4.18)

which implies

\[\int_0^T \| u^\varepsilon(t) \|_{L^3}^3 \, dt \leq C(T), \]

(4.19)

by using the continuous embedding of \(W^{1,2}(\Omega) \) in \(L^6(\Omega) \). Applying the interpolating inequality, using (4.17) and (4.19), we have

\[\int_0^T \| u^\varepsilon(t) \|_{L^\frac{5}{2}}^\frac{5}{2} \, dt \leq \int_0^T \| u^\varepsilon(t) \|_{L^1}^\frac{3}{2} \| u^\varepsilon(t) \|_{L^3}^\frac{3}{2} \, dt \leq C(T). \]

(4.20)

Using (4.2) and (4.20), one has

\[\int_0^T \int_\Omega \left| \nabla u^\varepsilon \right|^\frac{5}{2} \, dx \, dt = \int_0^T \left(\int_\Omega \left(\frac{\| \nabla u^\varepsilon \|}{(u^\varepsilon)^{1/2}} \right)^{\frac{4}{5}} \left(u^\varepsilon \right)^{\frac{5}{2}} \, dx \right) \, dt \leq \int_0^T \left(\int_\Omega \left(\frac{\| \nabla u^\varepsilon \|}{u^\varepsilon} \, dx \right) \right)^{\frac{5}{3}} \left(\int_\Omega \left(u^\varepsilon \right)^{\frac{5}{2}} \, dx \right)^{\frac{2}{3}} \, dt \leq C(T). \]

(4.21)

Then the combination of (4.20) and (4.21) entails (4.10). Furthermore, for any \(\phi \in C^1_0(\Omega) \), we have

\[\left| \int_\Omega u^\varepsilon_t \phi \, dx \right| \leq \int_\Omega \nabla u^\varepsilon \cdot \nabla \phi + \int_\Omega u^\varepsilon (1 - u^\varepsilon) \nabla s^\varepsilon \cdot \nabla \phi \, dx \]

\[\leq \| \nabla \phi \|_{L^\infty} \left(\int_\Omega \frac{|\nabla u^\varepsilon|}{\sqrt{u^\varepsilon}} \, dx + \| u^\varepsilon \|_{L^2} \| \nabla s^\varepsilon \|_{L^2} \right) \]

\[\leq C(T) \left(\int_\Omega \frac{|\nabla u^\varepsilon|}{u^\varepsilon} \, dx + \| u^\varepsilon \|_{L^2} \right) \| \nabla \phi \|_{L^\infty}, \]

where we have used \(\| \nabla s^\varepsilon \|_{L^2} \leq C(T) \) (see (4.3)) and (4.17). Therefore we obtain

\[\| u^\varepsilon_t \|_{C^\frac{1}{2}(\Omega')} \leq C(T) \left(\int_\Omega \frac{|\nabla u^\varepsilon|}{u^\varepsilon} \, dx + \| u^\varepsilon \|_{L^2} \right) \leq C(T) \left(\int_\Omega \frac{|\nabla u^\varepsilon|}{u^\varepsilon} \, dx + \| u^\varepsilon \|_{L^3} \right) \]

and the right side of the above inequality is bounded in \(L^1(0, T) \) by (4.2) and (4.19). Hence, we complete the proof of (4.11).
We apply the classical parabolic regularity theory to the third equation of (4.1) and use (4.20) to obtain (4.12) and (4.13). Similarly, applying the classical parabolic regularity theory to the second equation of (4.1) and using (4.20) and (4.12), one has (4.15).

At last, we will show the key estimate (4.16) holds. Using the Sobolev embedding theorem and (4.14), we can obtain that \((\nabla s^\varepsilon)_\varepsilon^\varepsilon\) is bounded in \(L^2((0, T); L^6(\Omega))\) and \(L^\infty((0, T); L^2(\Omega))\), which yields

\[
\int_0^T \|\nabla s^\varepsilon\|_{L^6}^{\frac{6}{5}} dt \leq \int_0^T \|\nabla s^\varepsilon\|_{L^2}^\frac{1}{2} \|\nabla s^\varepsilon\|_{L^6}^\frac{3}{2} dt \leq C(T),
\]

(4.22)

where we have used the interpolating inequality

\[
\|\nabla s^\varepsilon\|_{L^6} \leq \|\nabla s^\varepsilon\|_{L^2} \|\nabla s^\varepsilon\|_{L^6}^\frac{3}{2}.
\]

The combination (4.20) and (4.22) with the Hölder inequality gives us that

\[
\int_0^T \left(\int_\Omega |\nabla s^\varepsilon u^\varepsilon|^\frac{10}{3} dx dt \right) \leq \left(\int_0^T \left(\int_\Omega |\nabla s^\varepsilon|^\frac{10}{3} dx \right)^\frac{1}{3} \left(\int_\Omega \left(u^\varepsilon \right)^\frac{5}{2} dx \right)^\frac{2}{3} dt \right) \leq \left(\int_0^T \left(\int_\Omega |\nabla s^\varepsilon|^\frac{10}{3} dx dt \right)^\frac{1}{2} \left(\int_0^T \left(u^\varepsilon \right)^\frac{5}{2} dx dt \right)^\frac{1}{2} \right) \leq C(T),
\]

which yields (4.16). Then the proof of Lemma 4.3 is completed. \(\Box\)

Now, we consider the relative compactness of the sequences \((u^\varepsilon, s^\varepsilon, v^\varepsilon)_\varepsilon\).

Lemma 4.4. There are functions \((u, s, v)\)

\[
\begin{align*}
 &u \in L^\frac{5}{2}((0, T); W^{1, \frac{5}{2}}(\Omega)) \cap C((0, T); C^1_0(\Omega)), \\
 &s \in L^\infty((0, T); W^{1, 2}(\Omega)) \cap C((0, T); L^2(\Omega)) \cap L^2((0, T); W^{2, 2}(\Omega)), \\
 &v \in L^\frac{5}{2}((0, T); W^{2, \frac{5}{2}}(\Omega)), \\
\end{align*}
\]

and a sequence of \((u^\varepsilon)_\varepsilon\), \((s^\varepsilon)_\varepsilon\) and \((v^\varepsilon)_\varepsilon\) such that

\[
\begin{align*}
 &u^\varepsilon \to u \text{ in } L^\frac{5}{2}(\Omega \times (0, T)) \cap C((0, T); C^0_0(\Omega)), \\
 &s^\varepsilon \to s \text{ in } L^2((0, T); W^{1, 2}(\Omega)) \cap C((0, T); L^2(\Omega)), \\
 &v^\varepsilon \to v \in L^\frac{5}{2}((0, T); W^{1, \frac{5}{2}}(\Omega)),
\end{align*}
\]

and

\[
\begin{align*}
 &\int_\Omega (s(t) - s_0) \phi dx + \int_0^t \int_\Omega (\nabla s \cdot \nabla \phi + [\delta s - (\xi \gamma - \chi \alpha)u - \chi(b - \delta)v]) \phi dx d\tau = 0, \\
 &\int_\Omega (v(t) - v_0) \phi dx + \int_0^t \int_\Omega (\nabla v \cdot \nabla \phi + (\beta v - \alpha u) \phi) dx d\tau = 0
\end{align*}
\]

(4.23)

for each \(t \in [0, T]\) and \(\phi \in W^{1, \infty}(\Omega)\).
Proof. The proof of this lemma closely follows an argument in [4, Lemma 4.2]. Noting that (4.11), (4.17) and Ascoli theorem entail that

\[
(u^\varepsilon)_\varepsilon \text{ is relatively compact in } C((0,T); \mathcal{C}^0_0(\Omega')).
\]

(4.25)

Combing (4.10) and (4.11), and using Aubin–Lions Lemma [15, Théorème 5.1] gives

\[
(u^\varepsilon)_\varepsilon \text{ is relatively compact in } L^{\frac{5}{2}}(\Omega \times (0,T)).
\]

(4.26)

Similarly, using (4.12), (4.13) and Aubin–Lions Lemma, we have

\[
(v^\varepsilon)_\varepsilon \text{ is relatively compact in } L^{\frac{5}{4}}((0,T); W^{1,\frac{5}{4}}(\Omega)).
\]

(4.27)

Furthermore, it follows from (4.14), (4.15) and [24, Corollary 4] that

\[
(s^\varepsilon)_\varepsilon \text{ is relatively compact in } L^{2}((0,T); W^{1,2}(\Omega)) \cap C((0,T); L^{2}(\Omega)).
\]

(4.28)

Then one can obtain (4.23) from (4.25)–(4.28). Furthermore, for all \(\phi \in W^{1,\infty}(\Omega) \), we have the following identities from the second equation and the third equation of (4.1)

\[
\int_\Omega (s^\varepsilon(t) - s^\varepsilon_0) \phi dx + \int_0^t \int_\Omega \left(\nabla s^\varepsilon \cdot \nabla \phi + [\delta s^\varepsilon - (\xi \gamma - \chi \alpha)u^\varepsilon - \chi(\beta - \delta)v^\varepsilon] \phi \right) dx d\tau = 0,
\]

\[
\int_\Omega (v^\varepsilon(t) - v^\varepsilon_0) \phi dx + \int_0^t \int_\Omega \left[\nabla v^\varepsilon \cdot \nabla \phi + (\beta v^\varepsilon - \alpha u^\varepsilon) \phi \right] dx d\tau = 0,
\]

which entail (4.24) as \(\varepsilon \to 0 \). The proof of Lemma 4.4 is completed. \(\square \)

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We multiply the first equation of (4.1) by \(\phi \in W^{1,\infty}(\Omega) \), and integrate by part, we end up with

\[
- \int_\Omega u^\varepsilon \phi dx + \int_\Omega u^\varepsilon_0 \phi dx = \int_0^t \int_\Omega \nabla u^\varepsilon \cdot \nabla \phi dx d\tau + \int_0^t \int_\Omega u^\varepsilon (1 - \varepsilon u^\varepsilon) \nabla s^\varepsilon \cdot \nabla \phi dx d\tau.
\]

(4.29)

Noting that (4.16) entails that

\[
\int_0^t \int_\Omega \left| u^\varepsilon (1 - \varepsilon u^\varepsilon) \nabla s^\varepsilon \right|^\frac{10}{3} dx d\tau \leq \frac{11}{6} \int_0^t \int_\Omega |u^\varepsilon \nabla s^\varepsilon|^\frac{10}{3} dx d\tau \leq C(T).
\]

Hence, the sequence \((u^\varepsilon(1 - \varepsilon u^\varepsilon) \nabla s^\varepsilon)_\varepsilon \) is bounded in \(L^{\frac{10}{3}}(\Omega \times (0,T)) \) and thus weakly compact in \(L^{1}(\Omega \times (0,T)) \). From Lemma 4.4 we can derive that \(u^\varepsilon(1 - \varepsilon u^\varepsilon) \nabla s^\varepsilon \to u \nabla s \) a.e. in \(\Omega \times (0,T) \) as \(\varepsilon \to 0 \). By Vitali convergence theorem, we obtain

\[
u^\varepsilon(1 - \varepsilon u^\varepsilon) \nabla s^\varepsilon \to u \nabla s \quad \text{as} \quad \varepsilon \to 0 \quad \text{in} \quad L^{1}(\Omega \times (0,T)).
\]

(4.30)
Letting $\varepsilon \to 0$ and substituting (4.30) into (4.29), we derive that
\[
\int_{\Omega} (u(t) - u_0) \phi dx + \int_{\Omega} \nabla u \cdot \nabla \phi dx d\tau + \int_{\Omega} u \nabla \phi \cdot \nabla s dx d\tau = 0. \tag{4.31}
\]
Combining (4.24) and (4.31), and using the transformation $s = \xi w - \chi v$, one has (1.2). Then the proof of Theorem 1.2 is completed. \square

Acknowledgments

The author is grateful to the two referees whose suggestions improve the exposition of the paper.

References