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Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions
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In this paper, we construct a generalized Darboux transformation for the nonlinear Schrödinger equation. The
associated N -fold Darboux transformation is given in terms of both a summation formula and determinants. As
applications, we obtain compact representations for the N th-order rogue wave solutions of the focusing nonlinear
Schrödinger equation and Hirota equation. In particular, the dynamics of the general third-order rogue wave is
discussed and shown to exhibit interesting structures.
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I. INTRODUCTION

The Darboux transformation, originating from the work
of Darboux in 1882 on the Sturm-Liouville equation, is a
powerful method for constructing solutions for integrable
systems. The theory is presented in several monographs and
review papers (see [1–3]). In the literature, various approaches
have been proposed to find a Darboux transformation for a
given equation, for instance, the operator factorization method
[4], the gauge transformation method [3,5,6], and the loop
group transformation [7].

It is remarked that the Darboux transformation is very
efficient for construction of soliton solutions. Indeed, through
iterations, one is often led to compact representations in
terms of special determinants such as the Wronskian or
Grammian for N -soliton solutions. Such N -soliton solutions
are appealing both from the theoretical viewpoint and from the
practical application viewpoint.

In addition to the soliton solutions, rational solutions are
interesting and the Darboux transformation may be adopted
for this purpose. For the celebrated Korteweg–de Vries (KdV)
equation, Matveev [8] introduces the so-called generalized
Darboux transformation and the positon solutions are cal-
culated. Recently, rogue waves, appearing in oceans, have
been studied and applied extensively in other fields such as
Bose-Einstein condensates, optics, and superfluids (see [9]
and references therein). The very first model for rogue waves
was the focusing nonlinear Schrödinger (NLS) equation,

iqt + 1
2qxx + |q|2q = 0, (1)

which has been an important integrable equation. The simplest
rogue wave solutions were calculated by Akhmediev and
coworkers, and the construction of higher order analogs is
one of the challenges as remarked in Ref. [10]. In this
regard, as pointed out by Dubard et al. [11], the solutions
obtained by Eleonskii, Krichever, and Kulagin [12] represent
a class of multi-rogue-wave solutions. It is remarked that the
construction method proposed in Refs. [11,13] is very specific
and technical, so it may not be easy to apply to other models.

The aim of this article is to propose a simple method
for construction multi-rogue-wave solutions. The main tool
is the generalized Darboux transformation. We re-examine
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Matveev’s generalized Darboux transformation for the KdV
equation and derive it in a way that can be easily extended
to other models. Then we apply the idea to the focusing
NLS equation and work out a formula for generation of
multi-rogue-wave solutions.

This article is organized as following: In Sec. II, we propose
a new way to derive the generalized Darboux transformation
for the KdV equation. In Sec. III, we first apply the proposed
method to the NLS equation and obtain the corresponding
generalized Darboux transformation for it, then we reformulate
the N -fold generalized Darboux transformation in terms of
determinants. Also, we provide formulas for N th-order rogue
wave solutions for the NLS equation and Hirota equation.
With the help of these formulas, we consider the dynamics of
a general third-order rogue wave. The spatial-temporal pattern
of the solution can form as a triangle or a pentagon. The final
section contains some discussion.

II. GENERALIZED DARBOUX
TRANSFORMATION FOR KdV

Let us first recall the well-known classical Darboux trans-
formation for the KdV equation. Consider the Sturm-Liouville
equation,

−�xx + u� = λ�, (2)

and introduce the first-order operator

T [1] = ∂x − �1x

�1
,

where �1 is the fixed solution of (2) with λ = λ1. Then the
Darboux transformation,

�[1] = T [1]� = Wr(�1,�)

�1
,

converts Eq. (2) into

−�[1]xx + u[1]�[1] = λ�[1], (3)

where

u[1] = u − 2(ln �1)xx

and Wr(�1,�) = �1�x − �1,x� is the standard Wronskian
determinant.
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The most interesting point here is that one can iterate the
above Darboux transformation. Indeed, the N -times iterated
or N -fold Darboux transformation yields the Crum theorem,

−�xx[N ] + u[N ]�[N ] = λ�[N ],

u[N ] = u − 2(ln Wr(�1, . . . ,�N ))xx,

where

�[N ] = Wr(�1, . . . ,�N,�)

Wr(�1, . . . ,�N )

and �1, . . . ,�N are solutions of (2) at λ = λ1, . . . ,λN ,
respectively.

It is obvious that �1[1] = T [1]�1 = 0, namely, �1 is
mapped to a trivial solution. This fact implies that a seed
solution may not be used more than once when considering
the iterations for the Darboux transformation. However, as
pointed out by Matveev and Salle [1], a generalized Darboux
transformation does exist. Let us derive this result in a
way which may be readily generalized. We start with the
assumption that

�2 = �1(k1 + ε),

where k1 = f (λ1) is a monotonic function and ε is a small
parameter. Expanding �2 in a series in ε,

�2 = �1 + �
[1]
1 ε + �

[2]
1 ε2 + · · · ,

where �
[i]
1 = 1

i!
∂i�1(k)

∂ki |k=k1 . Since �2[1] ≡ T1[1]�2 is a spe-
cial solution for (3), so is �2[1]

ε
. Taking the limit ε → 0 for this

solution, we find

�1[1] = lim
ε→0

T [1]�1(k1 + ε)

ε
= T [1]�[1]

1 ,

which is a nontrivial solution for (3) at λ = λ1. This solution
may be adopted to do the second-step Darboux transformation,
that is,

T [2] = ∂x − �1,x[1]

�1[1]
, u[2] = u − 2

(
ln Wr

(
�1,�

[1]
1

))
xx

.

Combining these two Darboux transformations, we obtain

−�xx[2] + u[2]�[2] = λ�[2], �[2] = Wr
(
�1,�

[1]
1 ,�

)
Wr

(
�1,�

[1]
1

) .

This process may be continued and results in the so-called
generalized Darboux transformation for system (2). Indeed, let
�1,�2, . . . ,�n be n different solutions for (2) at λ1,λ2, . . . ,λn,
and consider the expansions

�i(ki + ε) = �i(ki) + �
[1]
i ε + · · · + �

[mi ]
i εmi + · · · ,

ki = f (λi) (i = 1,2, . . . ,n);

then we have the following.
Proposition 1 [14].

u[N ] = u − 2(ln(W1))xx, �[N ] = W2

W1
,

with

W1 =Wr
(
�1, . . . ,�

[m1]
1 ,�2, . . . ,�

[m2]
2 , . . . ,�n, . . . ,�

[mn]
2

)
,

W2 =Wr
(
�1, . . . ,�

[m1]
1 ,�2, . . . ,�

[m2]
2 , . . . ,�n, . . . ,�

[mn]
2 ,�

)
,

solve

−�xx[N ] + u[N ]�[N ] = λ�[n],

where m1 + m2 + · · · + mn = N − n, mi � 0, mi ∈ Z.
The generalized Darboux transformation presented above

may be used to generate both solitons and rational solutions
for the KdV equation. Let us illustrate this with the following
examples. It is well known that the KdV equation,

ut − 6uux + uxxx = 0, (4)

takes (2) as its spatial part of the spectral problem and the
corresponding temporal part reads

�t = −4�xxx + 6u�x + 3ux�.

In the case of N distinct spectral parameters, we will have
the Wronskian representation for the N -soliton solution. To
get rational solutions, one starts with the seed solution u = c,
where c is a real constant, and �1 = sin[k1(x + (4k2

1 + 6c)t) +
P (k1)], k1 = √

λ1 − c, and P (k1) is a polynomial of k1. Now
expanding the function �1 at k1 = 0 and taking P (k1) = 0 for
convenience, we have

�1 = (x + 6ct)k1 + [− 1
6 (x + 6ct)3 + 4t

]
k3

1

+ [
1

120 (x + 6ct)5 − 2t(x + 6ct)2
]
k5

1 + · · · ,
therefore

�
[0]
1 = x + 6ct, �

[1]
1 = − 1

6 (x + 6ct)3 + 4t,

�
[2]
1 = 1

120 (x + 6ct)5 − 2t(x + 6ct)2.

Then the generalized Darboux transformation provides us the
rational solution for the KdV equation (4),

u[3] = c + G

H 2
,

where

G = 12[279936c5t5(216c5t5 + 360c4xt4 + 270c3x2t3

+ 120c2x3t2+35cx4t + 7x5)+38880c4t4(180t2 + 7x6)

+ 25920c3xt3(x6 + 180t2) + 1620c2x2t2(x6 + 720t2)

+ 60ct(x9 + 2160t2x3 + 4320t3) + 43200t3x + x10

+ 5400x4t2],

H = 3888c4t4(12c2t2 + 12cxt + 5x2) + 4320c3t3(x3 + 3t)

+ 540c2xt2(x3 + 12t) + 36cx2t(x3 + 30t) + x6

− 720t2 + 60x3t.

More general solutions of the rational type may be obtained if
we expand

�1 = sin
[
k1

(
x + (

4k2
1 + 6c

)
t
) + P (k1)

]
= �

[0]
1 k1 + �

[1]
1 k3

1 + �
[2]
1 k5

1 + · · · + �
[N]
1 k2N+1

1 + · · · .
In particular, the positon solutions for the KdV equation may
be found in this way, and for a detailed analysis we refer the
reader to the work of Matveev [15].

Concluding this section, we mention that, for those
equations which possess solutions represented in terms of
Wronskians, there are alternative manners in which to explain
the limit solutions [1,16,17].
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III. GENERALIZED DARBOUX TRANSFORMATION
FOR THE NLS

In this section, we extend the idea discussed in Sec. II to the
NLS equation and construct a generalized Darboux transfor-
mation for it. Furthermore, we show that this Darboux transfor-
mation enables one to obtain, apart from the soliton solutions,
rational solutions including multi-rogue-wave solutions.

The focusing NLS equation (1), is the compatibility
condition of the linear spectral problems,

�x = [iζσ1 + iQ]�, (5a)

�t = [
iζ 2σ1 + iζQ + 1

2σ1(Qx − iQ2)
]
�, (5b)

where

σ1 =
(

1 0
0 −1

)
, Q =

(
0 q∗
q 0

)
.

A. Generalized Darboux transformations

The Darboux transformation in this case is defined as (see
[2] and references therein)

�[1] = T [1]�, q[1] = q + 2(ζ ∗
1 − ζ1)(P [1])21,

where

T [1] = ζ − ζ ∗
1 + (ζ ∗

1 − ζ1)P [1], P [1] = �1�
†
1

�
†
1�1

, (6)

and �1 is a special solution of the linear system (5a) and (5b)
at ζ = ζ1; (P [1])21 represents the entry of matrix P [1] in the
second row and first column, and a dagger denotes the matrix
transpose and complex conjugation.

If N distinct seed solutions �k,(k = 1,2, . . . ,N ) of (5a)
and (5b) are given, the basic Darboux transformation may be
iterated. To do the second step of transformation, we employ
�2 which is mapped to �2[1] = T [1]|ζ=ζ2�2. Therefore,

�[2] = T [2]�[1], q[2] = q[1] + 2(ζ ∗
2 − ζ2)(P [2])21,

where

T [2] = ζ − ζ ∗
2 + (ζ ∗

2 − ζ2)P [2], P [2] = �2[1]�2[1]†

�2[1]†�2[2]
.

In the general case, we may have the following.
Theorem 1. Let �1, �2, . . ., �N be N distinct solutions

of the spectral problem (5a) and (5b) at ζ1, . . . ,ζN , respec-
tively; then the N -fold Darboux transformation for the NLS
equation (1), is

�[N ] = T [N ]T [N − 1] · · · T [1]�,
(7)

q[N ] = q[0] + 2
N∑

i=1

(ζ ∗
i − ζi)(P [i])21,

with

T [i] = ζ−ζ ∗
i + (ζ ∗

i − ζi)P [i],

P [i] = �i[i − 1]�i[i − 1]†

�i[i − 1]†�i[i − 1]
,

�i[i − 1] = (T [i − 1]T [i − 2] . . . T [1])|ζ=ζi
�i,

q[0] = q.

We remark that the N -fold Darboux transformation given by
(7) is equivalent to the determinant representation presented
in Ref. [1], as shown in Sec. III B.

Now we manage to find a generalized Darboux transforma-
tion. As in the last section, suppose that �2 = �1(ζ1 + δ) is a
special solution for system, then after transformation we have
�2[1] = T1[1]�2. Expanding �2 at ζ1, we have

�1(ζ1 + δ) = �1 + �
[1]
1 δ + �

[2]
1 δ2 + · · · + �

[N]
1 δN + · · · ,

(8)

where �
[k]
1 = 1

k!
∂k

∂ζ k �1(ζ )|ζ=ζ1 .
Through the limit process

lim
δ→0

[T1[1]|ζ=ζ1+δ]�2

δ
= lim

δ→0

[δ + T1[1]|ζ=ζ1 ]�2

δ

= �1 + T1[1]|ζ=ζ1�
[1]
1 ≡ �1[1], (9)

we find a solution to the linear system (5a) and (5b) with q[1]
and ζ = ζ1. This allows us to go to the next step of the Darboux
transformation, namely,

T1[2] = ζ − ζ ∗
1 + (ζ ∗

1 − ζ1)P1[2],
(10)

q[2] = q[1] + 2(ζ ∗
1 − ζ1)(P1[2])21,

where

P1[2] = �1[1]�1[1]†

�1[1]†�1[1]
.

Similarly, the limit

lim
δ→0

[δ + T1[2](ζ1)][δ + T1[1](ζ1)]�2

δ2

= �1+[T1[1](ζ1)+T1[2](ζ1)]�[1]
1 +T1[2](ζ1)T1[1](ζ1)�[2]

1

≡ �1[2]

provides us a nontrivial solution for the linear spectral
problem with q = q[2] and ζ = ζ1. Thus we may do the
third-step iteration of the Darboux transformation, which is
the following:

T1[3] = ζ − ζ ∗
1 + (ζ ∗

1 − ζ1)P1[3], P1[3] = �1[2]�1[2]†

�1[2]†�1[2]
,

q[3] = q[2] + 2(ζ ∗
1 − ζ1)(P1[3])21. (11)

Continuing the above process and combining all the Dar-
boux transformation, a generalized Darboux transformation is
constructed. We summarize our findings as follows.

Theorem 2. Let �1(ζ1), �2(ζ2), . . . ,�n(ζn) be n distinct
solutions of the linear spectral problem, (5a) and (5b), and

�i(ζi + δ) = �i + �
[1]
i δ + �

[2]
i δ2 + · · · + �

[mi ]
i δN + · · ·

(i = 1,2, . . . ,n)

be their expansions, where

�
[j ]
i = 1

j !

∂j

∂ζ j
�i(ζ )|ζ=ζi

(j = 1,2, . . .).
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Defining

T = 	n	n−1 . . . 	1	0, 	i = Ti[mi] . . . Ti[1] (i � 1), 	0 = I, (12)

where

Ti[j ] = ζ − ζ ∗
i + (ζ ∗

i − ζi)Pi[j ], Pi[j ] = �i[j − 1]�i[j − 1]†

�i[j − 1]†�i[j − 1]
, 1 � j � mi

�i[0] = (	i−1 . . . 	1	0)|ζ=ζi
�i,

�i[k] = lim
δ→0

[δ + Ti[k]ζ=ζi
] · · · [δ + Ti[2]ζ=ζi

][δ + Ti[1]|ζ=ζi
]	i−1(ζi + δ) · · · 	1(ζi + δ)	0�i(ζi + δ)

δk

= �i +
k∑

s=1

∑l
j=1 kj +s=k∑

mi�h
(i)
1 >···>h

(i)
ki

�1,

i�g1>···>gl�1,

if g1 = i, then h
(1)
1 � k

(
Tg1

[
h

(1)
1

] · · · Tg1

[
h

(1)
k1

] · · · Tgl

[
h

(l)
1

] · · · Tgl

[
h

(l)
kl

])∣∣
ζ=ζi

�
[s]
i

(1 � k < mi), then the transformations

�[N ] = T �, q[N ] = q + 2
n∑

i=1

mi∑
j=1

(ζ ∗
i − ζi)(Pi[mj ])21

(
N = n +

n∑
k=1

mk

)
(13)

constitute a generalized Darboux transformation for the NLS equation.
We remark here that the solution formulas, (7) and (13), represented in terms of summations, have certain merit. Indeed, for

nonzero �k , k = 1,2, . . . ,N , all the denominators of P [i] and Pi[j ] are easily seen to be nonzero in these forms; therefore, both
(7) and (13) supply nonsingular solutions. The former could lead to N -soliton solutions, while the latter may yield rogue wave
solutions.

Let us consider an example to illustrate the application of the above formulas to the construction of higher rogue wave
solutions. To this end, we start with the seed solution q[0] = eit . The corresponding solution for the linear spectral problem at
ζ = ih is

�1(f ) =
(

i(C1e
A − C2e

−A)e− i
2 t

(C2e
A − C1e

−A)e
i
2 t

)
, (14)

where

C1 = (h − √
h2 − 1)1/2

√
h2 − 1

, C2 = (h + √
h2 − 1)1/2

√
h2 − 1

, A =
√

h2 − 1(x + iht).

Let h = 1 + f 2; expanding the vector function �1(f ) at f = 0, we have

�1(f ) = �1(0) + �
[1]
1 f 2 + · · · , (15)

where

�1(0) =
(

(−2t + 2ix − i)e− 1
2 it

(2it + 2x + 1)e
1
2 it

)
,

�
[1]
1 =

([
i
2x − 5

2 t + i
4 − 2tx2 + 2i

3 x3 + 2
3 t3 − 2ixt2 − ix2 + 2tx + it2

]
e− 1

2 it[
1
2x + 5i

2 t − 1
4 − 2itx2 + 2

3x3 − 2i
3 t3 − 2xt2 + x2 + 2ixt − t2

]
e

1
2 it

)
.

It is clear that �1(0) is a solution for (5a) and (5b) at ζ = i. By means of formula (9), we obtain

�1[1] = lim
f →0

[if 2 + T1[1]]�1(f )

f 2
= T1[1]�[1]

1 + i�1(0), T1[1] = 2i

(
I − �1(0)�1(0)†

�1(0)†�1(0)

)
.

Substituting the above data into (10) yields the second-order rogue wave solution,

q[2] =
[

1 + G1 + itG2

H

]
eit ,

where

G1 = 36 − 288x2 − 192x4 − 1152t2x2 − 864t2 − 960t4, G2 = 360 + 576x2 − 192t2 − 384x4 − 768x2t2 − 384t4,

H = 64t6 + 192t4x2 + 432t4+396t2+192t2x4 − 288t2x2 + 9 + 108x2 + 64x6 + 48x4,
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which is nothing but the solution first constructed by Akhmediev et al. [10]. The higher order rogue wave solutions may be
calculated similarly, thus we have a general approach to produce these solutions.

B. Determinant forms and higher order rogue waves

In generic cases, iterated Darboux transformations may be given compactly by means of determinants and this is appealing
mathematically. For the original Darboux transformation, (6), the result is well known [1]:

Theorem 3. Denoting �i = (ψi,φi)T (i = 1,2, . . . N), then the N -fold Darboux transformation between fields, (7), can be
reformulated as

q[N ] = q[0] − 2
�2

�1
, (16)

where

�1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN−1
1 ψ1 · · · λN−1

N ψN −λ
∗(N−1)
1 φ∗

1 · · · −λ
∗(N−1)
N φ∗

N

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψN −φ∗

1 · · · −φ∗
N

λN−1
1 φ1 · · · λN−1

N φN λ
∗(N−1)
1 ψ∗

1 · · · λ
∗(N−1)
N ψ∗

N

· · · · · · · · · · · · · · · · · ·
φ1 · · · φN ψ∗

1 · · · ψ∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN
1 φ1 · · · λN

NφN λ∗N
1 ψ∗

1 · · · λ∗N
N ψ∗

N

λN−2
1 ψ1 · · · λN−2

N ψN −λ
∗(N−2)
1 φ∗

1 · · · −λ
∗(N−2)
N φ∗

N

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψN −φ∗

1 · · · −φ∗
N

λN−1
1 φ1 · · · λN−1

N φN λ
∗(N−1)
1 ψ∗

1 · · · λ
∗(N−1)
N ψ∗

N

· · · · · · · · · · · · · · · · · ·
φ1 · · · φN ψ∗

1 · · · ψ∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

To find the determinant representations of our generalized Darboux transformation, we observe that the limit process presented
in Sec. III A may be taken directly; namely, (10) may be obtained by the following consideration:

q[2] = q[1] + lim
ζ2→ζ1

2(ζ ∗
2 − ζ2)(P [2])21.

Thus, as for the KdV case worked out in Ref. [1], we may perform the limit on the determinant form, (16), and get the
following.

Theorem 4. Assuming that N distinct solutions �i = (ψi,φi)T (i = 1,2, . . . ,n) are given for the spectral problem, (5a) and
(5b), at ζ = ζ1, . . . ,ζ = ζn and expanding

(ζi + δ)jψi(ζi + δ) = ζ
j

i ψi + ψi[j,1]δ + ψi[j,2]δ2 + · · · + ψi[j,mi]δ
mi + · · · ,

(ζi + δ)jφi(ζi + δ) = ζ
j

i φi + φi[j,1]δ + φi[j,2]δ2 + · · · + φi[j,mi]δ
mi + · · · ,

with

ψi[j,m] = 1

m!

∂m

∂ζm
[ζ jψi(ζ )]|ζ=ζi

, φi[j,m] = 1

m!

∂m

∂ζm
[ζ jφi(ζ )]|ζ=ζi
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(j = 0,1, . . . ,N , m = 1,2,3, . . .), then we have

q[N ] = q − 2
D2

D1
, D2 = det([H1 . . . Hn]), D1 = det([G1 . . . Gn]), (17)

where N = n + ∑n
k=1 mk and

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ζN−1
i ψi · · · ψi[N − 1,mi] −ζ

∗(N−1)
i φ∗

i · · · −φi[N − 1,mi]∗

· · · · · · · · · · · · · · · · · ·
ψi · · · ψi[0,mi] −φ∗

i · · · −φi[0,mi]∗

ζN−1
i φi · · · φi[N − 1,mi] ζ

∗(N−1)
i ψ∗

i · · · ψi[N − 1,mi]∗

· · · · · · · · · · · · · · · · · ·
φi · · · φi[0,mi] ψ∗

i · · · ψi[0,mi]∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζN
i φi · · · φi[N,mi] ζ ∗N

i ψ∗
i · · · ψi[N,mi]∗

ζN−2
i ψi · · · ψi[N − 2,mi] −ζ

∗(N−2)
i φ∗

i · · · −φi[N − 2,mi]∗

· · · · · · · · · · · · · · · · · ·
ψi · · · ψi[0,mi] −φ∗

i · · · −φi[0,mi]∗

ζN−1
i φi · · · φi[N − 1,mi] ζ

∗(N−1)
i ψ∗

i · · · ψi[N − 1,mi]∗

· · · · · · · · · · · · · · · · · ·
φi · · · φi[0,mi] ψ∗

i · · · ψi[0,mi]∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We point out that, applied to special seed solutions, (17) enables us to have a determinant form for higher order rogue wave
solutions. We consider

ψ1 = i(C1e
A − C2e

−A), φ1 = (C2e
A − C1e

−A), (18)

where

C1 = (1 + f 2 − f
√

2 + f 2)1/2

f
√

2 + f 2
, C2 = (1 + f 2 + f

√
2 + f 2)1/2

f
√

2 + f 2
,

A = f
√

2 + f 2[x + i(1 + f 2)t + (f )], (f ) =
N∑

i=0

sif
2i , si ∈ C.

The associated Taylor expansions are

ij (1 + f 2)jψ1(f ) = ijψ1(0) + ψ1[j,1]f 2 + · · · + ψ1[j,N ]f 2N + · · · ,
ψ1[j,n] = 1

(2n)!

∂2n

∂f 2n
[ij (1 + f 2)jψ1(f )]|f =0,

ij (1 + f 2)jφ1(f ) = ijφ1(0) + φ1[j,1]f 2 + · · · + φ1[j,N ]f 2N + · · · ,
φ1[j,n] = 1

(2n)!

∂2n

∂f 2n
[ij (1 + f 2)jφ1(f )]|f =0

(j = 0,1, . . . ,N , n = 1,2,3, . . .). It follows that the N th-order rogue wave solution for the NLS equation (1), reads

q[N ] =
[

1 − 2
D2

D1

]
eit , (19)
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where

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iN−1ψ1 · · · ψ1[N − 1,N − 1] −(−i)(N−1)φ∗
1 · · · −φ1[N − 1,N − 1]∗

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψ1[0,N − 1] −φ∗

1 · · · −φ1[0,N − 1]∗

iN−1φ1 · · · φ1[N − 1,N − 1] −i(N−1)ψ∗
1 · · · ψ1[N − 1,N − 1]∗

· · · · · · · · · · · · · · · · · ·
φ1 · · · φ1[0,N − 1] ψ∗

1 · · · ψ1[0,N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iNφ1 · · · φ1[N,N − 1] (−i)Nψ∗
1 · · · ψ1[N,N − 1]∗

iN−2ψ1 · · · ψ1[N − 2,N − 1] −(−i)(N−2)φ∗
1 · · · −φ1[N − 2,N − 1]∗

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψ1[0,N − 1] −φ∗

1 · · · −φ1[0,N − 1]∗

iN−1φ1 · · · φ1[N − 1,N − 1] (−i)(N−1)ψ∗
1 · · · ψ1[N − 1,N − 1]∗

· · · · · · · · · · · · · · · · · ·
φ1 · · · φ1[0,N − 1] ψ∗

1 · · · ψ1[0,N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For the case where N = 2, the above formula may pro-
vide the second-order rogue wave solution with two free
parameters for the NLS equation, which was analyzed in
detail in Ref. [18]. It was shown that this solution splits
into three first-order rogue waves rather than two. Indeed,
our results supply the high-order rogue wave solutions with
more free parameters, which determine the spatial-temporal
structures of the solutions. In particular, the third rogue wave
solution, possessing four free parameters, may be worked
out by setting N = 3 and (f ) = (b + ic)f 2 + (e + ig)f 4

in our formula, whose explicit expression is omitted since
it is rather cumbersome. In the following, we consider
two special cases, which have different spatial-temporal
patterns.

(1) Case A. In this case, we assume b = c = 0, |e| � 0, or
|g| � 0. The corresponding third-order rogue wave solution is
composed of six first-order rogue waves, which array a regular
pentagon. Interestingly, among the six first-order rogue waves,
one sits in the center and the rest are located on the vertices
of the pentagon. After some calculations, we find that the
radial distance from the center of the pentagon approximately

FIG. 1. (Color online) (a) Third-order rogue wave solution |q|2.
(b) Density plot for the third-order rogue wave solution |q|2.
Parameters e = 1000 and g = 0. The third-order rogue wave exhibits
a regular pentagon spatial symmetry structure.

equals 1
2 3601/5(e2 + g2)1/10. For the case g = 0 and e � 0,

one of the vertices is located along the negative direction of
the x axis and the corresponding quadrantal angle for the (e,g)
plane is assumed to be 0 (Fig. 1). For the general nonzero g,
the pentagon will rotate 1

5θ along the anticlockwise direction,
where θ is the associated quadrantal angle for the (e,g) plane.

(2) Case B. For the second case, we take the parameters
e = g = 0, |b| � 0, or |c| � 0. The corresponding third-order
rogue wave consists of the six first-order rogue waves as well,
which array an equilateral triangle. The distance between the
center and any vertex approximately equals 901/6(b2 + c2)1/6.
For the case c = 0 and b � 0, one of the vertices is located
along the positive direction of the x axis and the corresponding
quadrantal angle for the (b,c) plane is assumed to be 0 (Fig. 2).
For the general nonzero c, the triangle will rotate 1

3θ in the
anticlockwise direction, where θ is the related quadrantal angle
for the (b,c) plane. When b = c = e = g = 0, the rogue wave
is the one considered by Akhmediev et al. [19].

Let (xi,ti) (i = 1, . . . ,6) be the coordinates of the six
peaks; then we find that the third-order rogue wave may be

FIG. 2. (Color online) (a) Third-order rogue wave solution |q|2.
(b) Density plot for the third-order rogue wave solution |q|2.
Parameters b = 100 and c = 0. The third-order rogue wave is seen
to possess a regular triangle spatial symmetry structure.
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FIG. 3. (Color online) (a) Fourth-order rogue wave solution
|q|2. (b) Density plot for the fourth-order rogue wave solution
|q|2. Parameters (f ) = 5 × 105if 6. The fourth-order rogue wave
possesses a regular heptagonal spatial-temporal structure with a
second-order rogue wave located at the center.

approximated by

q[3] ≈
6∑

i=1

[
−1 + 4

1 + 2i(t − ti)

di

]
eit ,

di = 1 + 4(x − xi)
2 + 4(t − ti)

2,

where the “center of mass” is at the origin (0,0) in both cases.
With raising of the order, the rogue solution contains more
free parameters and exhibits more interesting spatial-temporal
structures. For instance, choosing the proper parameters,
a fourth-order rogue wave possesses the regular heptagon
spatial-temporal pattern (Fig. 3), and a second-order rogue
wave is located in the center. Naturally, we conjecture that the
spatial-temporal pattern of an N th-order rogue wave possesses
a 2N − 1-gon spatial-temporal pattern upon choosing the
parameters (f ) = cf 2(N−1) (|c| � 0) in formula (19), where
c is a complex number.

We conclude this section with the following remarks in
order.

(1) If we choose the seed solution q[0] = 0, we may obtain
the higher soliton solution [21,22].

(2) The integrable Hirota equation

iqt + 1
2qxx + |q|2q − iα(qxxx + 6|q|2qx) = 0,

α is a real constant, (20)

FIG. 4. (Color online) (a) Third-order rogue wave solution |q|2.
(b) Density plot for the third-order rogue wave solution |q|2.
Parameters α = 1

6 , (f ) = 50if 2. The third-order rogue wave of
the Hirota equation exhibits a triangular temporal-spatial structure.

is the third flow of the NLS hierarchy. Its rogue wave solutions
and rational solutions are discussed in Ref. [20]. To obtain
the N th-order rogue wave solution for Hirota equations (20)
from (19), we merely need to modify the A as A =
f

√
2 + f 2[x + i(1 + f 2)t + α(2 + 4(1 + f 2)2)t + (f )] in

Eq. (18). Rather than giving the explicit expressions, which is
lengthy, we plot the third-order rogue wave solution for the
Hirota equation in Fig. 4. Due to the third-order dispersion
and time-delay correction to the cubic term [20], the solution
displays a different behavior from the NLS equation.

IV. CONCLUSION

Through a limit procedure, we have generalized the original
Darboux transformation for the NLS equation. This Darboux
transformation, in particular, allows us to calculate higher
order rogue wave solutions in a unified way. We believe
that the idea is rather general and could be applied to other
physically interested models as well. These spatial-temporal
structures for N th-order rogue waves may be useful for study
of the spatial-temporal distribution of rogue waves in deep
water.
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