
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Search-Based Algorithm With Scatter Search Strategy
for Automated Test Case Generation of NLP Toolkit

Fangqing Liu , Han Huang , Member, IEEE, Zhongming Yang, Zhifeng Hao, and Jiangping Wang

Abstract—Natural language processing (NLP), as a theory-
motivated computational technique, has extensive applications. Au-
tomated test case generation based on path coverage, which is a
popular structural testing activity, can automatically reveal logic
defects that exist in NLP programs and can save testing consump-
tion. NLP programs have many paths that can only be covered by
specific input variables. This feature makes conventional search-
based algorithm very difficult covering all possible paths in NLP
programs. A strategy is required for improving the search ability of
search-based algorithms. In this paper, we propose a scatter search
strategy to automatically generate test cases for covering all possi-
ble paths of NLP programs. The scatter search strategy empowers
search-based algorithms to explore all input variables and cover the
paths that require specific input variables within a small amount of
test cases. The experiment results show that the proposed scatter
search strategy can quickly cover the paths, which requires specific
input variables. Many test cases and running time consumptions
will be saved when search-based algorithms combine with scatter
search strategy.

Index Terms—Automated test case generation, path cover-
age, natural language processing, search-based algorithm, scatter
search.

I. INTRODUCTION

NATURAL language processing (NLP) is a theory-
motivated computational technique which reflects the un-

derstanding of human language representation and analysis [1].

Manuscript received October 3, 2018; revised February 8, 2019; accepted
April 14, 2019. This work was supported in part by the National Natural Science
Foundation of China under Grant 61876207, in part by Guangdong Natural Sci-
ence Funds for Distinguished Young Scholar under Grant 2014A030306050, in
part by Guangdong High-level personnel of special support Program under Grant
2014TQ01X664, in part by the International Cooperation Project of Guangzhou
under Grant 201807010047, and in part by Guangzhou Science and Technol-
ogy Project under Grants 201802010007, 201804010276, and in part by the
Guangdong Province Key Area R&D Program under Grant 2018B010109003.
(Corresponding author: Han Huang.)

F. Liu and H. Huang are with the School of Software Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
the Key Laboratory of Symbolic Computation and Knowledge Engineering
of Ministry of Education, Jilin University, Changchun 130012, China (e-mail:
564376030@qq.com; hhan@scut.edu.cn).

Z. Yang is with the College of Computer Engineering Technical, Guang-
dong Institute of Science and Technology, Zhuhai 510640, China (e-mail:
yzm8008@126.com).

Z. Hao is with the School of Computer, Guangdong University of Technology,
Guangzhou 510090, China, and also with the School of Mathematics and Big
Date, Foshan University, Foshan 528000, China (e-mail: zfhao@fosu.edu.cn).

J. Wang is with the BeMing Software Company, Ltd., Guangzhou 510663,
China (e-mail: wangjingping@bmsoft.com.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material consists of a
PDF, viewable with Windows Adobe Acrobat. The size of the pdf is 24 kB.

Digital Object Identifier 10.1109/TETCI.2019.2914280

NLP researchers focus on decoding human languages and de-
signing intelligent systems to understand input speech or text
content [2]. As a popular research topic, NLP has several ap-
plications such as automated recommending web [3], video dy-
namics detection [4], social emotion classification [5] and travel
chat robot [6].

The Stanford CoreNLP toolkit [7] provides a framework for
analyzing natural language and has a wide scope of applications.
The CoreNLP toolkit was used for preprocessing and tokeniza-
tion for a Microsoft COCO Cation data set and evaluation server
[8]. It was also applied to an open-domain question answering
system [9]. Many NLP techniques and toolkits are designed
based on the CoreNLP, as some logical defects exist in those
programs. Automated test case generation (ATCG) [10] is one
category of structural testing activity. Compared to functional
testing [11] which focuses on satisfying requirements of pro-
grams, structural testing reveals the logical defects on tested
programs. ATCG usually selects a coverage criterion and aims
to cover all possible coverage targets in the program. Statement
coverage [12], branch coverage [10], mutation coverage [13]
and path coverage [14] are the common criteria in structural test-
ing. Among those coverage criteria, path coverage is the most
critical and challenging one [15], [16]. Most defects in NLP
programs can be easily found if the test cases which satisfy the
path coverage criterion can be automatically generated. In this
paper, we have selected automated test case generation based on
path coverage (ATCG-PC) for NLP programs as our research
topic.

Two issues can be found with ATCG-PC. First, ATCG-PC is
one of the unit testing activities [17] which needs to generate test
cases for covering paths in tested functions. Given a tested NLP
program, the number of paths is finite and discrete. Therefore,
this feature makes it difficult for ATCG-PC to be derivable. Sec-
ond, the relationship between test cases and paths is unknown.
The generated test cases may cover the path which is already
found. This feature makes conventional optimization methods
generate too many redundant test cases.

The objective of ATCG-PC is to find a set of test cases which
cover all possible paths in the NLP program. Some researchers
consider ATCG-PC as a single-objective optimization problem
[14], [16] while others consider ATCG-PC as a multi-objective
optimization problem [10], [18]–[20]. Fraser [16] proposed a
model to maximize fitness value of its generated test case set,
wherein only the set of test cases that cover all possible paths
have maximum fitness value. Huang [14] proposed a model to
minimize the number of generated test cases for covering all

2471-285X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6830-6733
https://orcid.org/0000-0003-1617-4147
mailto:564376030@qq.com
mailto:hhan@scut.edu.cn
mailto:yzm8008@126.com
mailto:zfhao@fosu.edu.cn
mailto:wangjingping@bmsoft.com.cn
http://ieeexplore.ieee.org

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

paths in the tested program. The above references [14], [16] con-
sider ATCG-PC as a single-objective optimization problem and
both used single-objective methods to optimize it. Conversely,
other researchers have built ATCG-PC as a multi-objective op-
timization problem [10], [18]–[20]. Each path in the tested pro-
gram has a separated single fitness function, and only the test
case covering the corresponding path has the highest fitness
value. With multi-objective optimization, every test case needs
to be evaluated several times; thus, making it expensive to evalu-
ate test cases in multi-objective models. Therefore, considering
ATCG-PC as a single-objective optimization problem is a better
choice.

Static analysis and search-based algorithm are two common
methods for solving ATCG-PC. The static method analyzes the
inequality constraints of each path in the system [21], mean-
ing the target test case set is calculated based on the constraints
of input variables [22]. However, the computational complex-
ity of static analysis increases exponentially if the number of
constraints increases [23]. Correspondingly, search-based algo-
rithm [24] can avoid the limitations of the static analysis method
in ATCG-PC.

Among all search-based algorithms, three categories are pro-
posed for ATCG-PC. For example, Bouchachia [25] provided an
immune strategy to empower the global search ability of genetic
algorithm, while Wang [26] and Suresh [27] both used genetic
algorithm to generate offspring for test cases. Zhang [28] in-
troduced a multi-population genetic algorithm for ATCG-PC.
Multi-population genetic algorithm [28] increases the diversity
of the whole population to solve the ATCG-PC. In short, above
researchers [25]–[28] used genetic algorithm or its variants to
solve ATCG-PC problem. The second category of search-based
algorithms consists of swarm intelligence algorithms. Mala [29]
proposed an artificial bee colony algorithm to generate a test
suite for path coverage. In addition, Girgis [30] and Nayak [31]
both used a particle swarm optimization algorithm to gener-
ate test cases for path coverage. The third category of search-
based algorithm includes evolutionary algorithm. Huang [14]
proposed a self-adaptive differential evolution to generate test
cases for covering all paths in tested programs. However, NLP
programs usually use character strings as their input variables,
whereas some paths can only be covered with specific strings,
making the consumption very expensive for finding specific
character strings. Therefore, it is difficult for genetic algorithms
[25]–[28], swarm intelligence algorithms [29]–[31] and evolu-
tionary algorithms [14] to generate test cases for all possible
paths of NLP programs.

We summarize our main contributions as follows:
1) A scatter search strategy is presented to empower the

search ability of search-based algorithms such as differ-
ential evolution. The scatter search strategy aims to ex-
plore all variables and cover the objective path. Many test
case and time consumptions can be saved when search-
based algorithms are combined with the scatter search
strategy.

2) We have comprehensively evaluated the proposed scat-
ter search strategy with differential evolution (DE-SS)
and other state-of-the-art search-based algorithms. A

mathematical proof proves that the proposed scatter
search strategy can work the best when the parameter
s = 2. The experiment results also show that DE-SS is
an efficient algorithm for automatically generating path
coverage test cases of NLP programs.

The structure of this paper is as follows: Section II will in-
troduce the ATCG-PC for NLP programs and the mathematical
model of ATCG-PC for NLP programs. Section III will introduce
the proposed scatter search strategy. The experimental results of
the proposed DE-SS and other state-of-the-art algorithms will
be presented in Section IV. Finally, the conclusion of this paper
will be summarized in Section V.

II. BACKGROUND

In this section, we will provide necessary background infor-
mation to present our motivations. Some concepts regarding the
model of ATCG-PC will also be introduced.

A. ATCG-PC for NLP Programs

Some basic definitions about test case, path and path coverage
will be introduced in this subsection, as the proposed algorithm
and the mathematical model are designed based on those three
concepts.

Definition 1 (test case): A test case is usually an integer vec-
tor xi = (xi1, xi2, ..., xin) with n elements, where each dimen-
sion is an integer number in its domain.

Definition 2 (path): A path is a sequence of running direction
of vertexes, starting at some initial vertexes and ending at some
final vertexes, where each vertex is the branch condition of the
tested NLP program.

Definition 3 (path coverage): A test case xi covers path pj ,
when xi generates the same branch conditions with path pj in
each vertex of the tested NLP program.

Path coverage is more challenging and efficient than other
coverage criteria such as statement coverage and branch cov-
erage. If the found test case set satisfies the criterion of path
coverage, the test case set will have a proper subset which sat-
isfies the criterion of statement coverage and branch coverage.
We assume that more logical software defects can be revealed
by path coverage test cases, compared to statement coverage or
branch coverage test cases.

NLP programs usually consist of test cases with character
strings and integer variables instead of pure integer variables.
This feature poses a problem in ATCG-PC for NLP software.
Each character string is composed of a string of integer vari-
ables, which correspond to their ASCII codes. The size of
the solution space will explode when the number of charac-
ter strings increases. In addition, some paths require specific
character strings, meaning that the input variables, which con-
sist of the character strings, should be their exact values. As
shown in Fig. 1, the path “Yes, Yes” can only be covered
if the input string equals to “Anewstring”. It is very difficult
for conventional search-based algorithms, such as differential
evolution, to cover this path. In our previous work [14], we
proposed a self-adaptive differential evolution for ATCG-PC
in some simple programs. These programs only used integer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 3

Fig. 1. An example of NLP programs.

Fig. 2. Notation of variables in ATCG-PC model of NLP programs.

variables, while their paths were covered easily. In this pa-
per, a new strategy will be proposed to empower differential
evolution. The proposed algorithm can cover paths which re-
quire specific input variables within a small number of test
cases.

B. Mathematical Model of ATCG-PC for NLP Programs

The mathematical model of ATCG-PC for NLP programs
is a variant of model [14]. NLP programs contain many vari-
ables which are character strings. A character string cannot
be represented by single real or integer number. However,
each character has an exclusive integer value with an ASCII
code. Common characters are usually in the range of [0, 255].
Therefore, a character string can be formulated by an integer
vector, while the value of each dimension is in the range of
[0, 255].

Some basic variables in this model are defined in Fig. 2. Test
case consumption m is usually been used to evaluate the perfor-
mance of the compared algorithm [14], [32]. The objective of
ATCG-PC can be reformulated as follows.

Minimize m

s.t.

L∑

j=1

min

{
1,

m∑

i=1

θij

}
= L (1)

L∑

j=1

θij = 1 (2)

θij =

{
1, xni

covers pj
0, otherwise

(3)

m ≤ M (4)

xni
∈ Sθ;Sθ ∈ X; i = 1, 2, ...,m;m = |Sθ|;

j = 1, 2, ..., L; 1 ≤ n1 < n2 < ... < nm ≤ N ; (5)

xi = (xi,1, ..., xi,μ, xi,μ+1, ..., xi,n)

xi,k ∈ Z, 0 ≤ xi,k ≤ 255, 1 ≤ k ≤ μ

xi,k′ ∈ Z, lbk′ ≤ xi,k′ ≤ ubk′ , μ+ 1 ≤ k
′ ≤ n (6)

ATCG-PC aims to use minimal test cases to cover all paths
in the system under test (SUT). Constraint (1) indicates that the
generated m test cases cover all paths in the SUT. Constraints
(2) and (3) require that each test case covers exactly one path.
Besides, xni

is the nith solution among allN possible solutions.
Constraint (4) shows that m should not exceed the acceptable
maximum number of test cases M . In this model, Constraint (5)
presents the relationship between each generated test case xni

and candidate test case set X . All generated test cases belong
to X , while the ith generated test cases is the nith element in
X . Constraint (6) defines the range of variables in test cases.
The first μ variables of xi present the character strings in the
SUT. Most common characters used in NLP programs can be
presented by ASCII codes in range of [0, 255]. The last (n− μ)
elements ofxi represent other integer variables in the SUT. Their
upper bound and lower bound is set according to their references.
Some paths in NLP programs can only be covered when the first
μ variables equal a specific value.

Two issues are presented in this mathematical model. First,
Constraint (1) shows that different test cases may cover the same
path. However, if the generated test cases cover the paths which
have been covered before, many test cases will be wasted. Sec-
ond, NLP programs usually have character strings as their input
variables, while some paths require specific input variables. It
is very difficult to generate offspring test cases to cover those
paths, given a SUT with an input string consisting of ten ASCII

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 3. Notation of variables in scatter search strategy.

characters. If all characters are in the range of [0, 255], the
probability for a randomly generated test case covering a path
which requires specific character strings, is less than (1/256)10

= 8.28E-25. Therefore, it is essential to design a suitable algo-
rithm to cover remaining uncovered paths instead of the already
covered paths. In addition, the designed algorithm should also
consider generating test cases to cover the paths which require
specific character strings.

III. THE PROPOSED ALGORITHM WITH SCATTER

SEARCH STRATEGY

There are three essential contents in our proposed scatter
search strategy. The first one is the path encoding of the tested
NLP programs. The second is the fitness function, and the third
is the scatter search strategy (SS) for empowering search-based
algorithms (SA-SS).

The variables which are used in the proposed strategy are
shown in Fig. 3. Most variables, except for pop and s, are inter-
mediate variables or default variables based on the test program.
The population sizepopwill be set based on the references, while
the influence of s will be discussed in Sections III-F and IV-B.

A. The Overview of SA-SS

The flowchart of the proposed SA-SS is depicted in Fig. 4,
while the process of SA-SS is also shown as Algorithm 1. There
are three steps for the proposed strategy: 1) initialization of pop-
ulation; 2) updating processes of search-based algorithms; and
3) scatter search strategy to cover remaining uncovered paths.

Fig. 4. The flowchart of SA-SS.

In the first step of SA-SS (line 1-3), all individuals will be ini-
tialized randomly. The value ofxi,k will be set to �lbk + rand×
(ubk − lbk)�, where i = 1, 2, ..., pop, k = 1, 2, ..., n and rand
is a random real number in the range of [0, 1]. All individuals
will be evaluated, while the covered paths and their correspond-
ing test cases will be recorded by the test suite. Then, the process
of proposed SA-SS will enter an iteration of second and third
steps until Constraint (1) is satisfied or m is larger than M (line
4-8). The individuals will be updated based on the update pro-
cesses of different search-based algorithms such as differential
evolution [33]–[36], particle swarm optimization [37], [38] and
competitive swarm optimizer [39] in the second step (line 5-6).
In the third step, all individuals will be optimized by the scatter
search strategy which is shown in Algorithm 3 (line 7). The test
suite of all possible paths will be found at the end of SA-SS.

B. Path Encoding

The path encoding in this paper is based on the definition of
the path in Section II-A. Path encoding is essential for ATCG-
PC because Constraint (1) shows that the generated m test cases
cover all paths in the SUT. The path encoding of the SUT can
be represented by a string of characters.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 5

Assume that the tested NLP program contains ζ vertexes,
where each path is a sequence of running direction of ζ vertexes
based on the Definition 2. Given a vertex in the tested NLP pro-
gram, the paths will enter or skip the vertex. If the path enters the
vertex, the running direction of the vertex can be represented by
a unique nonempty character. The maximum number of running
direction in each vertex is usually less than ten. The characters
from 0 to 9 can express ten different running directions in all
vertexes. If the path skips the vertex, an empty character can be
used to represent that this path skipped this vertex. Therefore,
each path in a SUT can be represented by a character string
which has ζ characters.

If 0 represents the “Yes” direction and 1 indicates the “No”
direction, the paths in Fig. 1 can be represented by a binary string
with two digits. The paths “Yes, No”, “Yes, Yes” and “No, No”
can be represented by “01”, “00” and “1 ”, respectively.

Some essential tasks can be completed after proposing the
path encoding of ATCG-PC for NLP programs. For example,
the similarity between any two paths can be calculated based
on path encoding. If we choose path pj as our optimized target
path, the offspring test case which covers the path with more
similar characters with pj will be allocated to the higher fitness
value. This means that this test case has a higher-probability of
being selected and optimized in the next generation. The detail
calculation of the fitness value is shown in Section III-B.

C. The Fitness Function of SA-SS

Two fitness function strategies are applied in the proposed
SA-SS algorithm.

The first fitness function strategy is the same as [14]. This
strategy helps the algorithm search globally as no objective path
is selected in this strategy. The individuals will be evaluated
based on the fitness function in [14], after they are initialized or
updated based on the processes of search-based algorithms.

The second fitness function strategy will be used in the scatter
search strategy. The fitness value of xi is the sum of all branch
distances [40] between its ptarget and xi in each vertex. Specif-
ically, the fitness value of test case xi is calculated as:

fitness(xi) =

ζ∑

j=1

f(pxi , j) (7)

where ζ is the number of vertex in the tested program, and
f(pxi , j) is the evaluation value of the jth vertex for xi. The
value of f(pxi , j) will be calculated by Equation (8).

f(pxi , j) =

{
1

BD(vj
xi

)+ε
, pxi covers jth vertex of ptarget

0, otherwise
(8)

where BD(vjxi
) is the branch distance between xi and ptarget in

jth vertex of the tested program, ε is a small constant to avoid a
zero denominator. The value of BD(v) [25] in each judgement
vertex is calculated based on Fig. 5.

If the offspring test case xi has the same running direction of
ptarget in the jth vertex, the value of BD(vjxi

) will be zero
and f(pxi , j) will have the highest value 1/ε. Only the test

Fig. 5. The Calculation of branch distance BD(v).

case xi, which covers the ptarget, has the highest fitness value
fitness(xi).

All remaining uncovered paths are selected as the target paths
which need to be covered in the first fitness function strategy.
This strategy helps SA-SS to search globally. The second fitness
strategy selects the single remaining uncovered path ptarget as
the objective. Only the test case which is the closest to ptarget has
the highest fitness value. If the branch distance value BD(vjxi

)
of test case xi is large, the value of f(pxi , j) will be small based
on Equation (8) and Fig. 5. The total fitness value of xi will be
a small value after the calculation with Equation (7).

D. Scatter Search Strategy

As introduced in Section II-B, NLP programs usually have
character strings as their input variables, while some paths need
specific test case to cover. It is difficult for conventional search-
based algorithms to generate test cases to cover those paths.
In this subsection, a scatter search strategy is proposed to em-
power search-based algorithms in solving ATCG-PC for NLP
programs.

Scatter search strategy is designed for covering the paths
which requires specific values. Those paths usually can be found
in NLP and programs in other research areas. As a result, the
proposed scatter search strategy is suitable to empower the per-
formance of search-based algorithms for ATCG-PC, while SS
will have good performance if the test functions contains the
paths which can only be covered if some variables should be
their specific values.

There are two steps in the scatter search strategy. First, a target
path ptarget should be selected for optimized test cases xi. This
process is shown in Algorithm 2. The target path ptarget is se-
lected based on the path encoding string pxi and other remaining
uncovered paths in P r. For a path pr,j , the more the same char-
acters exist between ptarget and pr,j , the higher the probability
that pr,j will be selected. The weight vector R is initialized and
updated in Line 1 to 8 of Algorithm 2. The process in Line 9
shows that the target path ptarget is selected by roulette-wheel
selection based on weight vector R.

The second step is to generate an offspring test casexi to cover
ptarget. This process is shown as Algorithm 3. As indicated from
Line 1 to Line 2, the target path ptargety will be selected for
each optimized test case xi. Then, all dimensions of xi will be
explored from Line 3 to Line 26 of Algorithm 3.

At first, the scatter search distance step will be initialized
based on the upper or lower bound in each solution space di-
mension. Then, the iteration will not stop until ptarget has been

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

covered or step ≤ 0. s offspring test cases will be generated
based on the formulation in Line 9. These s test cases will be
evaluated and compared with the original test case xi. If the
offspring test case has a higher fitness value than xi, xi will be
replaced with this test case. If ptarget has been covered by the
generated test cases, the search process will go back to Line 2
and will cover remaining uncovered paths.

An example of using scatter search strategy is exhibited in
Fig. 6. Given a SUT with three input variables, we assume that
test casexi= (1, 2, 3) needs to be optimized and covers the target
path ptarget. ptarget can only been covered when the character

string is “ABC”. The ASCII code string which corresponds to
ptarget is (65, 66, 67). This means that xi covers ptarget only
when xi equals to (65, 66, 67). The value of control parameter
s for SA-SS is set to be two.

As indicated from Line 3 to Line 4 of Algorithm 3, if k equals
to one, step will be initialized to 127. Then, two offspring test
cases (128, 2, 3) and (255, 2, 3) will be generated based on the
formulation in Line 9. The fitness function among xi, (128, 2,
3) and (255, 2, 3) will be compared. The value of xi will be
replaced by (128, 2, 3) because it has the highest fitness value.
The value of step will be updated to be 63. In the next iteration
of Line 6 to Line 23, two offspring test cases (65, 2, 3) and (191,
2, 3) will be generated. After comparing the fitness value among
xi, (65, 2, 3) and (191, 2, 3), xi will be set to (65, 2, 3). In the
next several iteration of Line 6 to Line 23, step will be updated
to 31, 15, 7, 3, 1 and 0 progressively based on the process of
Line 24. Ten test cases will be generated based on xi and its
corresponding step value. However, both offspring test cases
have a lower fitness value than (65,2,3). Fourteen test cases will
be generated for exploring the first dimension of xi.

The second and third dimension of xi will also be explored
when k equals to two and three. The number of offspring test
cases for exploring the second and third dimension of xi is 26
(two offspring test cases are out of range). With the same oper-
ation in Line 2 to Line 26 of Algorithm 3, xi will be updated
to (65,66,67) and covers target path ptarget, whose correspond-
ing character string is ”ABC”. The number of offspring test
cases for scatter search strategy optimizing xi to cover ptarget

is just 40. This example shows that scatter search strategy can
easily cover one selected path with litte test case consumption.
Many test cases will be saved with the proposed scatter search
strategy.

E. Computational Complexity Analysis

The computational complexity of SA-SS for ATCG-PC
mainly contains the following two parts: 1) the conventional
update processes of search-based algorithms and 2) searching
based on scatter search strategy.

For the first part, it needs O(pop · n) time to initialize the
population. The computational time of different search-based
algorithms are different. For example, the computational time
of differential evolution is O(pop · n). For the second part, the
variables of all dimensions will be explored. The computational
complexity of scatter search strategy is O(pop · n · s · logsB),
where B equals to (ubk − lbk). Considering most search-based
algorithms have less computational time than scatter search
strategy, the totally computational complexity of SA-SS is
O(pop · n · s · logsB).

F. Parameter Analysis

From the computational complexity of SA-SS, we find that
parameter s will influence the computational time of SA-SS in
ATCG-PC. If the value of s is very large or close to the value of
(ubk − lbk), too many test cases will be generated when using

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 7

Fig. 6. An example of optimization based on scatter search strategy.

scatter search strategy. However, the most suitable value of s
needs to be obtained by mathematical proof.

Let B equals to (ubk − lbk) and t equals to �logsB�. The
number of times for evaluating test cases in the iteration from
Line 6 to Line 23 of Algorithm 3 is computed as:

Ea =
sa+1

B
(9)

where a = 1, 2, ..., t. The expectation of total evaluation time is:

t∑

a=1

Ea =
s2

B
× 1− st

1− s
(10)

The value of t is very close to logsB. If t equals to logsB, the
value of

∑
Ea can be calculated as:

t∑

a=1

Ea =
B − 1

B
×
[
(s− 1) +

1

s− 1
+ 2

]
(11)

Therefore,
∑t

a=1 Ea can have its minimal value when s = 2.
We also find that the computational complexity of SA-SS will
have the smallest value when s equals to two.

IV. SIMULATION RESULTS

In this section, three experiments will be conducted. First, the
efficient of scatter search strategy will be evaluated with differ-
ent s values. We will use DE-SS as our comparing algorithm.
Then, DE-SS and DE will be compared based on NLP programs.
Finally, DE-SS will be compared with other state-of-the-art al-
gorithms and their variants based on the scatter search strategy.

A. Experiment Setting

All benchmark programs were selected from a professional
NLP toolkit–the Standford CoreNLP [7]. The CoreNLP simu-
lates the application about natural language processing. More
detailed information about these benchmark programs is pre-
sented in Table I and II. Those programs are some of the
common processes in NLP technique. The maximum number
of paths in these benchmarks is 48, while some paths need
specifical input variables to cover them. As shown in Table II,
each benchmark program has very low minimum path prob-
ability. Besides, the solution space is much larger than the
maximum test case number M . It is difficult for some sim-
ple search-based algorithms such as conventional DE to cover
all paths within the maximum test case number M . Only the
search-based algorithms with strong searching ability can use
few test cases to cover all possible paths in these benchmark
functions.

There are three experiments in this section.
1) The parameter sensitive analysis about s in DE-SS will be

discussed.
2) DE-SS algorithm will be compared with DE [14] based

on the tested NLP programs.
3) DE-SS will be compared with immune genetic algo-

rithm (IGA) [25], artificial bee colony (ABC) [41],
particle swarm optimization (PSO) [30], competitive
swarm optimizer (CSO) [39] and their variants based
on the scatter search strategy (IGA-SS, ABC-SS, PSO-
SS, CSO-SS) and based on the tested NLP programs.
Besides, DE-SS will also be compared with the differ-
ential evolution based on relationship matrix (RP-DE)
[32].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

TABLE I
BENCHMARK PROGRAMS

* Loc, Dim and Path represent the number of lines, input dimensions and paths in each tested program.
* Description introduces the task of test program in CoreNLP toolkit.

TABLE II
COMPLEXITY OF BENCHMARK PROGRAMS

* Solution space represents the number of possible solutions in the benchmark pro-
grams. Minimum path probability denotes the probability for a randomly generated
test case to cover the path with the smallest possible solutions.

TABLE III
PARAMETER SETTING

To investigate the influence of parameter s of SA-SS, the first
experiment will discuss the performance of SA-SS with differ-
ent s values in the DE-SS algorithm. The second experiment
will show that the scatter search strategy empowers DE in au-
tomatically generating test cases based on path coverage. The
third experiment will show the efficiency of the proposed scatter
search strategy for other state-of-the-art algorithms.

We established compared algorithms on the same computa-
tional environment. All our evaluations were performed on a
64-bit Windows Education 10 OS PC with an Intel i5-4590
3.30 GHz processor and 16 GB RAM. All the parameter val-
ues are listed in Table III. The population size was set to 50
[14], [32]. The maximum number of test cases in our proposed
mathematical model was attributed to 3.00E+05 [42]. Each ex-
periment will be independently executed 30 times. The method
of significance testing was based on Wilcoxon rank-sum testing
[43] with α = 0.05. The parameters of compared algorithms
were set per the parameter settings in their references [14], [25],
[30], [39], [41].

TABLE IV
EXPERIMENTAL RESULTS OF DE-SS WITH DIFFERENT s VALUE

B. Parameter Sensitive Analysis in DE-SS

In this subsection, we test the performance of DE-SS algo-
rithm with different s values. More specifically, s equals to 2,
3, 5 and 10, respectively. As introduced in Section III-E, SA-
SS has the smallest computational complexity when parameter
s = 2. The objective of this experiment is to prove this conclu-
sion by the experimental result. We use DE-SS as our selected
search-based algorithm.

The performance of DE-SS with different svalues is presented
in Table IV. DE-SS-k (k = 2, 3, 5 and 10) represents that DE-
SS algorithm sets its s value to k. The best values among these
compared algorithms are noted in bold font. Measures used in
Table IV are introduced as follows.

1) Ave.m (Std.m): the average number (standard deviation)
of test case consumption in test benchmark programs.

2) Rate: the proportion for the compared algorithm covering
all possible paths in 30 trials. The value of Rate equals
to (c/30) ∗ 100%, while c is the number of times for the
compared algorithm covering all possible paths in 30 tri-
als.

3) +/=/−: the numbers of ’+’, ’=’ and ’−’ represent that
DE-SS-2 uses significantly less, equal and more test cases
than DE-SS-3, DE-SS-5 and DE-SS-10 by the Wilcoxon
rand-sum test with α = 0.05.

As indicated in Table IV, DE-SS-2 performs the best and uses
the least average test case consumption when it is compared with
DE-SS-5, DE-SS-10 and DE-SS-100 under 30 trials. DE-SS-2

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 9

TABLE V
EXPERIMENTAL RESULTS OF DE-SS WITH DIFFERENTIAL EVOLUTION

uses significantly less test cases than compared algorithms in
all benchmark programs, while its standard deviation is also the
smallest. Even in program No. 1 which has 48 paths, the Ave.m
of DE-SS-3 is eight times more the Ave.m of DE-SS-2. DE-SS-
5, DE-SS-10 also uses several orders of magnitude more Ave.m
than DE-SS-2.

If SA-SS is used to solve ATCG-PC for NLP programs, the
s value should be set to 2. The significant testing analysis in
Table IV shows that DE-SS-2 uses significantly less test cases
than DE-SS-3, DE-SS-5 and DE-SS-10 in all benchmark pro-
grams. It also seems that the average test case consumption of
SA-SS, such as DE-SS, will increase when the value of s in-
creases. The Rate value may also decrease comparing with s
increasing. The experimental result corresponds to our proof in
Section III-F that SA-SS has the smallest computational com-
plexity when parameter s equals to two.

C. Comparing DE-SS With DE

In this subsection, DE-SS will be compared with DE based
on the benchmark functions. The value of s is set to two, ac-
cording to our explanation in Section III-E and the experimental
result in Section IV-B. The experimental results are shown in
Table V and Fig. 7. Table V indicates the Ave.m (Std.m) and
Rate value when DE-SS and DE are compared on the benchmark
functions. Fig. 7 is presented to show the convergence speed of
DE-SS and DE on the benchmark functions. Most measures are
the same in Section IV-B, while ”+/=/-” represents that DE-SS
uses significantly less, equal or more test cases than differential
evolution.

As shown in Table V, DE-SS outperforms DE in all bench-
mark functions. DE cannot cover all paths once, it is within 30
trials in tested programs No. 1, No. 3, No. 4 and No. 6. However,
DE-SS can cover all paths in all 30 trials, while the maximum
average test case consumptionm is less than 1.00E+04. In tested
program No. 5, DE covers all path within 30 trials, while DE-SS
uses significantly less test cases than DE. The proposed scatter
search strategy not only saves many test case consumptions, but
also greatly increases the probability of DE covering all possible
paths.

The scatter search strategy quickly explodes all test case di-
mensions and significantly increases the convergence speed of
DE. After exploding all dimensions, SS helps to cover all paths
with a small number of test cases. Fig. 7 shows an example of
the covered paths achieved over the generated test cases by DE-
SS and DE in NLP programs. From Fig. 7, we can observe that

Fig. 7. The number of covered path over generated test cases in NLP programs.

within 5.00E+04 test cases, DE-SS is particularly efficient com-
pared to DE. DE cannot cover all paths within 5.00E+04 test
cases, while DE-SS can cover all paths very quickly, especially
in test programs of Fig. 7(a), (c) and (f).

In summary, we can conclude that the scatter search strategy
empowers the DE and increases its convergence speed in solving
ATCG-PC for NLP programs. In other words, the scatter search
strategy helps DE cover the remaining uncovered paths with less
test cases.

D. Comparing DE-SS With Other State-of-the-Art Algorithms

In this subsection, the performance of our proposed DE-SS al-
gorithm will be compared with the performance of other state-of-
the-art algorithms and their variants based on the scatter search
strategy. Besides, DE-SS will also be compared with RP-DE.
The parameter s of SS is set to 2. Table VI shows the Ave.m
(Std.m), Rate values and running time of DE-SS and other state-
of-the-art algorithms on the benchmark functions. Time repre-
sents the average running time of the compared algorithm in 30

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

TABLE VI
EXPERIMENTAL RESULTS OF DE-SS WITH OTHER STATE-OF-THE-ART ALGORITHMS

trials. Fig. 8 presents the box plots of test case consumption be-
tween DE-SS and the compared state-of-the-art algorithms. The
best values among these compared algorithms are noted in bold
font. Most measures are the same in Section IV-B, while symbols
”+”, ”=” and ”−” represent that DE-SS’s performance is sta-
tistically better than, equivalent to, or worse than the compared
algorithms.

As shown in Table VI, DE-SS empowers other state-of-the-art
algorithms such as IGA [25], ABC [41], PSO [30] and CSO [39]
in automatically generating test cases based on path coverage.
DE-SS uses significantly less test cases and running time to cover
all possible paths in benchmark functions than the compared
state-of-the-art-algorithms.

The scatter search strategy helps these state-of-the-art algo-
rithms achieve better performance in ATCG-PC for NLP pro-
grams. IGA-SS uses several orders of magnitude less test cases
than IGA in all benchmark functions. Furthermore, the run-
ning time of IGA-SS is significantly less than IGA. The re-
sult shows that SS will not increase too much the running time
of IGA. Similarly, ABC-SS performs statistically better than

ABC in all benchmark functions. PSO-SS uses significantly less
test cases than PSO in all benchmark functions, while CSO-
SS achieves better performance than CSO in all benchmark
functions.

The proposed scatter search strategy helps the compared state-
of-the-art algorithms to cover all possible paths. Full path cov-
erage can significantly strengthen the process of identification
software bugs [14]. As shown in Table VI, the compared state-
of-the-art algorithms usually has very low Rate value. The com-
pared algorithms even achieved a 0-rate at some benchmark
functions. The reason is that the compared algorithms cannot
find test cases for all paths within the limited test case con-
sumption. According to the definition of Rate, the value of Rate
will be zero if the compared algorithm cannot achieve 100%
path coverage at once in 30 trials. Even if the compared algo-
rithm can cover 99% paths in each trial, its Rate value is still
zero.

When we compare DE-SS with the variants of the state-of-
the-art algorithms (GA-SS, ABC-SS and PSO-SS) based on the
scatter search strategy, we find that DE-SS performs the best

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 11

Fig. 8. The box plots on benchmark functions for algorithms based on scatter search strategy.

when the number of paths in the tested functions are larger than
ten, while CSO-SS has the best performance in the other condi-
tion. To depict the performance of the compared algorithm, the
box plots of DE-SS, IGA-SS, ABC-SS, PSO-SS and CSO-SS
on benchmark programs are presented in Fig. 8. DE-SS uses the
least number of test cases in program No. 1, while IGA-SS and
CSO-SS generates very few test cases in program No.2. The per-
formance of DE-SS, ABS-SS, PSO-SS and CSO-SS cannot be
compared in programs No. 3, 4,5 and 6. If we focus on the value
of ”+/=/−” between DE-SS and CSO-SS in Table VI (b), we
find that these two algorithms indicate similar performance in
benchmark functions. CSO-SS uses less test cases than DE-SS
in program No. 2, 4 and 5, while DE-SS outperforms CSO-SS in
programs No. 1, 3 and 6. Programs No. 1, No. 3 and No. 6 have
more than ten paths while the programs No. 2, No. 4 and No. 5
only have three or four paths. We consider that DE-SS is more
suitable for tested NLP programs which contain more than ten
paths, while CSO-SS is more suitable in tested NLP programs
with less than ten paths.

The experiment results for comparing DE-SS and RP-DE is
shown in Table VII. RP-DE records the dependent relationship
between test cases and paths by a test-case-path relationship
matrix. The offspring test cases will be generated based on the
collected matrix. Table VII shows that DE-SS uses significantly
less test cases for covering all possible paths in all benchmark
programs. RP-DE achieves the 100% Rate value in all bench-
mark programs, however, DE-SS uses less test case consumption
and achieves the same result. Furthermore, the running time of

TABLE VII
EXPERIMENTAL RESULTS OF DE-SS WITH RP-DE

RP-DE is much larger than DE-SS in all benchmark programs.
The results show that scatter search strategy for ATCG-PC of
NLP programs is better than the updating strategy based on test-
case-path relationship matrix.

From the experimental results in Table VI and Fig. 8, we
can conclude that the proposed scatter search strategy empow-
ers other search-based algorithms such as IGA [25], ABC [41],
PSO [30] and CSO [39] in solving ATCG-PC for NLP programs.
Many other search-based algorithms can be applied to the pro-
posed framework. In addition, DE-SS and CSO-SS are the two
most competitive algorithms among all compared search-based
algorithms.

V. CONCLUSION

In this paper, a framework based on the scatter search strategy
is proposed for ATCG-PC of NLP programs. Some paths can
only be covered with some specific input variables, while the
proposed scatter search strategy can explore each input variable
dimension with small test cases and cover those paths. In

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

addition, we have proven that the scatter search strategy will
have the best performance when parameter s equals to two. The
experimental results indicate that the scatter search strategy
increases the convergence speed of search-based algorithms and
empower their performance in ATCG-PC. Among all compared
algorithms, DE-SS and CSO-SS perform the best. Specifically,
DE-SS is more suitable for ATCG-PC of NLP programs when
tested programs have more than ten paths, while CSO-SS
performs better in the tested programs with less than ten paths.

In our future work, we will further improve the performance
of search-based algorithm in solving ATCG-PC for more real-
world software. We will extend our algorithm in the tested pro-
grams with large number of variables or paths by reducing di-
mensions or using a grouping strategy.

REFERENCES

[1] E. Cambria and B. White, “Jumping NLP curves: A review of natural
language processing research [review article],” IEEE Comput. Intell. Mag.,
vol. 9, no. 2, pp. 48–57, May 2014.

[2] G. G. Chowdhury, “Natural language processing,” Annu. Rev. Inf. Sci.
Technol., vol. 37, no. 1, pp. 51–89, 2003.

[3] F. Thung, R. J. Oentaryo, D. Lo, and Y. Tian, “WebAPIRec: Recommend-
ing web APIs to software projects via personalized ranking,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 1, no. 3, pp. 145–156, Jun. 2017.

[4] K. Zheng, W. Q. Yan, and P. Nand, “Video dynamics detection using deep
neural networks,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 2, no. 3,
pp. 224–234, Jun. 2018.

[5] X. Li, Y. Rao, H. Xie, X. Liu, T.-L. Wong, and F. L. Wang, “Social emotion
classification based on noise-aware training,” Data Knowl. Eng., 2017, doi:
10.1016/j.datak.2017.07.008.

[6] A. Argal, S. Gupta, A. Modi, P. Pandey, S. Shim, and C. Choo, “Intelligent
travel chatbot for predictive recommendation in echo platform,” in Proc.
IEEE 8th Annu. Comput. Commun. Workshop Conf., 2018, pp. 176–183.

[7] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. Mcclosky, “The Stanford Corenlp natural language processing toolkit,”
in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst. Demon-
strations, 2014, pp. 55–60.

[8] X. Chen et al., “Microsoft coco captions: Data collection and evaluation
server,” 2015, arXiv preprint arXiv:1504.00325.

[9] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer
open-domain questions,” in Proc. 55th Annu. Meeting Assoc. Comput.
Linguistics, Vancouver, Canada, Jul. 2017, vol. 1, pp. 1870–1879, doi:
10.18653/v1/P17-1171.

[10] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case gen-
eration as a many-objective optimisation problem with dynamic selec-
tion of the targets,” IEEE Trans. Softw. Eng., vol. 44, no. 2, pp. 122–158,
Feb. 2018.

[11] P. S. Douglas et al., “Outcomes of anatomical versus functional testing for
coronary artery disease,” New Engl. J. Med., vol. 372, no. 14, pp. 1291–
1300, 2015.

[12] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Trans. Softw. Eng., vol. 33, no. 4, pp. 225–
237, Apr. 2007.

[13] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption,” in Proc. IEEE/ACM 39th
Int. Conf. Softw. Eng., 2017, pp. 597–608.

[14] H. Huang, F. Liu, X. Zhuo, and Z. Hao, “Differential evolution based on
self-adaptive fitness function for automated test case generation,” IEEE
Comput. Intell. Mag., vol. 12, no. 2, pp. 46–55, May 2017.

[15] J. R. Horgan, S. London, and M. R. Lyu, “Achieving software quality
with testing coverage measures,” Comput., vol. 27, no. 9, pp. 60–69,
1994.

[16] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans. Softw.
Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[17] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework for
generating object-oriented unit tests using symbolic execution,” in Tools
and Algorithms for the Construction and Analysis of Systems, vol. 3440.
Berlin, Germany: Springer, 2005, pp. 365–381.

[18] X. Yao, D. Gong, and W. Wang, “Test data generation for multiple paths
based on local evolution,” Chin. J. Electron., vol. 24, no. 1, pp. 46–51,
2015.

[19] D. J. Mala, V. Mohan, and M. Kamalapriya, “Automated software test
optimisation framework—an artificial bee colony optimisation-based ap-
proach,” Softw. IET, vol. 4, no. 5, pp. 334–348, 2010.

[20] Y. Xiang, Y. Zhou, Z. Zheng, and M. Li, “Configuring software product
lines by combining many-objective optimization and sat solvers,” ACM
Trans. Softw. Eng. Methodol., vol. 26, no. 4, 2018, Art. no. 14.

[21] S. Law and I. Bate, “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in Proc. 28th Eur. Conf. Real-Time
Syst., 2016, pp. 189–199.

[22] S. Anand et al., “An orchestrated survey of methodologies for automated
software test case generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001,
2013.

[23] J. C. King, “A new approach to program testing,” ACM SIGPLAN Notices,
vol. 10, no. 6, pp. 228–233, 1975.

[24] M. Harman, “Software engineering meets evolutionary computation,”
Computer, vol. 44, no. 10, pp. 31–39, 2011.

[25] A. Bouchachia, “An immune genetic algorithm for software test data gen-
eration,” in Proc. Int. Conf. Hybrid Intell. Syst., 2007, pp. 84–89.

[26] L. Wang, Z. Yue, and H. Hou, “Genetic algorithms and its application
in software test data generation,” J. Beijing Univ. Aeronaut. Astronaut.,
vol. 2, pp. 617–620, 1998.

[27] Y. Suresh and S. K. Rath, “A genetic algorithm based approach for test
data generation in basis path testing,” Int. J. Soft Comput. Softw. Eng.,
vol. 3, no. 3, 2014, doi: 10.7321/jscse.v3.n3.49.

[28] N. Zhang, B. Wu, and X. Bao, “Automatic generation of test cases based on
multi-population genetic algorithm,” Int. J. Multimedia Ubiquitous Eng.,
vol. 10, no. 6, pp. 113–122, 2015.

[29] D. J. Mala, M. Kamalapriya, R. Shobana, and V. Mohan, “A non-
pheromone based intelligent swarm optimization technique in software
test suite optimization,” in Proc. Int. Conf. Intell. Agent Multi-Agent Syst.,
2009, pp. 1–5.

[30] M. R. Girgis, A. S. Ghiduk, and E. H. Abdelkawy, “Automatic data flow
test paths generation using the genetical swarm optimization technique,”
Int. J. Comput. Appl., vol. 116, no. 22, pp. 25–33, 2015.

[31] N. Nayak and D. P. Mohapatra, “Automatic test data generation for data
flow testing using particle swarm optimization,” in Proc. Int. Conf. Con-
temporary Comput., 2010, pp. 1–12.

[32] H. Han, F. Liu, Z. Yang, and Z. Hao, “Automated test case generation
based on differential evolution with relationship matrix for IFOGSIM
toolkit,” IEEE Trans. Ind. Inform., vol. 14, no. 11, pp. 5005–5016, Nov.
2018.

[33] J. J. Liang, B.-Y. Qu, X. Mao, B. Niu, and D. Wang, “Differential evolution
based on fitness Euclidean-distance ratio for multimodal optimization,”
Neurocomputing, vol. 137, pp. 252–260, 2014.

[34] W. Gong, Z. Cai, and D. Liang, “Adaptive ranking mutation operator based
differential evolution for constrained optimization,” IEEE Trans. Cybern.,
vol. 45, no. 4, pp. 716–727, Apr. 2015.

[35] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Berlin, Germany: Springer,
2006.

[36] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting
control parameters in differential evolution: A comparative study on nu-
merical benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6,
pp. 646–657, Dec. 2006.

[37] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine
Learning. Berlin, Germany: Springer, 2011, pp. 760–766.

[38] C. Yue, B. Qu, and J. Liang, “A multi-objective particle swarm opti-
mizer using ring topology for solving multimodal multi-objective prob-
lems,” IEEE Trans. Evol. Comput., vol. 22, no. 5, pp. 805–817, Oct.
2018.

[39] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204, Feb.
2015.

[40] J. C. Lin and P. L. Yeh, “Automatic test data generation for path testing
using gas,” Inf. Sci., vol. 131, no. 14, pp. 47–64, 2001.

[41] D. J. Mala, V. Mohan, and M. Kamalapriya, “Automated software test
optimisation framework—An artificial bee colony optimisation-based ap-
proach,” Softw. IET, vol. 4, no. 5, pp. 334–348, 2010.

[42] N. Mansour and M. Salame, “Data generation for path testing,” Softw.
Qual. J., vol. 12, no. 2, pp. 121–136, 2004.

[43] R. G. Steel and J. H. Torrie, Principle and Procedures of Statistic: A
Biometrical Approach. New York, NY, USA: McGraw-Hill, 1980.

https://dx.doi.org/10.1016/j.datak.2017.07.008
https://dx.doi.org/10.18653/v1/P17-1171
https://dx.doi.org/10.7321/jscse.v3.n3.49

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: SEARCH-BASED ALGORITHM WITH SCATTER SEARCH STRATEGY FOR AUTOMATED TEST CASE GENERATION OF NLP TOOLKIT 13

Fangqing Liu received the B.E. degree in software
engineering, in 2016, from South China University
of Technology, Guangzhou, China, where he is cur-
rently working toward the Ph.D. degree in software
engineering with the School of Software Engineer-
ing. His current research interests include automated
software test case generation and evolutionary com-
putation for software testing.

Han Huang received the B.Man. degree in infor-
mation management and information system from
the School of Mathematics, South China Univer-
sity of Technology (SCUT), Guangzhou, China, in
2003, and the Ph.D. degree in computer science from
SCUT, Guangzhou, China, in 2008. He is currently
a Professor with the School of Software Engineer-
ing, SCUT. His research interests include theoretical
foundation and application of evolutionary computa-
tion and stochastic heuristics. He is a Senior Member
of CCF.

Zhongming Yang received the Information Engi-
neering degree from the Guangdong University of
Technology, Guangzhou, China, in 1999, and the
master’s degree in software engineering from the
Huazhong University of Science Technology, Wuhan,
China, in 2008. He is currently an Associate Pro-
fessor with the College of Computer Engineering
Technical, Guangdong Institute of Science and Tech-
nology, Guangzhou, China. His research interests in-
clude intelligent algorithm, software engineering, and
computer network.

Zhifeng Hao received the B.Sc. degree in mathemat-
ics from Sun Yatsen University, Guangzhou, China,
in 1990, and the Ph.D. degree in mathematics from
Nanjing University, Nanjing, China, in 1995. He is
currently a Professor with the School of Computer,
Guangdong University of Technology, Guangzhou,
China, and the School of Mathematics and Big Date,
Foshan University, Foshan, China. His current re-
search interests include various aspects of algebra,
machine learning, data mining, and evolutionary al-
gorithms.

Jiangping Wang received the master’s degree in sys-
tem engineering from Xiamen University, Xiamen,
China, in 1995, and the MBA degree from Zhong-
shan University, Guangzhou, China, in 2002. He
is currently with Beiming Software Company Ltd.,
which is one of top 100 Software Enterprises in China.
He is in charge of R&D of Smart City Solutions. He
is an expert of software development, and cloud, and
dig data.

