
High-Order Soliton Solution of Landau–Lifshitz Equation

By Dongfen Bian, Boling Guo, and Liming Ling

The Landau–Lifshitz equation is analyzed via the inverse scattering method.
First, we give the well-posedness theory for Landau–Lifshitz equation with the
frame of inverse scattering method. The generalized Darboux transformation is
rigorous considered in the frame of inverse scattering transformation. Finally,
we give the high-order soliton solution formula of Landau–Lifshitz equation
and vortex filament equation.

1. Introduction

The Landau–Lifshitz (L–L) equation [32]

�St = �S × �Sxx , �S(x, t) = (Sx , Sy, Sz)T ∈ R3, �S · �S = 1, (1)

describes nonlinear spin waves in an isotropic ferromagnet, where the symbols
T and × mean the transpose and vector product respectively, �S(x, t) is
magnetization vector. Setting �S = �γx and integrating (1) with respect to x , we
can obtain another relative physical model—vortex filament equation (VFE) or
localization induction equation

�γt = �γx × �γxx , �γ = (γ x , γ y, γ z)T , (2)

which is the simplest model of dynamics of Eulerian vortex filament, where
space vector �γ (x, t) represents the vortex filament, x is the arclength parameter,
t is time. The model (2) was first derived by Da Rios, a student of Levi-Civita,
in 1906 [37], and rediscovered by Arms and Hama in 1965 [4]. The model (2)
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also can be used to describe the flow of superfluids [39], to investigate the
turbulent fluid [9, 44] and high-temperature superconductors [12].

It is well known that the inverse scattering method [1, 5, 23] is a powerful
method to solve the cauchy problem of nonlinear integrable partial differential
equation. In the past 40 years, the inverse scattering method had made great
development in the field of mathematical physics. Initially the inverse scattering
transformation utilizes Marchenko integral equation to reconstruct the potential
function [23]. Afterwards Shabat used Riemann–Hilbert problem (RHP) to
reconstruct the inverse scattering method [41]. In the last century, nineties,
the RHP method had made important progress. For instance, the Deift–Zhou
method [15–17] and initial-boundary problem [20, 21].

In the case of KdV equation, the poles of discrete spectrum must be
simple, because the Lax operator is self-adjoint. However, to the focusing
nonlinear Schrödinger (NLS) equations, the corresponding Lax operator is no
longer self-adjoint. Thus it allows high-order pole, which corresponds to the
high-order soliton. The scattering data are demanded for simple pole in the
classical paper of Beals and Coifman [5]. Several years later, this restraint was
removed by [40] and [49], respectively. However, they didn’t give the exact
soliton formula. The exact high-order soliton solution for NLS equation was
given in [22] by the dressing method. The general soliton formula for NLS-type
equation had been constructed by Shchesnovich and Yang [42, 43]. And, the
high-order transmission coefficient by the Marchenko equation method was
considered by Cohen and Kappeler [11]. Recently Aktosun et al. consider the
high-order soliton solution of NLS equation with inverse scattering method
by Gelfand-Levitan-Marchenko equation [3]. The exact second-order soliton
solution of L–L equation was obtained by bilinear method in 1990 [6]. Besides
the high-order pole, another interesting problem is the infinite pole and infinite
soliton. To the best of our knowledge, the concept of infinite soliton was
first provided by Zhou [49]. The explicit infinite soliton solution for KdV
equation was rigorous and established by Gesztesy et al. [24]. The infinite
soliton solution of NLS equation is obtained by Kamvissis [31]. Besides the
high-order pole and infinite pole, the spectral singularity is also an obstacle to
the inverse scattering method. This problem was first solved by Zhou [49] via
the deformed RHP.

As well as the inverse scattering method, the Darboux–Bäcklund
transformation is another powerful method to derive the multisoliton and other
interesting physical solution. There are several methods to derive the Darboux
transformation: for instance, state space method [25, 35, 38], the loop group
method [46], and gauge transformation [26,34]. The relation between different
versions of Darboux–Bäcklund transformation had been indicated by Ciéliński
[10]. Generally speaking, the Darboux transformation is merely a way to obtain
the soliton solution in soliton theory. However, it has other utilization also.
Deift and Trubowitz combined Darboux transformation with inverse scattering
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method for the Schrödinger spectral problem [14]. In this work, we would like
to inherit their idea. The Darboux transformation can be used to deal with the
initial boundary problem either [13, 21]. Besides, the Darboux transformation
can be used for the analysis of orbitally stability property of soliton as well [36].

Finally, we recalled some results of L–L Equation (1). In 1977, Takhtajan
used inverse scattering method to derive the two-soliton solution and infinite
sets of constants for the first time [45]. The gauge equivalence between
NLS equation and L–L equation was obtained by Zakharov and Takhtajan
[47] in the frame of inverse scattering transformation. Indeed, this gauge
transformation is another version of Hasimoto transformation essentially. The
generalized Hasimoto transformation was rigorously considered with tools of
differential geometry in [8]. Recently, Calini et al. considered the spectral
stability property for soliton and periodical solution of VFE [7].

In this work, first we prove the global well-posedness for L–L equation with
initial data in space H 2,1(R) without discrete scattering data via RHP method.
Second, we handle generalized Darboux transformation [27, 28] in a rigorous
way with the frame of inverse scattering method. Via this method, the global
solution and the general soliton solution formula of L–L equation is obtained.
What need alludes is, for the evolution of discrete scattering data, we use the
evolution of eigenfunction replaced with the proportionality coefficient. In this
way, we can readily deal with the evolution of high-order spectrum.

This paper is organized as following. In Section 2, we give the scattering and
inverse scattering analysis for L–L equation. To establish the well-posedness
theory, we combine the gauge transformation and inverse scattering method.
In Section 3, we give the Darboux transformation in the frame of inverse
scattering. In Section 4, the explicit general soliton formula of L–L equation is
constructed. The final section includes some discussions and remarks.

2. The scattering, inverse scattering, and well-posedness theory

It is well known that the KdV, MKdV, sine-Gordan, and NLS can be obtained
from the AKNS hierarchy [1] by some symmetry reduction. The symmetry
reduction is called the reality condition [46], which is also the solvable
condition for the RHP. Thus in this section, we first recall the symmetry
condition. Then we give the scattering, inverse scattering analysis, and gauge
transformation theory to L–L equation.

The focusing NLS

iqt + qxx + 2|q|2q = 0 (3)

is the second flow of su(2) (the fixed-point set of the involution σ (y) = −y†,
where superscript “†” represents hermite conjugation) hierarchy, and turns out
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to be a compatibility condition for the following linear system

�x = U (λ)�, U (λ) ≡ −iλσ3 + Q, (4)

�t = V (λ)�, V (λ) ≡ −2iλ2σ3 + 2λQ − i(Q2 + Qx )σ3,

here Q = ( 0 q(x, t)
−q∗(x, t) 0 ), superscript “*” represents complex conjugation, and σ3

is standard Pauli matrix. It is readily seen that the matrices U (λ) and V (λ)
possess the reality relation U †(λ∗) = −U (λ) and V †(λ∗) = −V (λ).

The L–L Equation (1) can be rewritten as

St = i

2
[S, Sxx ], S ∈ AO(2), [A, B] ≡ AB − BA, (5)

where

AO(2) ≡ {S|S2 = I, S = S†, and trS = 0}, S =
(

Sz S−

S+ −Sz

)
,

S± = Sx∓iSy,

is also located in the su(2) hierarchy. Equation (5) can be rewritten as the
compatibility condition for the following system

�x = −iλS�, (6)

�t = W (λ)�, W (λ) ≡ −2iλ2S + λSSx .

It is ready to verify the reality condition W †(λ∗) = −W (λ). The coefficient
matrix of system (4) and (6) possess the same reality condition. Besides this, a
gauge transformation can be related between these two linear systems, this
fact was found by Zakharov and Takhtajan [47].

The aim in this section is to solve the cauchy problem of (5) with initial data

S(x, 0) = S0(x), |S0,x | ∈ H 1,1(R), (7)

where | · | stands the matrix or vector norm |A| = (trA†A)1/2, H 1,1(R) is the
weighted Sobolev space

H 1,1(R) = { f | f, fx , x f ∈ L2(R)},
and boundary condition

lim
|x |→∞

S = σ3. (8)

Notation: We denote eadσ3 · ≡ eσ3 · e−σ3 .

2.1. Scattering problem for spectral problem

The spectral problem for L–L Equation (5) is the first equation of (6). If we
directly analyze the spectral problem (6), similar reason as the derivative NLS
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equation [33], it is not convenient to analyze the asymptotical behavior of
analytical solution. Thus we use the gauge transformation. First, we establish
the following lemma:

LEMMA 1. If S ∈ AO(2), then S can be decomposed into S = gσ3g†

uniquely, where g satisfies g†g = I , g†
x g + σ3g†

x gσ3 = 0, limx→−∞ g(x) = I.

Proof: We use the linear algebra method to construct the matrix g directly.
Because matrix S is a unitary matrix, it can be diagonalizable. Using simple
algebra, we can see that the eigenvalue of S is ±1. Then S can be decomposed
into

S = g0 exp(iθσ3)σ3 exp(−iθσ3)g†
0, (9)

where θ is an undetermined real function and

g0 =

⎛⎜⎜⎜⎜⎝
√

1 + Sz

2
− S−√

2(1 + Sz)

S+√
2(1 + Sz)

√
1 + Sz

2

⎞⎟⎟⎟⎟⎠ .

To satisfy the condition g†
x g + σ3g†

x gσ3 = 0, we can adjust the function θ .
Directly calculating, we have[

e−iθσ3 g†
0

]
x
g0eiθσ3 = e−iθadσ3 (g†

0,x g0) − iθxσ3,

and

g†
0,x g0 =

⎛⎜⎜⎜⎜⎝
Sz

x Sz + S−
x S+

2(1 + Sz)

1

2

(
S−

x − S−Sz
x

1 + Sz

)

−1

2

(
S+

x − S+Sz
x

1 + Sz

)
Sz

x Sz + S+
x S−

2(1 + Sz)

⎞⎟⎟⎟⎟⎠ .

If we demand

iθx = S−
x S+ + Sz

x Sz

2(1 + Sz)
, that is, θx = Sx Sy

x − Sx
x Sy

2(1 + Sz)
,

then g satisfies the condition g†
x g + σ3g†

x gσ3 = 0. Finally, to satisfy the
condition limx→−∞ g(x) = I , we take

θ (x) =
∫ x

−∞

Sx Sy
x − Sx

x Sy

2(1 + Sz)
ds.

This completes the proof. �
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Furthermore, we have

g†
x g≡ Q, Q =

(
0 q

−q∗ 0

)
,

q = 1

2

(
S−

x − S−Sz
x

1 + Sz

)
exp

(
i
∫ x

−∞

Sx
x Sy − Sx Sy

x

1 + Sz
ds

)
,

and 4|q|2 = (Sx
x )2 + (Sy

x )2 + (Sz
x )2. Via the relation S = gσ3g†, we have

Sx = g[σ3, Q]g†, and Sxx = g([σ3, Qx ] + [[σ3, Q], Q])g†. It follows that
4(|qx |2 + 4|q|4) = (Sx

xx )2 + (Sy
xx )2 + (Sz

xx )2. Then ones obtain q(x) ∈ H 1,1(R).
In addition, because lim|x |→∞ S = σ3, we have

lim
x→+∞ g† = g∞ = diag(a∗(0), a(0)), a(0) = eiθ(+∞).

As a byproduct, we can obtain a conservation law. Indeed, we can see that
lim|x |→∞ g0 = I . It follows that limx→+∞ g = exp[iθ (+∞)σ3], that is,∫ +∞

−∞

Sx
x Sy − Sx Sy

x

1 + Sz
ds = 2arg(a(0)). (10)

Via the gauge transformation � = g†�, we have

�x = (−iλσ3 + Q)�, (11)

which is a standard AKNS spectral problem. Thus it is convenient to make the
scattering analysis. To write spectral problem (11) as the integral equation, we
make the following transformation �±(x, t) = m(±)(x, t)e−iλxσ3 . Associated
with asymptotical behavior, we have

m(±)(x ; λ) = I +
∫ x

±∞
e−i(x−y)λadσ3 Q(y)m(±)dy ≡ I + K Q,λ,±m(±).

The properties of the above Jost solutions can be summarized as following:

PROPOSITION 1 ([2]). Suppose Q ∈ L1(R), then (m(−)
1 , m(+)

2 ) is analytic in the

upper half plane {λ ∈ C|Im(λ) > 0}, and (m(+)
1 , m(−)

2 ) is analytic in the lower
half plane {λ ∈ C|Im(λ) < 0}. And, they are all continuous on the real line.

Proof: First we prove

m(−)
1 (x ; λ) =

(
1

0

)
+
∫ x

−∞

(
1 0

0 e2i(x−y)λ

)(
0 q(y)

−q∗(y) 0

)
m(−)

1 (y; λ)dy

(12)
has a unique analytic solution in the upper half plane. It is readily obtained
that the estimation from (12),

|m(−)
1 (x ; λ)| ≤ 1 +

∫ x

−∞
|Q||m(−)

1 (y; λ)|dy. (13)
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To prove the solvability of (12), we iterate the series as following:

m(−)
1 (x ; λ) = g0 +

+∞∑
n=1

gn(x ; λ), (14)

where

g0 =
(

1

0

)
, gk+1 =

∫ x

−∞

(
0 q(y)

−q∗(y)e2iλ(x−y) 0

)
gk(y)dy.

We can see that

|g1(x ; λ)| ≤
∫ x

−∞
|Q(y)|dy,

it follows that

|gk(x ; λ)| ≤ 1

k!

(∫ x

−∞
|Q(y)|dy

)k

From the above estimate, the series (14) converges uniformly in the upper half
plane, thus the solution m(−)

1 is analytical in the upper half plane and can be
continuous extended to the real line. In addition, we have an estimation

|m(−)
1 (x ; λ)| ≤ exp

(∫ x

−∞
|Q(y)|dy

)
.

Via the inequality (13) and the Growall inequality, the uniqueness is proved.
We have the parallel results for m(+)

1 , m(±)
2 . This completes the proof. �

COROLLARY 1. If |Sx | ∈ L1(R), then the Jost solution �± for spectral problem
(6) can be obtained as �− = gm(−) exp(−iλxσ3), �+ = gm(+)g∞ exp(−iλxσ3).
Let n(−) = gm(−) and n(+) = gm(+)g∞, then n(±) possess the analytic and
continuity property as m(±). Finally, we have g† = m(−)(x, t ; λ = 0).

Proof: The first two arguments are direct results from above propositions.
The last argument is valid for the existence and uniqueness of ODE. �

In the following, we analyze the scattering matrix. By the Abel formula, we
have det(m(±)) = det(n(±)) = 1. Thus we can define a matrix function A(λ) for
real λ with det(A(λ)) = 1 and

m(+) = m(−)e−iλxadσ3 A(λ), A(λ) =
⎛⎝a(λ) −b∗(λ)

b(λ) a∗(λ)

⎞⎠ , (15)

where

a(λ) = det
(
m(+)

1 , m(−)
2

) = 1 − ∫
R

q(y)m(+)
21 dy = 1 − ∫

R
q∗(y)m(−)

12 dy,

b(λ) = e−2ixλ det(m(−)
1 , m(+)

1 ) = ∫
R

q∗(y)e−2iλym(+)
11 dy = ∫

R
q∗(y)e−2iλym(−)

11 dy.
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It follows that A(0) = g−1
∞ and

n(+) = n(−)e−iλxadσ3 A1(λ), (16)

where n(+) = gm(+)g∞, n(−) = gm(−) and A1(λ) ≡ A(λ)g∞. In summary, we
describe the above process with the following arrow diagram

(�, S(x, 0))
g→ (�, Q(x, 0))

scattering→ (
A(λ), A(0) = g−1

∞
)
.

According to the above propositions, we can obtain that A(λ) − 1 ∈ H k(dλ)
[50]. It follows that we can define a solution m normalized as x → +∞:

m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
m+ = (

m(−)
1 , m(+)

2

) ( (a∗(λ∗))−1 0

0 1

)
, Im(λ) > 0,

m− = (
m(+)

1 , m(−)
2

) (1 0

0 a−1

)
, Im(λ) < 0.

(17)

Then we could have the following decomposition:

m+ = m−e−iλxadσ3v, λ ∈ R, (18)

where m± = m(+)e−iλxadσ3v±, v ≡ v−1
− v+,

v+ =
(

1 0

r (λ) 1

)
, v− =

(
1 −r∗(λ)

0 1

)
,

v =
(

1 + |r (λ)|2 r∗(λ)

r (λ) 1

)
, r = − b(λ)

a∗(λ)
.

To complete the RHP, we need the boundary condition [5]

m → I as λ → ∞. (19)

Thus Equations (17)–(19) constitute the normalized RHP (see [18]) with
the constraint r (0) = 0. The similar manner, we define m̃+ = m+[a∗(λ)]σ3 ,
and m̃− = m−[a(λ)]−σ3 . The solution m̃ is normalized as x → −∞. And,
m̃+ = m̃−e−iλxσ3 ṽ(λ), ṽ(λ) = aσ3v[a∗]σ3 . Accordingly, define

n =

⎧⎪⎨⎪⎩
n+ = (n(−)

1 , n(+)
2 )diag(1/a∗

1 (λ), 1), Im(λ) > 0,

n− = (n(−)
1 , n(+)

2 )diag(1, 1/a1(λ)), Im(λ) < 0,

a1(λ) = a(λ)

a(0)
.

Then we have the RH problem for n±

n+ = n−e−iλxadσ3v1, n± = gm±g∞, (20)
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where

v1 =
(

1 + |r1| r∗
1

r1 1

)
, r1 = −a∗

1 (λ)

b1(λ)
, b1(λ) = b(λ)

a(0)
.

However, in this case, when λ → ∞, n → gg∞. Thus this RHP is not
a normalized RHP (see [18]). For convenience, we merely consider the
normalized RHP (17)–(19).

When m has no spectral singularities, the scattering data can be represented
as {

m, e−iλxadσ3v(λ), λ ∈ R; e−iλxadσ3vλ′ ∈ Vλ′, λ′ ∈ P
}
, (21)

where {vλ′, λ ∈ P} is the discrete part of the scattering data [50]. In the next
section, we would like to deal with the discrete spectrum by generalized
Darboux transformation. Thus one can set P = ∅. In this way, it is convenient
to consider argument contour. The Zhou’s method [49,50] deals with the poles
by adding small circle centered at the poles. The spectral singularity is solved
by reconstructing a new RHP on � = R ∪ S∞. However, when the poles are
located in the inside of S∞. It is not convenient to define the new RHP. If we
deal with poles or high-order poles by the generalized Darboux transformation,
that problem will avoid automatically.

To describe the general case, we first consider the following equation:(
m(+)

1 , m(−)
2

) = I +
∫ x

x0

e−i(x−y)λadσ3 Q(y)(m(+)
1 (y), m(−)

2 (y))dy, (22)

where x0 = −∞ for the (1, 2) and (2, 2) entries, x0 = +∞ for the (1, 1) and
(2, 1) entries. For the entry (2, 2) of (22), using (15) we can obtain

(
m(+)

1 , m(−)
2

) =
(

1 0

0 a(λ)

)
+
∫ x

x ′
0

e−i(x−y)λadσ3 Q(y)
(
m(+)

1 (y), m(−)
2 (y)

)
dy,

where x ′
0 = +∞ for the (1, 1), (2, 1), and (2, 2) entries, x ′

0 = −∞ for the
(1, 2) entry. It follows that

(
m(+)

1 , m(−)
2

) (1 0

0 a(λ)−1

)
= I +

∫ x

x ′
0

e−i(x−y)λadσ3 Q(y)(m(+)
1 (y), m(−)

2 (y))

×
(

1 0

0 a(λ)−1

)
dy.

Similar, we can obtain

(m(−)
1 , m(+)

2 )

(
a∗(λ∗)−1 0

0 1

)
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= I +
∫ x

−x ′
0

e−i(x−y)λadσ3 Q(y)(m(+)
1 (y), m(−)

2 (y))

(
a∗(λ∗)−1 0

0 1

)
dy.

Finally, we have

m(x, λ) = I +
∫ x

−x ′
0sgn(Imλ)

e−i(x−y)λadσ3 Q(y)m(y, λ)dy, (23)

which is the Fredholm integral equation. Hence by the analytical Fredholm
theorem, it directly induces that solution m is meromorphic in C\R.

The following results were similar as [50], thus here we merely give the
main step and results.

Let x0 ∈ R be such that |q|L1([x0,+∞)) < 1. Using (23), we have a bounded
solution m(0) normalized as x → +∞ for the potential Qχ(x0,+∞). This solution
does not have poles and spectral singularities. On the other hand define a
solution

m(1) = I −
∫ x0

x
e−i(x−y)λadσ3 Q(y)m(1)(y, λ)dy,

and another solution for Q(x)

m(2)(x, λ) = m(1)(x, λ)e−i(x−x0)λadσ3m(0)(x0, λ).

This solution is consistent with m(0) at x = x0, because of the existence
and uniqueness property of ODE. It follows that m(2) is normalized as
x → +∞. Because m(1) is entire in λ and m(0)(x, ·) ∈ AH k(C\R), then
m(2)(x, ·) − I ∈ AH k(C\(R ∪ SR,r )), where AH k(
) denotes the space of
functions analytic on 
 with H k boundary values, SR,r = {|λ| = R, |λ| = r}
for some R > r > 0.

Because a approaches 1 as λ → ∞ and a(0) as λ → 0, they have no zero
near λ = ∞ and λ = 0. Hence we use m near λ = ∞ and λ = 0, and m(2)

elsewhere. Set � = R ∪ SR,r , where 
+ = 
1 ∪ 
4 and 
− = 
2 ∪ 
3,


1 ={λ|Im(λ) > 0, |λ| > R, or |λ| < r}, 
4 ={λ|Im(λ) < 0, r < |λ| < R},
and


2 ={λ|Im(λ) < 0, |λ| > R, or |λ| < r}, 
3 ={λ|Im(λ) > 0, r < |λ| < R}.
Define m = m on 
1 ∪ 
2, m = m(2) on 
3 ∪ 
4. It follows that
e−ixλadσ3v = m−1

− m+. Then we have the following theorem which can be
established as the work of [50]

THEOREM 1 (Zhou, [50]).

(C1) The matrix v admits a triangular factorization v = v−1
− v+, where

v± − I ∈ H k(∂
±), v+|∂
1 − I (v+|∂
4 − I ) is strictly lower (upper)
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triangular, and v−|∂
1 − I (v−|∂
3 − I ) is strictly upper (lower)
triangular.

(C2) There exists an auxiliary scattering matrix s such that s−1
− vs+ = ṽ−1

− ṽ+
for some invertible matrices ṽ± ∈ I + H k(∂
±) with ṽ± having opposite
triangularities of v±.

(C3) The RH problem (e−ixλadσ3v, �) is solvable for all x ∈ �.

Because the symmetry property Q† = −Q, then

m(x ; λ)m†(x ; λ∗) = I, m(0)(x ; λ)m(0)†(x ; λ∗) = I

it follows that

m(x ; λ)m†(x ; λ∗) = I.

Using this and the fact that the contour � is Schwarz-reflection-invariant with
the orientation, we have the symmetry condition of v is

v(λ) = v†(λ∗). (24)

This symmetry condition keeps the solvability of RHP [48].
Therefore we have established the scattering map

S : S0,x �→ v(λ), H 1,1 → H 1,1
0 ≡ H 1,1 ∩ {v(0) = I }. (25)

Following [18,50], one can establish the following theorem. Because the proof
is similar as [18, 50], we omit the explicit proof.

THEOREM 2. If S0,x ∈ H 1,1, then v± − I ∈ H 1,1
0 .

2.2. Inverse scattering

Suppose the scattering data are given, we can resolve the potential function Q(x).
For convenience, denote wx = e−iλxadσ3w. Indeed, the RHP (vx , � = R ∪ SR,r )
is equivalent to the integral equation problem

μ = I + Cvx±μ, Cvx±μ = C+
� μ(vx+ − I ) + C−

� μ(I − vx−),

where vx± = e−iλxadσ3v±,

C� f = 1

2π i

∫
�

f (ζ )

ζ − λ
dζ,

λ /∈ �, μ = m(+). The symmetry condition for RHP (vx , � = R ∪ SR,r )
guarantees the existence and uniqueness of RHP [48].

Once this integral equation is solved, m can be constructed through

m = I + C�μe−ixλadσ3 (v+ − v−) (26)
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and

Q = iadσ3m∞,1 = −adσ3

π

∫
�

μ(vx+ − vx−)dλ,

where we denote m = I + m∞,1/λ + o(1/λ) as λ → ∞. From simple
calculation, we have the RHP

M+ = M−e−iλxσ3v(λ), M± = m±,x + iλ[σ3, m±] − Qm±.

Together with M± ∈ ∂C(L2) [18], we have M± = 0.

To prove the well-posedness of L–L Equation (5), we construct the gauge
transformation

g(x) = m(−)(x ; λ = 0)† = diag(a(0), a∗(0))m(+)(x ; λ = 0)†. (27)

It is readily seen that g(x) is an Hermite matrix, that is, gg† = I . And, the
boundary condition is

lim
x→−∞ g(x) = I, and lim

x→+∞ g(x) = diag(a(0), a∗(0)). (28)

PROPOSITION 2 ([47], ZAKHROV–TAKTAJAN). If q(x) belongs to H 1,1(R)
and satisfies the boundary conditions lim|x |→∞ q(x) = 0 and scattering data
restraint r (0) = 0, g(x) satisfies Equations (27) and (28), then the function
S(x) = g(x)σ3g†(x) satisfies the boundary condition (8), and |Sx (x)| ∈ H 1,1(R),
�± satisfies the spectral problem �x = −iλS�.

If we expand n in the neighborhood of 0, that is,

n = gmv−1(0) = I + n1λ + o(λ2),

then we can resolve

S = σ3 + in1,x . (29)

Via this resolvent formula, one can obtain a compact formula. Indeed, mv−1(0)
satisfies the equation

(mv−1(0))x = −iλ[σ3, mv−1(0)] + Qmv−1(0).

Then we can expand mv−1(0) in the neighborhood of 0:

mv−1(0) = g−1 + λm1(x, t) + o(λ2),

wherem1,x = −i[σ3, g−1] + Qm1.Togetherwithn1 = gm1,wehave S = gσ3g†.
Similaras[18,50], togetherwiththefact4|q|2 = �S2

x and4(|qx |2 + 4|q|4) = �S2
xx

and Sobolev embedding H 1(R) ↪→ L∞(R), we can establish the following
theorems:

THEOREM 3 ([50], ZHOU). Under the conditions

� r ∈ H k(�), r (0) = 0
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� W�(1 + |r |2) = 0, W stands for the winding-number constraint,
and RHP (vx , �) is solvable for all λ ∈ �, then we have |Sx | ∈ L2((1 + x2)dx).

THEOREM 4. In addition, if v± − I, ṽ± − I ∈ H 1,1
0 , then |Sx | ∈ H 1,1.

Thus the above theorems establish the local existence and uniqueness
theorem for L–L Equation (5) in H 1,1 without discrete scattering data. If the
initial data |Sx (x, 0)| ∈ H 1,1 are without discrete scattering data, then the
solution S(x, t) is existent and unique in the local part of t = 0.

2.3. Time evolution and global well-posedness without discrete scattering data

Up to now, we proved L–L Equation (5) is in global existence and unique in
the space H 1,1(R). To obtain the time evolution for scattering data, we use the
time evolution part of Lax pair (4) or (6). However, the gauge transformation
between two linear systems had been established in Ref. [47]. Thus, we merely
need to analyze one of them. We still analyze the time evolution part of
Lax pair (4). We know NLS Equation (3) is equivalent with the following
compatibility condition

Ut − Vx + [U, V ] = 0.

Differential spectral problem (4) with t , together with compatibility condition,
we have

(�±
t − V �±)x = U (λ)(�±

t − V �±).

For arbitrary t ∈ [0, ∞), by asymptotical analysis we can obtain

m(±)
t = −2iλ2[σ3, m(±)] + [2λQ − i(Q2 + Qx )σ3]m(±). (30)

PROPOSITION 3. The evolution of the continuous scattering data is given by
the following equation

At = −2iλ2[σ3, A].

Proof: Suppose we have

m(+)e−iλxσ3 = m(−)e−iλxσ3 A(λ).

By the Lebesgue dominated convergence theorem, it follows that

A(λ) = lim
x→−∞ eiλxadσ3m(+).

It is readily seen that

eiλxadσ3m(+)
t = −2iλ2[σ3, eiλxadσ3m(+)] + eiλxadσ3 [(2λQ − i(Q2 + Qx )σ3)m(+)]

Taking the limit x → −∞ both sides, we obtain

At = −2iλ2[σ3, A],
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which completes the proof. �

Thus the RHP (18) becomes

m+ = m−e−iλ(x+2λt)adσ3v(λ). (31)

And, r (λ, t) = r (λ, 0)e4iλ2t ∈ H 1,1
0 (R). Thus scattering data persists the

solvability property. It follows that the global existence and uniqueness of L–L
equation (5) without discrete scattering data are proved.

In the following, we consider the discrete scattering data evolution. First,
we rewrite Equation (30) with the following equations:

(�+
1 e−2iλ2t )t = V (λ)(�+

1 e−2iλ2t ), (32)

(�−
2 e2iλ2t )t = V (λ)(�−

2 e2iλ2t ).

We know the discrete spectrum λi corresponds L2 eigenfunction

�+
1 (x, 0; λi ) = γi�

−
2 (x, 0; λi ), λi ∈ C−. (33)

It follows that

�+
1 (x, t ; λi )e

−2iλ2
i t = γi�

−
2 (x, t ; λi )e

2iλ2
i t .

If the discrete spectrum is multiple algebraic spectrum, we have

1

j!

(
d

dλ

) j

[�+
1 (x, 0; λi )] = γi

j!

(
d

dλ

) j

[�−
2 (x, 0; λi )] (34)

+
j∑

k=1

βi,k

( j − k)!

(
d

dλ

) j−k

[�−
2 (x, 0; λi )],

j = 1, 2, . . . , ri .

First, we can obtain the following equation:

1

j!

[
d j

dλ j

(
�+

1 e−2iλ2t
)]

t

= 1

j!

j∑
l=0

Cl
j

(
dl

dλl
V (λ)

)(
d j−l

dλ j−l

(
�+

1 e−2iλ2t
))

,

(35)
where Cl

j = j!
l!( j−l)! . On the other hand, we have

γi

j!

[
d j

dλ j

(
�−

2 e2iλ2t
)]

t

= γi

j!

j∑
l=0

Cl
j

(
dl

dλl
V (λ)

)(
d j−l

dλ j−l

(
�−

2 e2iλ2t
))

,

βi,k

( j − k)!

[
d j−k

dλ j−k

(
�−

2 e2iλ2t
)]

t
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= βi,k

( j − k)!

j−k∑
l=0

Cl
j−k

(
dl

dλl
V (λ)

)(
d j−k−l

dλ j−k−l

(
�−

2 e2iλ2t
))

,

j = 1, 2, . . . , ri , it follows that

[
γi

j!

d j

dλ j

(
�−

2 e2iλ2t
)

+
j∑

k=0

βi,k

( j − k)!

d j−k

dλ j−k

(
�−

2 e2iλ2t
)]

t

(36)

= V (λ)

[
γi

j!

d j

dλ j

(
�−

2 e2iλ2t
)

+
j∑

k=1

βi,k

( j − k)!

d j−k

dλ j−k

(
�−

2 e2iλ2t
)]

+
j∑

l=0

1

l!

(
dl

dλl
V (λ)

)[
γi

( j − l)!

d j−l

dλ j−l

(
�−

2 e2iλ2t
)

+
j−l∑
k=1

βi,k

( j − k − l)!

d j−l−k

dλ j−k−l

(
�−

2 e2iλ2t
)]

.

By mathematical induction and existence and uniqueness of ordinary differential
equation, we can obtain the time evolution relation

[
1

j!

d j

dλ j

(
�+

1 e−2iλ2t
)]

=
[

γi

j!

d j

dλ j

(
�−

2 e2iλ2t
)
+

j∑
k=0

βi,k

( j − k)!

d j−k

dλ j−k

(
�−

2 e2iλ2t
)]

.

(37)

3. The discrete spectrum and Darboux transformation

In this section, we use the Darboux transformation method to delete or add
the discrete spectrum of L–L spectral problem (6). To derive the Darboux
transformation for L–L Equation (5), we first give the Darboux transformation
of NLS (3).

3.1. Darboux transformation of NLS

The Darboux transformation for NLS is well known for us, we can readily
establish the following theorem:
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THEOREM 5 ([10, 27, 46]). Assume we have N distinct parameters λ1, λ2,
. . ., λN ∈ C− and the corresponding special solution matrices |y1〉, |y2〉, . . .,
|yN 〉, then the Darboux matrix can be represented as

TN = I − [ |y1〉, |y2〉, . . . , |yN 〉 ] M−1(λ − S)−1

⎡⎢⎢⎢⎢⎢⎣
〈y1|
〈y2|

...

〈yN |

⎤⎥⎥⎥⎥⎥⎦ ,

where C− represents the lower half complex plane

M =
( 〈yi |y j 〉

λ j − λ∗
i

)
1≤i≤N ,1≤ j≤N

,

S = diag(λ1, λ2, . . . , λN ),

and |yi 〉 = (m(+)
1 (λi ), m(−)

2 (λi ))e−iλi xσ3Ci , Ci = (1, −γi )T is a nonzero column
vector.

LEMMA 2. The matrix

M =
( 〈yi |y j 〉

λ j − λ∗
i

)
N×N

is a nonsingular.

Proof: Similar as Ref. [30]. �
Indeed the essence of Darboux transformation is a kind of special gauge

transformation. An important step is to find the seed solution for original spectral
problem. Suppose we have a fundamental solution �(λ) = (�1(λ), �1(λ)) of a
spectral problem (11), the high-order Darboux transformation can be construct
as following arrow diagram:

(�1, �1)
T0[1]

�1(λ1) ∈ Ker(T0[1])
→(

�
[1]
1 , �

[1]
1

) T1[1]

�1[1](λ1) ∈ Ker(T1[1])
→ · · ·

where �
[1]
1 = T0[1]�1, �

[1]
1 = [(T0[1]�1)λ + β1T0[1]�1]|λ=λ1,β1 is a complex

constants. We can see that the parameters β1 is not convenient to calculate the
exact solution. Indeed, we can absorb the parameter β1 into �1. We need the
following lemma:

LEMMA 3. Assume �1 is a seed solution for (11) at λ = λ1, and T is the
Darboux transformation by �1, �1 is another linear dependent solution with
�1, then T �1 is uniquely determined module a nozero constant.
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Proof: The Darboux matrix is

T = I + λ∗
1 − λ1

λ − λ∗
1

�1�
†
1

�
†
1�1

,

directly calculating, it follows that

T �1 = det(�1, �1)

�
†
1�1

(
0 1

−1 0

)
�∗

1.

However, by the Abel formula, det(�1, �1)x = 0. This completes the proof. �
By the above lemma, we can see that the new seed function �1[1] does not

depend with exact form of �1. Thus we can choose function �1 arbitrarily.
Thus, �1[1] can be rewritten as

�
[1]
1 = lim

ξ→0

T1[1](λ1 + ξ )(�1(λ1 + ξ ) + ξβ1�1(λ1 + ξ ))

ξ
.

Generally, we can obtain

�
[N−1]
1 = lim

ξ→0

TN−1[1] · · · T1[1](λ1 + ξ )

(
�1(λ1 + ξ ) +

N−1∑
i=1

ξ iβi�1(λ1 + ξ )

)
ξ N−1

.

REMARK 1. In Refs. [27, 28, 30], we use the relation[
exp

(
N−1∑
i=1

δiξ
i

)]
[N−1]

= 1 +
N−1∑
i=1

ξ iβi ,

where the symbol [N−1] represents the Taylor expansion truncate from ξ N−1.
And, δi can be determined by βi through elementary Schur polynomial. When
the spectral is branch spectral, ones need to make small modification to the
above polynomial [27, 28, 30].

THEOREM 6. Generalized Darboux matrix

TN =
s∏

i=1

T [i], N =
s∑

i=1

ri ,

where

T [i] = Tri [i]Tri −1[i] · · · T0[i], Tj [i] =
(

I + λ∗
i − λi

λ − λ∗
i

P ( j)
i

)
, j = 1, 2, · · · , ri ,

T0[i] = T [0] = I, P ( j)
i = |yi, j 〉〈yi, j |

〈yi, j |yi, j 〉 ,
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|yi, j 〉 = lim
ξ→0

(Tj−1[i] · · · T0[i])(λi + ξ )
∏i−1

m=1 T [m](λi + ξ )

ξ j−1(
|yi 〉 −

j−1∑
k=1

ξ kβi,k |xi 〉
)

,

and βi,0 = 0, |yi 〉 = �+
1 (λi + ξ ) − γi�

−
2 (λi + ξ ), |xi 〉 = �−

2 (λi + ξ ). The
function �+

1 [N ](λi ) is L2(R) eigenfunction for spectral problem L� = λ�,
where L = iσ3(∂x − Q[N ]), �+

1 [N ] = TN�+
1 , and

Q[N ] = Q + i

⎡⎣σ3,

s∑
i=1

ri∑
j=1

(λ∗
i − λi )P ( j)

i

⎤⎦ .

And, the eigenfunctions satisfy the following relation:

1

j!

d j

dλ j
(�+

1 [N ])|λ=λi = γi

j!

d j

dλ j
(�−

2 [N ])|λ=λi

+
j∑

k=0

βi,k

( j − k)!

d j−k

dλ j−k
(�−

2 [N ])|λ=λi , j = 1, 2, . . . , ri ,

where �−
2 [N ] = TN�−

2 . By above relations, its imply that d j

dλ j (�
+
1 [N ])|λ=λi

are the generalized eigenfunctions and belong to space L2(R).

Proof: The generalized Darboux transformation is constructed in Ref. [27].
In the following, we derive the properties of eigenfunction. First, we expand
the following function:

TN (λi + ξ )

(
|yi 〉 −

j−1∑
k=0

ξ kβi,k |xi 〉
)

=
+∞∑
k=0

Qkξ
k,

where

Qk = 1

k!

dk

dλk
(�+

1 [N ])|λ=λi − γi

k!

dk

dλk
(�−

2 [N ])|λ=λi

−
k∑

l=0

βi,l

(k − l)!

dk−l

dλk−l
(�−

2 [N ])|λ=λi ,

and k = 0, 1, . . . , ri − 1. By the construction of generalized Darboux
transformation, we can obtain Qk = 0.

Because �+
1 [N ](λi ) → 0 exponentially as x → +∞ and �−

2 [N ](λi ) → 0
exponentially as x → −∞, we can deduce that �+

1 [N ](λi ) ∈ L2(R). This
completes the proof. �
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THEOREM 7 ([43], LEMMA 4). The above Darboux matrix can be represented
as

TN = I − [
Y1, Y2, . . . , Ys

]
M−1 D

⎡⎢⎢⎢⎢⎢⎢⎣
Y †

1

Y †
2

...

Y †
s

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

Yi =
[

|zi 〉, |zi 〉(1), . . .
1

(ri − 1)!
|zi 〉(ri −1)

]
ξ=0

, D = diag(D1, D2, . . . , Ds),

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

λ − λ∗
i

0 · · · 0

1

(λ − λ∗
i )2

1

λ − λ∗
i

· · · 0

...
...

...
...

1

(λ − λ∗
i )ri

1

(λ − λ∗
i )ri −1

· · · 1

λ − λ∗
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M =

⎡⎢⎢⎢⎢⎢⎣
M [11] M [12] · · · M [1s]

M [21] M [22] · · · M [2s]

...
...

...
...

M [s1] M [s2] · · · M [ss]

⎤⎥⎥⎥⎥⎥⎦ ,

and symbol (i) means the derivative with respect to ξ ,

|zi (ξ )〉 = |yi (λi + ξ )〉 +
ri −1∑
k=1

ξ kβi,k |xi (λi + ξ )〉,

M [i j] = (
M [i j]

m,n

)
ri ×r j

,

M [i j]
m,n = 1

(m − 1)!(n − 1)!

∂n−1

∂ξ n−1

∂m−1

∂(ξ ∗)m−1

〈zi |z j 〉
λ j − λ∗

i + ξ − ξ ∗ .

Proof: Directly calculating, we can obtain

(TN − I )lk = −det(M1)

det(M)
, M1 =

[
M Y †

k

Yl 0

]
,
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where Yl means the l-th row of [ Y1, Y2, . . . , Ys ]. Taking the limits with respect to
ξ → 0 from above formula, we can obtain the results. �

The above theorem we obtained through generalized Darboux transformation
is consistent with the Lemma 4 in Ref. [43]. In the following, we consider the
relation between Darboux transformation and scattering data.

PROPOSITION 4. The Darboux matrix TN transforms the scattering data
{a(λ), b(λ)} into

{ã(λ), b̃(λ); λi , γ (λi ), βi,k},
where

ã(λ) = a(λ)
s∏

i=1

(
λ − λi

λ − λ∗
i

)ri

, (38)

b̃(λi ) = b(λi ).

Proof: Direct calculating, we obtain

a(λ) = det
(
m(+)

1 , m(−)
2

)
,

b(λ) = det(m(−)
1 e−iλx , m(+)

1 e−iλx ).

It follows that the Darboux transformation

TN

(
m(+)

1 , m(−)
2

) = (m̃1
(+), m̃2

(−))

gives the first equation of (38). By symmetry relation, we have

m(+)
2 =

[
0 1

−1 0

]
(m(+)

1 (λ∗))∗, m(−)
1 = −

[
0 1

−1 0

]
(m(−)

2 (λ∗))∗.

It follows that

T̂N (m(−)
1 , m(+)

2 ) = (m̃1
(−), m̃2

(+)), T̂N =
[

0 −1

1 0

]
T ∗

N (λ∗)

[
0 1

−1 0

]
.

By Theorem (6), we know that TN is determined by spectral parameters λi , γi ,
βi,k . Furthermore, we have

TN →

⎛⎜⎜⎝
1 0

0
s∏

i=1

(
λ − λi

λ − λ∗
i

)ri

⎞⎟⎟⎠ , T̂N →

⎛⎜⎜⎝
s∏

i=1

(
λ − λ∗

i

λ − λi

)ri

0

0 1

⎞⎟⎟⎠ , x → +∞,

TN →

⎛⎜⎜⎝
s∏

i=1

(
λ − λi

λ − λ∗
i

)ri

0

0 1

⎞⎟⎟⎠ , T̂N →

⎛⎜⎜⎝
1 0

0
s∏

i=1

(
λ − λ∗

i

λ − λi

)ri

⎞⎟⎟⎠ , x → −∞.
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It follows that

b̃(λ) = lim
x→+∞ det(T̂N m(−)

1 e−iλx , TN m(+)
1 e−iλx ) = b(λ). �

The above proposition can be considered as adding the zeros of the scattering
data a(λ). The inverse process is to delete zeros of scattering data a(λ), which
can be established in Refs. [19, 29].

3.2. Darboux transformation of L–L equation

The Darboux transformation for NLS was constructed earlier in detail.
On the other hand, as we know, the Darboux transformation is a special
gauge transformation. Based on these ideas, we could construct the Darboux
transformation for L–L equation by combining the two gauge transformation
mentioned above.

To give the Darboux transformation with a linear factional transformation
or a simple element L−(GL(2, C)), we use the loop group representation [46].
If matrix functions �± satisfy⎧⎪⎨⎪⎩

�±
x = (−iλσ3 + Q)�±,

lim
x→±∞ �± = exp(−iλσ3x),

then such �± will be called the trivialization of potential function Q at ±∞.
Similarly, if matrix functions �± satisfy⎧⎪⎨⎪⎩

�±
x = −iλS�±,

lim
x→±∞ �± = exp(−iλσ3x),

then such �± will be called the trivialization of function S at ±∞.

THEOREM 8. Let S satisfies the boundary condition (8), and �± are the
trivialization of S at ±∞, respectively, and π is the projection of C2. For each
x ∈ R, set

�1 = (�+
1 (λ1), �−

2 (λ1)) (a(0), −γ (λ1))T , λ1 ∈ C−,

T̂ = I + ζ ∗
1 − ζ1

ζ − ζ ∗
1

π, π = �1�
†
1

�
†
1�1

, ζ = λ−1.

Then

Ŝ = D1(S + 2Im(ζ1)πx )D−1
1 , D1 = diag

(
λ1

λ∗
1

, 1

)
(39)
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is the global solution for L–L equation defined on R2, and

�̂+ = D1(T̂ �+
1 , σ T̂ ∗(λ∗)σ−1�+

2 )D−1
1 ,

�̂− = D1(σ T̂ ∗(λ∗)σ−1�−
1 , T̂ �−

2 )D−1
1

are the trivialization of Ŝ at +∞ and −∞, respectively, where

σ =
(

0 −1

1 0

)
.

Proof: Suppose the analytical matrix �− = (�+
1 , �−

2 ), �+ = (�−
1 , �+

2 ).
The elementary Darboux transformation for spectral problem (11) is

T− = I + λ∗
1 − λ1

λ − λ∗
1

�1�
†
1

�
†
1�1

, T+ = σ T ∗
−(λ∗)σ−1,

�1 = (�+
1 (λ1), �−

2 (λ1))(1, −γ (λ1))T .

By the above Darboux transformation, we can obtain �̂− = (�̂+
1 , �̂−

2 ) = T−�−,
�̂+ = (�̂−

1 , �̂+
2 ) = T+�+. It follows that �̂+ = (�̂+

1 , �̂+
2 ) and �̂− = (�̂−

1 , �̂−
2 )

are the trivialization of

Q̂ = Q + i(λ∗
1 − λ1)

[
σ3,

�1�
†
1

�
†
1�1

]
,

at ±∞, respectively.
On the other hand, by gauge transformation, we obtain that

�− = g�−, �+ = g�+diag(a∗(0), a(0)),

are the trivialization of S at ±∞, respectively, where g = [�−]†|λ=0. And,

�̂− = ĝ�̂−, �̂+ = ĝ�̂+diag(̂a∗(0), â(0)),

are the trivialization of Ŝ at ±∞, respectively, where ĝ = [�̂−]†|λ=0 and
â(0) = λ1/λ

∗
1a(0), the function Ŝ we will be given in the following. To

obtain the relation between Ŝ and S, we use the following analytical
function:

�− = (�+
1 , �−

2 ), �̂− = (�̂+
1 , �̂−

2 ).

It follows that

ĝ = diag

(
a(0)

λ1

λ∗
1

, 1

) [
�+

1 |λ=0, �
−
2 |λ=0

]†
(T †

−|λ=0)

= D1g(T †
−|λ=0).
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Together with the above equation, we have

�̂− = ĝ
[
�̂+

1 (λ)̂a∗(0), �̂−
2 (λ)

]
= D1g

(
T †

−|λ=0
)
T−g†�− D−1

1

= D1T̂ �− D−1
1 ,

where

�1 = g(�+
1 , �−

2 )(1, −γ (λ1))T

= (�+
1 (λ1), �−

2 (λ1)) (a(0), −γ (λ1))T .

Then we can obtain

Ŝ = D1
(
S + i(ζ ∗

1 − ζ1)πx

)
D−1

1 .

Then, �̂± are the trivialization of Ŝ at ±∞, respectively. Finally, the estimation

|π | ≤ 1

implies that the solutions are global for (x, t) ∈ R2. �

We define the matrix T̂ as the Darboux matrix of L–L Equation (5).
In the following, we consider the N-fold Darboux transformation for L–L
Equation (5). We give the following theorem:

LEMMA 4. The N-fold Darboux transformation for L–L equation (5) can be
represented as

T̂N = I − [ |y1〉, |y2〉,. . . , |yN 〉 ] M−1(ζ − D)−1

⎡⎢⎢⎢⎢⎢⎣
〈y1|
〈y2|

...

〈yN |

⎤⎥⎥⎥⎥⎥⎦ ,

where |yi 〉 = (�+
1 (λi ), �

−
2 (λi )))(a(0), −γi )T sarespecialsolutionsofLaxpair (6)

at λ = λi , γi ∈ C,

M =
( 〈yi |y j 〉

ζ j − ζ ∗
i

)
1≤i≤N ,1≤ j≤N

,

and

D = diag
(
ζ ∗

1 , ζ ∗
2 , . . . , ζ ∗

N

)
.
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Proof: The N -fold Darboux transformation can be constructed by N times
iteration of Darboux transformation, that is,

T̂N = T̂ [N ]T̂ [N − 1] . . . T̂ [1],

where

T̂ [i] = I + ζ ∗
i − ζi

ζ − ζ ∗
i

�i [i − 1]�i [i − 1]†

�i [i − 1]†�i [i − 1]
,

�i [i − 1] = T [i − 1]T [i − 2] . . . T [1]|yi 〉|ζ=ζi .

Because of the residue of T̂N , we can write the above Darboux transformation
T̂N with the following linear fractional transformation:

T̂N = I +
N∑

i=1

Pi

ζ − ζ ∗
i

,

where Pi s are 2 × 2 matrices with rank equals 1. Thus, we can suppose
Pi = |xi 〉〈yi |. Because Pi s are uniquely determined by the iteration, thus if
〈yi |s are determined, then |xi 〉s are uniquely determined.

On the other hand, we know

T̂ −1 = T̂ †(ζ ∗) = I +
N∑

i=1

P†
i

ζ − ζi
.

By the residue relation of T̂N T̂ −1
N = I , we have

|y j 〉 +
N∑

i=1

|xi 〉 〈y j |yi 〉
ζ j − ζ ∗

i

= 0, i, j = 1, 2, . . . , N .

In addition, because Rank(T̂N (ζi )) = 1, we can suppose

Ker(T̂N (ζi )) = |yi 〉 = (�+
1 (λi ), �

−
2 (λi )))(a(0), −γi )

T .

By simple linear algebra, we can obtain the N-fold Darboux transformation for
L–L equation. This completes the proof. �

In the following, we consider the high-order algebraic poles for the scattering
problem. Similar as the above section, we can obtain the following theorem:

THEOREM 9. The generalized Darboux matrix for L–L Equation (5) can be
represented as

T̂N = I − Y M−1 DY †,

where

Y = [
Y1, Y2, . . . , Ys

]
,

Yi =
[

|zi 〉, |zi 〉(1), . . . ,
1

(ri − 1)!
|zi 〉(ri −1)

]
|ξ=0,
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D = diag(D1, D2, . . . , Ds),

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λλ∗
i

λ − λ∗
i

0 · · · 0

−λ2

(λ − λ∗
i )2

−λλ∗
i

λ − λ∗
i

· · · 0

...
...

...
...

−λ2

(λ − λ∗
i )ri

−λ2

(λ − λ∗
i )ri −1

· · · −λλ∗
i

λ − λ∗
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M =

⎡⎢⎢⎢⎢⎢⎣
M [11] M [12] · · · M [1s]

M [21] M [22] · · · M [2s]

...
...

...
...

M [s1] M [s2] · · · M [ss]

⎤⎥⎥⎥⎥⎥⎦ ,

and

|zi (ξ )〉 = |yi (λi + ξ )〉 +
ri −1∑
k=1

ξ kβi,k |xi (λi + ξ )〉,

M [i j] = (
M [i j]

m,n

)
ri ×r j

,

M [i j]
m,n = 1

(m − 1)!(n − 1)!

∂n−1

∂ξ n−1

∂m−1

∂(ξ ∗)m−1

〈zi (ξ ∗)|z j (ξ )〉
(λ j + ξ )−1 − (λ∗

i + ξ ∗)−1
,

and symbol (i) means the derivative with respect to ξ , the transformations
between the field functions are

(S[N ])kl = Skl + i

(
Akl

det(M)

)
x

, Akl = det

[
M Y [l]†

Y [k] 0

]
, (40)

where |xi 〉 is the linear dependent solution with |yi 〉, Y [i] denotes the i-th row
of the matrix Y and the subscript kl represents the k-th row and l-th column
element.

By simple linear algebra, we can obtain the following compact soliton
formula:

(S[N ])kl = Skl + i

(
det(Mkl)

det(M)

)
x

, Mkl = M − Y [l]†Y [k]. (41)
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REMARK 2. Integrating the above expression,∫
(S[N ])kldx =

∫
Skldx + i

(
det(Mkl)

det(M)
− 1

)
, Mkl = M − Y [l]†Y [k].

(42)
it follows that the soliton formula for VFE (2)

γ x [N ] = Re

(∫
(S[N ])12dx

)
,

γ y[N ] = Im

(∫
(S[N ])12dx

)
,

γ z[N ] =
∫

(S[N ])11dx .

Finally, we give the transformation between (�−, S) and (�−[N ], Ŝ[N ])

�− → �−[N ] = DN T̂N�− D−1
N , (43)

S → Ŝ[N ] = DN S[N ]D−1
N ,

where (�−, S) represents wave function and potential function without discrete
scattering data, (�−[N ], Ŝ[N ]) represents wave function and potential function
possess discrete scattering data and

DN = diag

(
s∏

i=1

(
λi

λ∗
i

)ri

, 1

)
.

Because DN is a trivial gauge transformation, we omit it in the process of
obtaining exact solution.

And, the Darboux matrix T̂N is determined uniqueness by the parameters
λi , γi , and βi,k and is nonsingular for (x, t) ∈ R2. By the transformation (43),
if S is globally existent and unique, it follows that DN S[N ]D−1

N is globally
existent and unique. Thus the global existence and uniqueness of the L–L
Equation (5) is proved.

THEOREM 10. If

S0 ∈
{

S|Sx ∈ H 1,1, S ∈ AO(2), lim
|x |→∞

S = σ3

}
,

then the solutions of L–L Equation (5) are globally existent and unique.

4. High-order soliton solution

In this section, we consider the high-order soliton solution for L–L Equation (5).
The mixed rational and exponential function solution (or high-order soliton)
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is obtained. Besides, we give the explicit expression for high-order soliton
solution of L–L Equation (5) and VFE (2).

For the classical integrable L–L Equation (1), the single soliton or the
N-soliton and the interaction of N-soliton have been studied in detail by
the Riemann–Hilbert method [19]. In our case, we derive the Darboux
transformation of L–L Equation (5) by the gauge transformation. With the
Darboux transformation, we obtain a simple generalized soliton solution
formula for L–L Equation (5).

Single soliton can be generated by Darboux transformation from the vacuum
solution. In this case, there is no reflection coefficient. Then the RHP (26) can
be solved evidently, that is, m = I . Then we have Q = 0 and S = σ3. To
obtain the pure soliton solution, we use the Darboux transformation to yield the
discrete spectrum. The vector functions �+

1 and �−
2 can be represented as

�+
1 =

(
e−iλx

0

)
, �−

2 =
(

0

eiλx

)
,

and a(0) = 1 , γ (t ; λ1) = −c1e4iλ2
1t . Then the standard single soliton for L–L

Equation (5) can be obtain by formula (39), that is,(
Sz S−

S+ −Sz

)
, S+ = (S−)∗, (44)

where

Sz = 1 − 2b2

a2 + b2
sech2(A), A = 2b(x + 4at + x0),

S− = 2b

a2 + b2
eiBsech(A)[btanh(A) + ia],

B = −2ax + 4[b2 − a2]t − ϕ1.

By definition

a = Re(λ1), b = Im(λ1), x0 = − ln |c1|
2Im(λ1)

, ϕ0 = arg(c1).

It follows that the single soliton of VFE (2) are

γ x = −b

a2 + b2
sech(A) cos(B),

γ y = −b

a2 + b2
sech(A) sin(B),

γ z = x − b

a2 + b2
(1 + tanh(A)).
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To obtain the high-order soliton solution, we first give the following lemma:

LEMMA 5. If A(ξ ) possesses the series expansions

A(ξ ) =
+∞∑
n=0

γnξ
n,

then we have the following series expansions:

A(ξ )A(ξ )

λ̄1 − λ1 + (ξ̄ − ξ )
= 1

λ̄1 − λ1

∞∑
n=0

n∑
m=0

⎛⎝ n∑
j=0,i≤ j,

m∑
i=0, j−i≤n−m

× (−1)n− j−m+i Cm−i
n− j γi γ̄ j−i

(λ̄1 − λ1)n− j

)
ξm ξ̄ n−m .

(45)

Proof: Indeed this lemma can be proved by directly calculating. To be
convenience for reading, we give the details of calculating:

A(ξ )A(ξ )

λ̄1 − λ1 + (ξ̄ − ξ )
= 1

λ̄1 − λ1

(+∞∑
n=0

γnξ
n

)(+∞∑
n=0

γ̄n ξ̄
n

) +∞∑
k=0

(
ξ − ξ̄

λ̄1 − λ1

)k

= 1

λ̄1 − λ1

+∞∑
n=0

(
n∑

k=0

γk γ̄n−kξ
k ξ̄ n−k

) ∞∑
k=0

(
ξ − ξ̄

λ̄1 − λ1

)k

= 1

λ̄1 − λ1

+∞∑
n=0

n∑
j=0

(
1

(λ̄1 − λ1)n− j

j∑
l=0

γl γ̄ j−lξ
l ξ̄ j−l

n− j∑
k=0

(−1)n− j−kCk
n− jξ

k ξ̄ n− j−k

)

= 1

λ̄1 − λ1

+∞∑
n=0

n∑
j=0

(
1

(λ̄1 − λ1)n− j

n∑
m=0

(
m∑

i=0,i≤ j, j−i≤n−m

(−1)n− j−(m−i)

×Cm−i
n− j γi γ̄ j−iξ

m ξ̄ n−m

))

= 1

λ̄1 − λ1

+∞∑
n=0

n∑
m=0

⎛⎝ n∑
j=0,i≤ j,

m∑
i=0, j−i≤n−m

(−1)n− j−(m−i)Cm−i
n− j γi γ̄ j−i

(λ̄1 − λ1)n− j

)
ξm ξ̄ n−m . �
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LEMMA 6. The expansion

B(ξ ) = (λ1 + ξ )e−i(λ1+ξ )(x+2(λ1+ξ )t) =
∞∑

i=0

βiξ
i , βi = λ1β̂i + β̂i−1,

C(ξ ) = (λ1 + ξ )ei(λ1+ξ )(x+2(λ1+ξ )t)
∞∑

i=0

αiξ
i =

∞∑
i=0

δiξ
i , δi =

i∑
k=0

αk(λ1β̃i + β̃i−1),

where

β̂i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−iλ1(x+2λ1t)

n∑
j=0

α2 j

(2 j)!

(−1)n− jβn− j

(n − j)!
, k = 2n, n ≥ 0,

e−iλ1(x+2λ1t)
n∑

j=0

α2 j+1

(2 j + 1)!

(−1)n− j+1βn− j

(n − j)!
, k = 2n + 1,

β̃i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−iλ1(x+2λ1t)

n∑
j=0

α2 j

(2 j)!

βn− j

(n − j)!
, k = 2n, n ≥ 0,

e−iλ1(x+2λ1t)
n∑

j=0

α2 j+1

(2 j + 1)!

βn− j

(n − j)!
, k = 2n + 1,

β̂−1 = 0, β̃−1 = 0, α = i(x + 4λ1t) and β = 2it .

Proof: By simple algebra, we have

(λ1 + ξ )e−i(λ1+ξ )(x+2(λ1+ξ )t) = e−iλ1(x+2λ1t)(λ1 + ξ ) (cosh(αξ ) + sinh(αξ )) eβξ 2
.

It follows that we can obtain the expansion. �

By above two lemmas, we have expansion

B(ξ )B(ξ ) + C(ξ )C(ξ )

λ̄1 − λ1 + (ξ̄ − ξ )
(46)

= 1

λ̄1 − λ1

∞∑
n=0

n∑
m=0

Am,n−mξm ξ̄ n−m,

where

Am,n−m =
⎛⎝ n∑

j=0,i≤ j,

m∑
i=0, j−i≤n−m

(−1)n− j−m+i Cm−i
n− j (βi β̄ j−i + δi δ̄ j−i )

(λ̄1 − λ1)n− j

⎞⎠
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and

Mk,m = ∂m+k

∂ξm∂ξ̄ k

(
B(ξ )B(ξ ) + C(ξ )C(ξ )

λ̄1 − λ1 + (ξ̄ − ξ )

)
ξ=0

= 1

λ̄1 − λ1

m+k∑
j=0,i≤ j,

m∑
i=0, j−i≤k

(−1)k+i− j Cm−i
m+k− j

βi β̄ j−i + δi δ̄ j−i

(λ̄1 − λ1)m+k− j
.

Then we can obtain the following theorem:

THEOREM 11. The N-th order soliton solution of L–L Equation (5) and
VFE (2) can be represented as

Sz[N ] = 1 + i

(
det(Mz)

det(M)

)
x

, Mz = (Mk,m − β̄kβm)1≤k,m≤N ,

M = (Mk,m)1≤k,m≤N , (47)

S−[N ] = i

(
det(M−)

det(M)

)
x

, M− = (Mk,m − δ̄kβm)1≤k,m≤N .

and

γ x [N ] = Re

(
i
det(M−)

det(M)
− i

)
, (48)

γ y[N ] = Im

(
i
det(M−)

det(M)
− i

)
, (49)

γ z[N ] = x + i

(
det(Mz)

det(M)
− 1

)
,

respectively.

By the above formula, we can readily obtain the high-order soliton solution
for VFE (2) equation. Specially, we take parameters λ1 = bi, γ = 1, and
β1,1 = c + id, then we can obtain the second-order soliton solution for L–L
equation (1) and VFE (2):

γ x = −4[cosh(2 bx) + b(2x + d) sinh(2 bx)] cos(4b2t) − 4b(8 bt − c) cosh(2 bx) sin(4b2t)

2 b2(d + 2 x)2 + 2 b2(8 bt − c)2 + cosh(4 bx) + 1
,

γ y = −4[cosh(2 bx) + b(2x + d) sinh(2 bx)] sin(4b2t) + 4b(8 bt − c) cosh(2 bx) cos(4b2t)

2 b2(d + 2 x)2 + 2 b2(8 bt − c)2 + cosh(4 bx) + 1
,

γ z = x − 2

b

(
1 + sinh(4 bx) − 2 b(d + 2 x)

2 b2(d + 2 x)2 + 2 b2(8 bt − c)2 + cosh(4 bx) + 1

)
,

Sx = γ x
x , Sy = γ y

x , Sz = γ z
x .
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Figure 1. (a) Second-order soliton for L–L equation Sz and VFE γ x , γ y , and γ z . Parameters
λ1 = i, γ1 = 1, β1,1 = 0: (b) t = −4π , (c) t = 0, and (d) t = 4π .

Figure 2. (a) Fourth-order soliton for L–L equation Sz and VFE γ x , γ y , and γ z . Parameters
λ1 = i, γ1 = 1, β1,1 = 0, β1,2 = 0, and β1,3 = 0: (b) t = −4π , (c) t = 0, and (d) t = 4π .

Finally, we give the dynamics of L–L Equation (1) and VFE (2) by plotting a
picture. The second-order soliton solution and fourth-order solution are showed
with special parameters (Figures 1 and 2). It is seen that high-order soliton
possesses the similar structure as multisoliton solution. The difference is that
the velocity of high-order soliton is no longer a constant.

5. Conclusion and discussion

In conclusion, we analyze the L–L equation by inverse scattering method and
generalized Darboux transformation. The generalized Darboux transformation
[27,28] is a general version for the Darboux transformation in [10,46]. These
results are self-contained. Besides, we remark that the general soliton solution
for VFE (2) can be readily obtained by our formula (40). We intend to research
the long-time asymptotics of high-order soliton in a subsequent publication.
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53:0590–0602 (2000).

9. A. J. CHORIN, Equilibrium statistics of a vortex filament with applications, Commun.
Math. Phys. 141:619–631 (1991).
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