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Abstract
In this paper, we obtain a uniform Darboux transformation for multi-
component coupled nonlinear Schrödinger (NLS) equations, which can be 
reduced to all previously presented Darboux transformations. As a direct 
application, we derive the single dark soliton and multi-dark soliton solutions 
for multi-component NLS equations  with a defocusing case and a mixed 
focusing and defocusing case. Some exact single and two-dark solitons of 
three-component NLS equations  are investigated explicitly. The results are 
meaningful for vector dark soliton studies in many physical systems, such as 
Bose–Einstein condensate, nonlinear optics, etc.

Keywords: Darboux transformation, dark soliton, N-component NLS 
equations
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(Some figures may appear in colour only in the online journal)

1. Introduction

It is well known that nonlinear Schrödinger (NLS)-type equations play a prominent role in 
nonlinear physical systems, such as nonlinear optics [1] and Bose–Einstein condensates [2]. 
In these physical systems, the nonlinear coefficient can be positive or negative, depending on 
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the physical situations [3]. For example, the nonlinearity can be positive or negative when the 
interaction between the atoms is repulsive or attractive in Bose–Einstein condensates [2]. For 
nonlinear optics, it corresponds to the focusing or defocusing case. For the one-component 
system, many studies have been carried out [4] which demonstrate that the corresponding 
scalar NLS equation admits bright solitons [4], a breather [5, 6] and rogue wave [7, 8] in the 
focusing case, and dark solitons [9] in the defocusing case.

Since a variety of complex systems such as Bose–Einstein condensates, nonlinear optical 
fibres etc usually involve more than one component, the studies should be extended to multi-com-
ponent NLS equation cases [10–12]. For the two-component coupled system with both focusing 
cases, the coupled NLS equations admit bright–bright solitons, and bright–dark, breather, rogue 
wave, bright–dark-breather and bright–dark-rogue wave solution [11–16]. With both defocusing 
cases, the coupled NLS equations admit bright–dark and dark–dark solitons, as well as breather 
solution [15–18]. With the defocusing and focusing coexisting case, the coupled NLS equa-
tions admit bright–bright solitons, bright–dark solitons, dark–dark solitons and breather solution 
[16, 19–21]. For the three-component NLS equations with all focusing, the ‘four-petaled flower’ 
structure rogue wave was presented recently by the Darboux transformation (DT) [22].

The DT method is a very effective and convenient way to derive kinds of localised waves, 
such as bright solitons, breather and rogue wave [11–14, 16]. However, the dark soliton can 
not be obtained by the classical DT method directly. The first time the dark soliton of the 
single NLS equation through the DT method was obtained occurred in 1996 [23]. The single 
dark soliton formula of the N-component NLS type equation appeared in 2006 and 2009 [24, 
25]. The dark soliton of the inverse scattering method in the coupled NLS system was an open 
problem until 2006 [26]. Even the soliton solutions obtained in [26] can be degenerated into 
a scalar NLS equation. Therefore, it is still desirable to study how to obtain the multi-dark 
soliton through the DT method, which would be very meaningful for vector dark soliton stud-
ies in related physical systems.

In this paper, we would like to derive a simple multi-soliton formula for the dark soliton 
of the integrable N-component NLS system (7) through the generalising DT method. In 
order to present our work clearly and coherently, we revisit the methods from 1996 and 2006  
[23, 24]. In 1996 [23], Mañas proposed a method to derive the dark soliton for defocusing the 
NLS equation. The Darboux matrix can be represented as

μ λ
λ μ

= +
−
−

Φ Ψ
Ψ Φ

T I ,1 1

1

1 1

1 1

where μ1 and λ1 are real numbers, ϕ ϕΦ = ( ¯ ), T
1 1 1  is a solution with spectral parameter λ λ= 1, 

ψ ψΨ = ( − ¯ ),1 1 1  is a solution of conjugation system with spectral parameter λ μ= 1. One fold 
DT could yields two dark solitons for defocusing the NLS equation. The symmetry relation 
is given as

λ σ λ λ σ( ¯) ( ) = ( )T T f ,†
3 3

where σ3 is the third standard Pauli matrix and λ( )f  is a function of λ. However, even when 
trying our best, the Manãns’ method cannot be applied to the multi-component case besides 
the degenerate case. Thus, we give up generalising the Manãns’s method.

In [24], Degasperis and Lambardo presented a one-fold DT method for the dark soliton. 
The Darboux matrix is

∫λ
λ λ

( ) = + Σ
( − )

Σ = = ΣD x t I
zz

P
z z P z z x, ; i

ˆ ˆ
, ˆ ˆ 0, ˆ ˆd ,

†

1 1

†
1

† (1)
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where ẑ is a solution with spectral parameter λ λ= 1 and Σ is a diagonal matrix with elements 
±1. Evidently, it is not convenient to calculate the integration. Besides, the integration restricts 
us from iterating the above DT (1) step by step. In order to look for a simpler method, we 
continue to search for some valuable information.

In 2009 [27], Cieśliński revisited different types of DT methods. He pointed out that the 
classical binary DT can be represented as a nilpotent gauge matrix. Indeed, we can see that the 
DT (1) is nothing but a nilpotent Darboux matrix. Thus, we can check whether or not the DT 
(1) can be converted into the classical binary DT. The answer is affirmative. First, we know 
that the most important property for the DT is the kernel for λ( )D x t, ; :

λ λ( ) ( ) =
λ λ→

D x t zlim , ; ˆ 0.1
1

On the other hand, we have the following equality

∫λ
λ λ

Σ ( )
−

= − Σ
λ λ→

z z
z z xlim

i ˆ ˆ
ˆ ˆ d .1

†

1
1
†

1
1

Thus, the DT (1) can be represented as the classical DT [29]

λ λ λ λ( ) → ( ) ( ) = ( ) − Ω( )
Ω( )

Ω( ) = Σz D x t z z
z z z

z z
f g f g xˆ , ; ˆ ˆ

ˆ ˆ , ˆ

ˆ , ˆ
, d , d .1 1

1 1

†

Generally speaking, the DT is considered as a special gauge transformation [28, 29]. That 
is the reason we underestimate the classical binary DT [29–31]. The binary DT was first pro-
posed by Babich, Matveev and Salle in [30]. For details of the binary DT one can refer to ref-
erence [29] (and the references therein). Indeed, the binary DT is the consistent transformation 
for the AKNS system. With the binary DT method, we can reduce it to the Zakharov–Shabat 
dressing operator [32] or the loop group representation [33]. In particular, we can obtain the 
DT which can be used to derive the dark soliton very effectively and conveniently. It is worth 
mentioning that there have been some other methods for deriving the dark soliton for multi-
component NLS equations recently, such as the algebraic-geometry reduction method, the KP 
equation reduction method and the dressing-Hirota method [19, 34, 35].

Here, we need to remark that the single step DT for focusing and defocusing multi-com-
ponent NLS equations was given by Degasperis and Lombardo in 2006. However, they did 
not given a uniform representation. Very recently, before we submitted our paper, Tsuchida 
studied the subject by a Darboux–Bäcklund transformation [36], in which both bright-soliton 
solutions and dark-soliton solutions could be obtained, depending on the signs of the non-
linear terms. Indeed, their results are a generalisation of Park and Shin’s results [37] and 
Degasperis and Lombardo’s results [24, 25] based on a special calculation technique.

In general, if we have a one-fold DT, it follows that the n-fold DT can be obtained by 
iteration. However, it is not fitted for the dark soliton’s DT. For Degasperis and Lombardo’s 
method, the difficulty of iterating the DT lies in how to calculate the integration. As the time of 
the iteration increases, we cannot solve the integration even though by computer software, since 
the integrands would become very complicated. Indeed, the same thing is met in Tsuchida’s 
method, the first step DT λ( )T  with special function λΦ ( )1 1  for the linear spectral problem, we 
can deal with the integration by the limit technique. However, if we iterate the DT directly, we 
cannot use this calculation trick again, since there is no similar equation (29). And if we need to 
iterate the DT, we need to use a new special function λΦ ( )2 2  to calculate the limit

λ λ λ λ
λ λ

[ ( )Φ ( )] Λ ( )Φ ( )
−λ λ→

T T
lim 2 2 2

†
2

22
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to replace the integration of Degasperis and Lombardo’s integration. However, it is almost 
impossible to calculate the limitation directly and is even more difficult than Degasperis and 
Lombardo’s integration.

Based on above mentioned problems, we propose a systematical method to construct 
the multi-fold uniform DT based on Degasperis and Lombardo’s method [24, 25] and 
Ciesĺinśki’s method [27]. The aim of our work is two fold. First, we reduce the binary DT 
of the AKNS system to obtain a uniform transformation for the AKNS system, which can 
be reduced to all previously presented DTs. Second, we use the binary DT of the AKNS 
system to derive the dark soliton and multi-dark soliton for the N-component NLS equa-
tion  (7). The multi-dark soliton for the N-component NLS equation  (7) through the DT 
method is obtained for the first time. In section  2, we introduce some basic knowledge 
about the AKNS system. Then we give the binary DT for the AKNS system. Based on the 
binary DT, we reduce it to the different transformations of the AKNS system. In section 3, 
by the the uniform transformation and limit technique [8, 38, 39], we derive the single dark 
soliton and multi-dark soliton for N-component NLS equation (7). In order to give us a clear 
understanding of our formula, we plot the explicit dark soliton and two dark solitons picture 
of the three-component NLS equations. The final section consists of some conclusions and 
discussions.

2. The AKNS system and the binary Darboux transformation

In this section, we first recall some results about the AKNS system and its reduction for 
multi-component NLS equations. Second, we introduce the binary DT for the AKNS system. 
Finally, we reduce the binary DT into a different transformation by a conjugation equation and 
limit technique. Integration for a high-order solution is automatic through the limit technique.

2.1. The AKNS system

We recall the classical results about the AKNS system [40]. Let = ( ⋯ )a a a adiag , , , n1 2  be a 
fixed nonzero diagonal matrix in C( )ngl , , and denote

C
C

( ) = { ∈ ( )∣[ ] = }
( ) = { ∈ ( )∣ ( ) = ∈ ( ) }⊥
n y n a y

n y n zy z n

sl sl , , 0 ,

sl sl , tr 0 for any  sl .

a

a a

Let R( ( ) )∞ ⊥L n, sl a  denote the space of maps in the R( )∞L  class. For the spectral problem

λΦ = ( + ( ))Φa u x ,x (2)

when λ → ∞, we have the formal asymptotical behaviour

λΦ → [ ]a xexp .

Thus, we can suppose λΦ = ( ) λm x; ea x, where λ( )m x;  is an analytical function and pos-
sesses the following formal expansion

λ λ λ( ) = + ( ) + ( ) + ⋯− −m x I m x m x; .1
1

2
2

Substituting it into (2), we can obtain

λ λ λΦ Φ = + = + [ ] + ( )− − − −mam m m a m a O,x x
1 1 1

1
1

and Φ Φ−
x

1 being holomorphic in Cλ ∈  implies that λΦ Φ = + [ ]− a m a, .x
1

1
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Let C∈ ( )b ngl ,  such that [b,a]   =   0, we have the allowing formal expansion of mbm−1at 
λ = ∞,

λ λ∼ + + + ⋯− − −mbm Q Q Q .b b b
1

,0 ,1
1

,2
2

Since λΦ Φ = +− a ux
1  and Φ Φ =− −b mbm1 1, we can obtain that

λ[∂ − − Φ Φ ]=−a u b, 0.x
1

It follows that

( ( )) + [ ( )] = [ ( ) ]+Q u u Q u Q u a, , .j b x b j b j, , , 1 (3)

Write

= + ∈ ( ) + ( )⊥Q T P n nsl sl .b j b j b j a a, , ,

Then equation (3) gives

π
π

= ( ) (( ) − ([ ]))
( ) = ([ ])

−
− −P a P u Q

T u P

ad , ,

, ,
b j b j x b j

b j x b j

,
1

, 1 1 , 1

, 0 ,
 (4)

where π0 and π1 denote the projection of C( )nsl ,  onto ( )⊥nsl a and ( )⊥nsl a with respect to 
C( ) = ( ) + ( )⊥n n nsl , sl sla a, respectively. In reference [33], they proved that if b is a polynomial 

of a, then Qb,j is an order-(j-1) polynomial differential operator in u.
Then we have the following proposition:

Proposition 1 (Terng and Uhlenbeck, [33]). Suppose R(⋅ ) ∈ ( ( ) )∞ ⊥u t L n, , sl a  for all t,

λ λ λ[∂ − − ∂ + + + ⋯ + ]=−a u b v v, 0x t
j j

j1
1

for some ⋯v v, , ,j1  and → ( ) = → ( ( ))−∞ −∞v x t Q u x tlim , lim ,x k x b k,  for all ⩽ ⩽k j1 . Then we have 
= ( )v Q u ,k b k,  and

= ( ( )) − [ ( )] = [ ( ) ]+u Q u u Q u Q u a, , .t j b x b j b j, , , 1 (5)

In what follows, we consider the reality conditions. The details of the reality conditions are 
given in [33]. A Lax pair λ λ[∂ + ( ) ∂ + ( )] =A x t B x t, ; , , ; 0x t  is said to satisfy the reality con-
dition if σ λ λ( ( ¯)) = ( )A x t A x t, ; , ;  and σ λ λ( ( ¯)) = ( )B x t B x t, ; , ; , where the overbar denotes the 
complex conjugation and σ is the complex conjugate linear Lie algebra involution in C( )nsl , .

In this paper, we merely consider the u(N   +   1  −  k, k) hierarchy on R( )∞ ⊥L u, a  [33]. Here

C( + − ) = { ∈ ( )∣ Λ + Λ = }u N k k y N y y1 , gl , 0 ,†

where the symbol † denotes the hermite conjugation, Λ = ( Λ )diag 1, 1  and

ϵ ϵ ϵΛ = ( ⋯ )diag , , , ,N1 1 2 (6)

ϵ = −1,i  for ⩽ ⩽i k1 ; ϵ = 1,i  for + ⩽ ⩽k i N1 . Let = ( − )a Idiag i, i N . Then

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

= { ∈ ( + − )∣[ ] = } = Λ ∣ ∈⊥u y u k N k a y
q

q
q, 1 , 0

0 i
i 0

.a
N

†
1 C

L Ling et alNonlinearity 28 (2015) 3243
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The second flow in the u(N   +   1  −  k, k) hierarchy on R( )∞ ⊥L u, a  with b   =   a is the following 
N-component NLS equations:

+ + Λ =q q qq qi
1

2
0,t xx

†
1 (7)

where

= ( ⋯ )q q qq , , , ,N
T

1 2

which admits the following Lax pair

λσ

λ σ λ σ σ

Φ = ( + )Φ

Φ = + − ( − ) Φ⎜ ⎟
⎛
⎝

⎞
⎠

Q

Q Q Q

i i ,

i i
1

2
i ,

x

t x

3

2
3 3

2
3

 
(8)

where

⎡
⎣
⎢

⎤
⎦
⎥

⎡
⎣⎢

⎤
⎦⎥σ= Λ =

−×

×

× ×
Q

q
q 0

0
0 I

0
,

1
.

N N

N

N N N

†
1

3
1

1

If all ϵ = 1i , which corresponds to the focusing case, if all ϵ = −1i , which corresponds to the 
defocusing case, or otherwise the mixed case. In this paper, we would like to focus on the DT 
and multi-dark soliton solution for the N-component NLS system (7).

2.2. The binary DT for the AKNS system

We consider the binary DT for the AKNS system with symmetry reduction. First, we give 
some lemmas.

Lemma 1. Suppose Φ1 and Φ are the special vector solutions for system (8) at λ λ= 1 and λ, 
respectively, then we can have the following total differential

σ λ λ σΩ(Φ Φ) = Φ Λ Φ + [( + ¯ )Φ Λ Φ + Φ Λ Φ]x Q td , d d .1 1
†

3 1 1
†

3 1
† (9)

In addition, we have

λ λ
Ω(Φ Φ) =

Φ ΛΦ
( − ¯ )

+ C,
i

.1
1
†

1
 (10)

If Rλ ∈1 , we have

λ λ
Ω(Φ Φ ) =

Φ ΛΦ
( − )

+
λ λ→

C, lim
i

,1 1
1
†

11

 (11)

where C is a complex constant.

Proof. Taking the complex conjugation to (8) both sides, we have

λ σ

λ σ λ σ

Φ Λ = −Φ Λ[ ¯ + ]

Φ Λ = −Φ Λ ¯ + ¯ − ( − )
⎡
⎣⎢

⎤
⎦⎥

Q

Q Q Q

i i ,

i i
1

2
i .

x

t x

1,
†

1
†

1 3

1,
†

1
†

1
2

3 1 3
2

 
(12)
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Left multiplying by Φ Λ1
†  into both sides of (8) and right multiplying by Φ into both sides 

of (12), then we can obtain

λ λ
σ

λ λ
λ λ σ

Φ ΛΦ
( − ¯ )

= Φ Λ Φ

Φ ΛΦ
( − ¯ )

= ( + ¯ )Φ Λ Φ + Φ Λ Φ

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ Q

i
,

i
.

x

t

1
†

1
1
†

3

1
†

1
1 1

†
3 1

†

It follows that equations (9)–(11) are verified. ◻

In what follows, to keep the uniqueness of the constants C, we choose it as zero. Following 
the idea in the introduction, we can obtain that the one-fold binary DT for the N-component 
NLS equation (7) is

σ

Φ → Φ[ ] = Φ − Φ Ω(Φ Φ)
Ω(Φ Φ )

→ [ ] = −
Φ Φ Λ

Ω(Φ Φ )

⎡

⎣
⎢

⎤

⎦
⎥Q Q Q

1
,

,
,

1 i ,
,

.

1 1

1 1

3
1 1

†

1 1

 (13)

In the following, we verify the validity of the above transformation (13).

Theorem 1. Suppose Φ satisfies the system (8), and Φ1 is a special solution for the Lax pair 
(8) at λ λ= 1, and Φ ΛΦ = 01

†
1  if Rλ ∈1 , then we have

λσ

λ σ λ σ σ

Φ[ ] = ( + [ ])Φ[ ]

Φ[ ] = + [ ] − ( [ ] − [ ] ) Φ[ ]⎜ ⎟
⎛
⎝

⎞
⎠

Q

Q Q Q

1 i i 1 1 ,

1 i i 1
1

2
i 1 1 1 .

x

t x

3

2
3 3

2
3

 (14)

Proof. We first verify the first equation of (14). By lemma 1, we have Ω(Φ Φ) =
λ λ

Φ ΛΦ
( − ¯ )

, .1 i
1
†

1
 It 

follows that

λσ λ σ σ σ

λσ
σ σ

Φ[ ] = ( + )Φ − ( + )Φ Ω(Φ Φ)
Ω(Φ Φ )

−
Φ Φ Λ Φ
Ω(Φ Φ )

+
Φ Φ Λ Φ Ω(Φ Φ)

Ω (Φ Φ )

= + −
Φ Φ Λ

Ω(Φ Φ )
+

Φ Φ Λ
Ω(Φ Φ )

Φ − Φ Ω(Φ Φ)
Ω(Φ Φ )

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥
⎛
⎝
⎜

⎞
⎠
⎟

Q
Q

Q

1 i i
i i ,

, ,

,

,

i i i
,

i
,

,

,
,

x 3
1 3 1 1

1 1

1 1
†

3

1 1

1 1
†

3 1 1
2

1 1

3
3 1 1

†

1 1

1 1
†

3

1 1

1 1

1 1

where the second equality uses the relation Φ ΛΦ = 01
†

1  if Rλ ∈1 . And it is straightforward to 
verify the validity of the symmetry relation for Q[1]. Then the first equation of (14) is verified. 
Besides, we can obtain the following relation. Since Φ[ ] = ΦT1 ,

λ λ
= −

Φ Φ Λ
( − ¯ )Ω(Φ Φ )

T I
i ,

,1 1
†

1 1 1

it follows that

λσ λσ+ ( + ) = ( + [ ])T T Q Q Ti i 1 .x 3 3 (15)
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Expanding the matrix T with = + + + ⋯
λ λ

T I T T1 2
2 , substituting into equation (15), and com-

paring the coefficient of λ, we can get

σ[ ] = + [ ] −Q T TQ T T1 , i .x1 1 2 3 1, (16)

Finally, we consider the time evolution equation of (14). Since matrix T is a special gauge 
transformation, by direct calculation we have

λ σ λ σ λ σ λ+ + − ( − ) = + [ ] + [ ]−⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥T T Q Q Q T Q Vi i

1

2
i i i 1 1 ,t x

2
3 3

2 1 2
3 1 (17)

where σ σ σ[ ] = − ( − ) + [ ] + ( − [ ] )V Q Q T TQ Q T1 i i , i 1 .x1
1

2 3
2

3 2 3 1 1  By equation  (16), we have 

σ[ ] = [ ]V Q1 1 ,o
x1

1

2 3  and then we have σ[ ] = − [ ]V Q1 1d
1

1

2 3
2 by direct calculation. The super-

scripts o and d denote the off-diagonal and diagonal part of the block matrix, respectively. This 
completes the theorem. ◻

In the following, we consider the n-fold binary DT based on the above theorem.

Theorem 2. Suppose we have n different solutions Φis for the Lax pair (8) at λ λ= i 

( = ⋯ )i n1, 2, , , and Φ ΛΦ = 0j j
†  if Rλ ∈j , then the n-fold binary DT can be presented as

Φ → Φ[ ] = Φ − Θ Ω Θ = [Φ Φ ⋯ Φ ]−n M , , , , ,n
1

1 2 (18)

where

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

Ω(Φ Φ ) Ω(Φ Φ ) ⋯ Ω(Φ Φ )
Ω(Φ Φ ) Ω(Φ Φ ) ⋯ Ω(Φ Φ )

⋮ ⋮ ⋱ ⋮
Ω(Φ Φ ) Ω(Φ Φ ) ⋯ Ω(Φ Φ )

Ω =

Ω(Φ Φ)
Ω(Φ Φ)

⋮
Ω(Φ Φ)

M

, , ,
, , ,

, , ,

,

,
,

,

.

n

n

n n n n n

1 1 1 2 1

2 1 2 2 2

1 2

1

2

The transformation between the fields is

σ→ [ ] = − [ Θ Θ Λ]−Q Q n Q Mi , .3
1 † (19)

Proof. In the first place, we have

λσ σ σ σ
λσ σ σ

σ λ σ σ
λσ σ σ

λσ σ σ
λσ σ σ

λσ σ σ
λσ

Φ[ ] = Φ − Θ Ω − Θ Ω + Θ Ω
= ( + )Φ − ( Θ + Θ ) Ω − Θ Θ Λ Φ + Θ Θ Λ Θ Ω
= ( + )Φ − Θ Ω − Θ Θ Λ Φ + Θ Θ Λ Θ Ω

+ Θ (− + )Ω + Θ Θ ΛΦ − Θ Ω
= ( + )Φ − Θ Ω − Θ Θ Λ Φ + Θ Θ Λ Θ Ω

− Θ Ω + Θ Θ ΛΦ − Θ ( − ) Ω
= ( + )Φ − Θ Ω − Θ Θ Λ Φ + Θ Θ Λ Θ Ω

− Θ Ω + Θ Θ ΛΦ − Θ Θ ΛΘ Ω
= ( + [ ])Φ[ ]

− − − −

− − − −

− − − −

− − −

− − − −

− − − −

− − − −

− − − −

n M M M M M

Q Q D M M M M

Q Q M M M M

M D M D M

Q Q M M M M

M M M MD D M M

Q Q M M M M

M M M M
Q n n

i i i

i i i

i i

i i i

i i i

i i i

i
i i ,

x x x x x
1 1 1 1

3 3
1 1 †

3
1 †

3
1

3
1 1 †

3
1 †

3
1

3
1 †

3
1 †

3
† 1

3
1 1 †

3
1 †

3
1

3
1

3
1 †

3
1 † 1

3
1 1 †

3
1 †

3
1

3
1

3
1 †

3
1 † 1

3

where the third equality uses the relation λ(− + )Ω + Θ ΛΦ =Di 0† † , the fifth equality uses 
the relation Θ ΛΘ = ( − )MD D Mi† †  and λ λ λ= ( ⋯ )D diag , , , n1 2 . Thus, the spectral problem is 
valid. ◻
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Based on the above theorem, we merely need to verify the spectral problem. The time 
evolution part is similar to the above theorem. Thus we omit it. ◻

2.3. The uniform transformation through the binary DT

In this subsection, we consider the reduction from the binary DT. For convenience, we merely 
consider the one-fold binary DT, since the n-fold binary DT is nothing but a n-times iteration 
of the one-fold DT. First, we consider how to reduce the binary DT into the Zakharov–Shabat 
dressing operator [4]. If the spectral parameters λ λ≠ ¯1 1, we use the relation

λ λ
σ

λ λ
λ λ σ σ

Φ ΛΦ
− ¯ = Φ ΛΦ

Φ ΛΦ
− ¯ = [( + ¯ )Φ Λ Φ + Φ Λ Φ ]

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ Q

i ,

i .

x

t

1
†

1

1 1
1
†

3 1

1
†

1

1 1
1 1 1

†
3 1 1

†
3 1

 

(20)

It follows that

λ λ
Ω(Φ Φ ) = −

Φ ΛΦ
− ¯

⎛

⎝
⎜

⎞

⎠
⎟, i .1 1

1
†

1

1 1

Then we have

λ λ
λ λ

λ λ σΦ[ ] = +
¯ −

− ¯
Φ Φ Λ
Φ ΛΦ

Φ [ ] = + ( − ¯ )
Φ Φ Λ
Φ ΛΦ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥I Q Q1 , 1 , .1 1

1

1 1
†

1
†

1
1 1 3

1 1
†

1
†

1

By this transformation, we can obtain the bright soliton, and the breather and rogue wave 
solution. The high-order DT of this type was obtained in reference [8] by the limit technique.

If the spectral parameters λ λ= ¯ .1 1  In this case, we use the limit technique to deal with this 
problem. Suppose Ψ1 and Φ1 are two mutually dependent solutions for the Lax pair at λ λ= 1 

such that Φ ΛΨ ≡ = ≠C const 01
†

1 1  and Φ ΛΦ = 01
†

1 , set ν ν λΘ ( ) = Φ ( ) + Ψ ( )β ν λ( − )
C1 1 1 1

1

1
, then we 

can obtain

ν
ν λ

σ

ν
ν λ

λ σ σ

Φ ΛΘ ( )
−

= Φ ΛΦ

Φ ΛΘ ( )
−

= [ Φ Λ Φ + Φ Λ Φ ]

ν λ

ν λ

→

→

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ Q

lim i ,

lim i 2 .

x

t

1
†

1

1
1
†

3 1

1
†

1

1
1 1

†
3 1 1

†
3 1

1

1

 

(21)

It follows that

λ
ν λ

Ω(Φ Φ ) = −
Φ ΛΘ ( )

−ν λ→

⎛

⎝
⎜

⎞

⎠
⎟, i lim .1 1

1
†

1

11

Then we have

λ ν
λ λ ν

σ
ν λ

ν

Φ[ ] = + −
−

Φ Φ Λ
Φ ΛΘ ( )

Φ

[ ] = +
( − )Φ Φ Λ

Φ ΛΘ ( )

ν λ

ν λ

→

→

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

I

Q Q

1 lim ,

1 lim , .

1

1

1 1
†

1
†

1

3
1 1 1

†

1
†

1

1

1

 
(22)
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To keep the non-singularity of the above transformation, we have

Rβ
ν

ν λ
+

Φ ΛΦ ( )
−

≠ ( ) ∈
ν λ→

⎛

⎝
⎜

⎞

⎠
⎟ x tlim 0, for any  , .1

†
1

1

2

1

In the following section, we would like to use the above transformation to derive the single 
dark soliton and multi-dark soliton for the N-component NLS equation (7).

3. The dark soliton and multi-dark soliton

In this section, we consider the application of the binary DT. A direct application is using the 
DT to derive some special solutions. By the DT (22), we can obtain the dark soliton and multi-
dark soliton for the N-component NLS equation (7) in a simple way.

3.1. The single dark soliton for the N-component NLS equations

To obtain the dark soliton, we use the seed solutions

∑θ ϵ= = − − = ⋯θ

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟q c a x

a
c t i Ne ,

2
, 1, 2, , .i i i i

i

l

N

l l
i

2

1

2i (23)

In the first place, we need to solve the Lax pair equation (8) with the above seed solutions. 
In order to solve the Lax pair equation, we use the gauge transformation

= ( ⋯ )θ θD diag 1, e , ei i N1

converts the variable coefficient differential equation  into a constant coefficient equation. 
Then we can obtain

∑λ ϵ λ

Φ = Φ Φ = Φ

Φ = + − − Φ
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

U D

U U c

i , ,

i
1

2

1

2
,

x

t

l

N

l l

0, 0 0 0

0, 0
2

0

1

2 2
0

 (24)

where

⎡
⎣⎢

⎤
⎦⎥

λ
λ

=
Λ

− −
= ( ⋯ ) = ( ⋯ )U

C

C I A
A a a C c c, diag , , , , , .T

N
N N0

1
1 1 (25)

In the following, we consider the property of the matrix U0. First we can obtain the char-
acteristic equation of matrix U0:

μ( − ) =Udet 0.0 (26)

Then we have the vector solution for (24):

∑λ μ

λ μ

μ μ λμ λ ϵΦ =

( )
( + + )

⋮
( + + )

= + + − −
−

−
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a

a

X x c t

e

e

e

,
1

2

1

2
.

X

N
X

l

N

l l0

iX

1
1 i

1 i

2 2

1

2
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Since the coefficient of the algebraic equation (26) is a real number, the roots of the equa-
tion (26) are either real roots or complex conjugation root pairs. Thus, if the number of real 
roots is less than the order of the algebraic equation, then there exists a complex conjugation 
root pair. The real roots of the algebraic equation can be found by the existence of the theorem 
of zero root. To obtain the dark soliton, we need to choose the pair of conjugate complex roots 
of the characteristic equation (26). If μ and μ̄ are the roots of the characteristic equation (26), 
then we have

∑μ λ ϵ
λ μ

− −
+ +

=
=

c

a
0,j j

l

N
l l

j j l1

2

 (27)

and

∑μ λ ϵ
λ μ

¯ − −
+ ¯ +

=
=

c

a
0,i i

l

N
l l

i i l1

2

 (28)

where μj and μ̄i are the roots of the characteristic equation (26) with λ λ= j and λ λ= i, respec-
tively ( = ⋯ )i j n, 1, 2, , , the overbar denotes the complex conjugation. It follows that

∑μ λ μ λ
ϵ λ μ λ μ
λ μ λ μ

− − ( ¯ − ) +
[( + ) − ( + ¯ )]

( + + )( + ¯ + )
=

=

c

a a
0.j j i i

l

N
l l j j i i

j j l i i l1

2

Then we can obtain that

∑
μ λ μ λ
λ μ λ μ

ϵ
λ μ λ μ

− − ( ¯ − )
[( + ) − ( + ¯ )]

+
( + + )( + ¯ + )

=
=

c

a a
0.

j j i i

j j i i l

N
l l

j j l i i l1

2

 (29)

Thus, the formula

λ λ λ λ μ μ
Φ ΛΦ

−
=

− + − ¯

( − ¯ )2e
,i j

j i

X X

j i j i

† i j i

 (30)

where

μ λ μ μ λ

μ λ μ μ λ

Φ = Φ ∣ Φ = Φ ∣

= + + −

¯ = ¯ + ¯ + ¯ −

λ λ μ μ λ λ μ μ= = = =

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

D D

X x t

X x t

,

1

2

1

2
,

1

2

1

2
.

i j

j j j j j j

i i i i i i

0 , 0 ,

2 2

2 2

i i j j

With this formula, we can readily take limit λ λ→j i, and it follows that

λ λ μ μ
Φ ΛΦ

−
=

−λ λ→

( − )
lim

2e
,i j

j i

X X

i i

† i

j i

i i

 (31)

which also implies that Φ ΛΦ = 0.i i
†  Then we come back to the DT (22). Through the above 

explicit expression and set β =
μ μ− ¯

αμ2e I2 1

1 1
, where μ μ= ( )ImI1 1  and Rα ∈ , we have

ν
ν λ μ μ

Φ ΛΘ ( )
−

= [ + ]
− ¯ν λ

αμ

→

( − ¯ )
lim

2 e e
.

X X
1
†

1

1

i 2

1 1

I

1

1 1 1

 (32)

L Ling et alNonlinearity 28 (2015) 3243



3254

Then the DT (22) can be constructed explicitly as

μ μ
λ λ

= −
( − ¯ )Φ Φ Λ

( − )( + )αμ( − ¯ )
T I

2 e e
.

X X
1 1 1 1

†

1
i 2 I1 1 1

 (33)

It follows that the single dark soliton solutions for the N-component NLS equations (7) are

[ ] = − + ( ) θ⎡
⎣⎢

⎤
⎦⎥q c

B B
Y1 1

2 2
tanh e ,i i

i i
1

i i (34)

where

μ μ
λ μ
μ λ μ α μ μ μ μ

=
− ¯

+ +
= ⋯

= − [ + ( + ) + ] = ( ) = ( )

B
a

i N

Y x t

, 1, 2, , ,

, Im , Re .

i
i

I R I R

1 1

1 1

1 1 1 1 1 1 1 1

Without loss of generality, we suppose μ > 0I1 . When → −∞x , we have

[ ] → θq c1 e .i i
i i

When → +∞x , we have

λ μ
λ μ

ω[ ] →
+ + ¯
+ +

=θ ω( + )
⎛

⎝
⎜

⎞

⎠
⎟q c

a

a
1 e , ln i .i i

i

i
i

i 1 1

1 1

i i

The centre of the dark soliton qi[1] is ⋯ along the line λ μ α+ ( + ) + =x t 0.R1 1  The velocity 
of the dark soliton ∣ [ ]∣q 1i

2 is λ μ= −( + )v .R1 1  The depth of cavity of ∣ [ ]∣q 1i
2 is

μ
λ μ μ( + + ) +

c

a
.i I

i R I

2
1
2

1 1
2

1
2

In the following, we consider how to determine whether or not dark bound states exist [19]. 
Through the relation (29), we have

∑ ϵ
λ μ

−
∣ + + ∣

=
=

c

a
1.

l

N
l l

l1

2

1 1
2 (35)

Indeed, through the expression for the single dark soliton (34), to obtain the velocity of 
the dark soliton, we need to know the parameter λ μ+1 1. And the velocity of the soliton is 
controlled by λ μ−( + ).R1 1  Thus, if we need to find the soliton with a velocity equal to zero, we 
merely have to solve the following equation.

∑ ϵ
μ

−
+

=
=

c

a
1.

l

N
l l

l I1

2

2
1
2 (36)

If ϵ = −1l  for all l, which corresponds to the defocusing case, then the function 

μ( ) = ∑
μ= +

F I l
N c

a1 1
l

l I

2

2
1
2  is an increasing function in the positive half axis. Then the equation (36) 

merely has a positive solution. Thus, in the defocusing case, there exists no dark bound state. 
So, the dark bound state merely perhaps exists in the mixed case.

In what follows, we illustrate some exact examples of the single dark soliton. Since the 
velocity of the soliton possesses the exact physical meaning, we can obtain the soliton by the 
velocity λ μ= −( + )v R1 1 . First we solve the following equation about μ I1 :
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∑ ϵ
μ

−
( − ) +

=
=

c

a v
1.

l

N
l l

l I1

2

2
1
2

Substituting μ λ μ= −( + ) +v i I1 1 1
2 into the characteristic equation  (26), we can obtain an 

algebraic equation about λ1. Solving the algebraic equation, we can obtain all of the param-
eters for the single dark soliton. For instance, we consider the three-component NLS equa-
tions with the defocusing case (i.e. N   =   3, ϵ ϵ ϵ= = = −11 2 3 ). If we need to find the soliton 
with velocity v   =   0, then we choose the parameters:

α

λ μ

= = − = = = = =

= −
+

= − + +

a a a c c c1, 1, 0, 1, 2,
3

2
, 0,

12

33 769
,

99 3 769

80

i

4
50 2 769 .

1 2 3 1 2 3

1 1

 
(37)

We can plot the picture of the single dark soliton by Maple (figure 1). Since the solitons are 
stationary, we merely plot the picture at t   =   0.

3.2. The multi-dark soliton for the N-component NLS equations

In order to give the multi-dark soliton solution, we first adapt the binary DT with the limit 
technique. The n-fold binary DT (18) can be written with the following form

∑Φ[ ] = Φ − Ω(Φ Φ)
=

n s , .
i

n

i i

1

 (38)

Thus, we can suppose that

∑
λ λ

Φ[ ] = Φ = −
Φ Λ
−=

n T T I s, .n n

i

n

i
i

i1

†

 (39)

The explicit expression for the Darboux matrix Tn can be determined by the following 
equations

β
λ λΦ + ( − )Ψ =

λ λ→

⎛

⎝
⎜

⎞

⎠
⎟T

C
lim 0,n j

j

j
j j

j

Figure 1. t   =   0: Solid green line ∣ ∣q1
2, dotted blue line ∣ ∣q2

2, dashed red line ∣ ∣q3
2. The 

parameters are given in equation (37).
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where Ψj is the mutually independent solution with Φj at λ λ= j, β =
μ μ

α μ
− ¯

e ,j
2 2

j j

j jI  μ μ= ( )ImjI j , 

Rα ∈j  and ≡ Φ ΛΨ =C const.j j j
†  By linear algebra, we have the following expression for Tn:

λ= − Θ ( − ) Θ Λ Θ = [Φ Φ ⋯ Φ ]− −T I M D , , , , ,n n
1 1 †

1 2 (40)

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

ν
ν λ

β
λ λ λ λ

λ λ
ν

ν λ
β

λ λ

λ λ λ λ
ν

ν λ
β

λ λ λ

=

Φ ΛΦ ( )
−

+
Φ ΛΦ

−
⋯

Φ ΛΦ
−

Φ ΛΦ
−

Φ ΛΦ ( )
−

+ ⋯
Φ ΛΦ

−
⋮ ⋮ ⋱ ⋮

Φ ΛΦ
−

Φ ΛΦ
−

⋯
Φ ΛΦ ( )

−
+

= ( ⋯ )

ν λ

ν λ

ν λ

→

→

→

M

D

lim

lim

lim

,

diag , , , .

n

n

n

n

n

n

n

n

n n

n
n

n

1
†

1

1
1

1
†

2

2 1

1
†

1

2
†

1

1 2

2
†

2

2
2

2
†

2

†
1

1

†
2

2

†

1 2

n

1

2

By the equality (30) and (31) in the above subsection, together with transformation (19), 
then the n-dark soliton solutions for the equations (7) can be represented as follows:

[ ] =
Θ

∣ ∣
= ⋯θq n

M X

M
i N2 e , 1, 2, , ,i

i
c

†

2 i

i

i
 (41)

where

δ
λ μ λ μ

β β β

=
[ + ]

( + ) − ( + ¯ )

= [ ⋯ ]
Θ = [ ⋯ ]

( − ¯ )

⩽ ⩽

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟M

X

2 e
,

e , e , , e ,

e , e , , e ,

X X
mj

j j m m m j n

X X X

i i
X

i
X

N i
X

i

1 ,

i i i

1,
i

2,
i

,
i

j m

n

n

1 2

1 2

and

δ β
λ μ

=
≠
=

=
+ +

= ⋯α μ

⎧
⎨
⎩

m j

m j a
j N

0, ,

e , ,
,

1
, 1, 2, , .mj j i

j i j
2 ,m mI

Furthermore, the above formula (41) can be reduced as the following compact expression

[ ] = ∣ ∣
∣ ∣

θq n c
M

M
e ,i i

i i i (42)

where

δ
λ μ λ μ

β
=

[ + ]
( + ) − ( + ¯ )

−
( − )

( − ¯ )

⩽ ⩽

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟M

c

2 e 2
e .i

X X
mj

j j m m

j i

i

X X

m j n

i
, i

1 ,

j m

j m

In what follows, we consider some dynamics for the two-dark solitons (42) of the three-
component NLS equations. First, we consider the defocusing case ϵ = −1i , i   =   1, 2, 3. By 
using the method in the above subsection (we choose velocity v1   =   1 and v2   =   −1), the 
parameters are chosen as follows:
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λ λ α α
μ μ

= = − = = = =

≈ − ≈ = =
≈ + ≈ +

a a a c c c1, 1, 0, 1, 2,
3

2
,

1.121 588 903, 0.743 086 1497, 0,
0.121 588 9040 2.265 094 396i, 0.256 913 8501 2.564 117 194i.

1 2 3 1 2 3

1 2 1 2

1 2
 

(43)

Then we can show the dynamics of the two-dark soliton in figure 2. It is seen that the two-
dark soliton in each component collide elastically. The ‘phase shift’ still emerges after the 
two-dark soliton interaction, which is similar to the bright soliton interactions in the scalar 
case.

Second, we consider the mixed focusing and defocusing cases ϵ = −1i , i   =   1, 2 and ϵ = 13 . 
In the first place, we consider the two-pole two-dark soliton. Since the characteristic equa-
tion (26) for the three-component NLS equations  is a quartic equation, there perhaps exist 
two pairs of conjugate complex roots. These kinds of soliton cannot exist in the scalar or two-
component NLS system, since the characteristic equation does not allow the existence of two 
pairs of conjugation complex roots. For instance, we choose the parameters as follows

λ λ μ μ α α

= = − = = = =

= = = ( + ) = − ( + ) = =

a a a c c c1, 1, 0, 1,

0,
2

2
1 i ,

2

2
1 i , 0.

1 2 3 1 2 3

1 2 1 2 1 2
 (44)

Figure 2. (a)–(c) Density plot of ∣ ∣q1
2, ∣ ∣q2

2 and ∣ ∣q3
2 respectively; (d), (e) solid green line 

∣ ∣q1
2, dotted blue line ∣ ∣q2

2, dashed red line ∣ ∣q3
2. (d) t   =   −2, (e) t   =   2. The parameters 

are given in equation (43).
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The figures are given in figure 3. However, it is seen that there is no evidently different 
dynamics behaviour with the ordinary two-dark soliton solution.

Then we consider the two bound state of the three-component NLS equations, namely, 
the two solitons have the same velocity. The parameters are chosen by using the method in 
the above subsection. First, we choose the background parameters ai, ci and v   =   0, we can 
obtain two different values μ μ( ) ( )Im , Im1 2 . And then substituting them into the characteristic 
equation (26), we can obtain the two different spectral parameters λ λ,1 2. Since the parameters 
α α,1 2 depend on the initial position of the soliton, we choose different values to distinguish 
two solitons. For instance, we choose the parameters as follows

λ λ α α

μ μ

= = − = = = =

= −
−

= +
−

=
−

= −
+

= − + + ( − ) = − − + ( + )

a a a c c c1, 1, 0, 2, 1,

3

2

5 1

3 5 5
,

3

2

5 1

3 5 5
,

5

5 1
,

5

5 1
,

15 3 5

20

i

2
5 1 ,

15 3 5

20

i

2
5 1 ,

1 2 3 1 2 3

1 2 1 2

1 2

 

(45)

The dynamical evolution of the corresponding bound state dark solitons are shown in 
figure 4.

Figure 3. (a)–(c) Density plot of ∣ ∣q1
2, ∣ ∣q2

2 and ∣ ∣q3
2; (d), (e) solid green line ∣ ∣q1

2, dotted 
blue line ∣ ∣q2

2, dashed red line ∣ ∣q3
2, (d) t   =   −5, (e) t   =   5. The parameters are given in 

equation (44).
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4. Conclusions and discussions

In this paper, we obtain the uniform transformation for the N-component NLS equations, 
which can be used to derive multi-dark soliton solutions and many other types of localised 
wave solutions conveniently. To our knowledge, the transformation has a two-fold meaning, 
as follows.

First, the DT is related to the inverse scattering transformation, which is a method of 
solving the initial value problem of integrable PDE. The inverse scattering method of the 
coupled NLS equations  is an open problem in soliton theory. In 2006, Abolowitz et al 
solved this problem with the special background [26]. The DT method presented here pro-
vides a way of solving this problem, at least for the discrete spectrum without restricting 
the background.

There is another open question in the well-known book by Faddeev and Takhtajan (p 145, 
end of the second paragraph). The authors deem that the solution to the Riemann problem 
with zeros cannot be expressed as a product of Blaschke–Potapov factors and a solution of 
the regular Riemann problem with same continuous spectrum data. Indeed, by the above 
binary DT, we can construct the R( )L2  eigenfunction and the potential function for the spec-
tral problem:

⎡
⎣⎢

⎤
⎦⎥

λ σ σΦ = Φ = − ∂ − =
− ¯

→ → ± ∞θ(− ± )±L L Q Q
q

q
q x, i ,

0
0

, e as ,x
c t

1 3 3
i 2

Figure 4. (a)–(c) Density plot of ∣ ∣q1
2, ∣ ∣q2

2 and ∣ ∣q3
2; (d) t   =   0: solid green line ∣ ∣q1

2, dotted blue line ∣ ∣q2
2, 

dashed red line ∣ ∣q3
2. The parameters are given in equation (45).
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here

Φ = Φ
[ + ]

= − + ( ) −⎜ ⎟
⎛
⎝

⎞
⎠q c

B B
Y

2 e 1
, 1

2 2
tanh e ,

Y
c t1

2
1 1

1
i

1

2

where θ± is the asymptotical phase and

⎡
⎣
⎢

⎤
⎦
⎥

R
μ

λ μ
μ λ α μ λ λ α

λ μ
μ λ

=
+

⋯ = − ( + + ) ⋯ = − − < < ∈

Φ =
( + )

= − ( + ) +− −

B Y x t c c c

X x t c t

2i

i
, , , , , , ,

1

i e
e ,

i

2
.c t

X

1
1

1 1
1 1 1 1

2
1
2

1

1
1 1

1 i 1 1 1
2

2
1

Thus, this transformation can be used to add the discrete spectrum of the above spectral 
problem. Detailed research on this transformation applied to inverse scattering transformation 
will be undertaken in the future.

Second, the direct and simple application of this transformation is to derive the dark 
and multi-dark soliton solutions, which are significant for many different physical systems. 
Besides, the method in our paper can be generalised to look for some other types of nonlinear 
localised wave solutions. We would like to explore them in the future as well.
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