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High-order rogue waves in vector nonlinear Schrödinger equations
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We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger
equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the
coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can
be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical
solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities
to observe these new patterns for rogue waves are discussed for a nonlinear fiber.
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Introduction. Rogue wave (RW) is the name given by
oceanographers to isolated large-amplitude waves which
occur more frequently than expected for normal, Gaussian-
distributed, statistical events [1–3]. It depicts a unique event
that seems to appear from nowhere and disappear without
a trace, and can appear in a variety of different contexts
[4–7]. RWs have been observed experimentally in nonlinear
optics [8,9], water wave tanks [10], and even in plasma
systems [11]. These experimental studies suggest that the
rational solutions of related dynamics equations can be used
to describe these RW phenomena [12,13]. Moreover, there are
many different pattern structures for high-order RWs [14–16],
which can be understood as a nonlinear superposition of
the fundamental RW (the first-order RW). Recently, many
efforts were devoted to classifying the hierarchy for each order
RW [17,18], since the superpositions are nontrivial and admit
only a fixed number of elementary RWs in each high-order
solution.

Recent studies were extended to RWs in multicomponent
coupled systems, since complex systems usually involve more
than one component [19–21]. For the coupled system, the
usual coupled effects are cross-phase modulation. The linear
stability analysis of the coupled system indicates that the
cross-phase modulation term can vary the instability regime
characters [22–24]. Moreover, for scalar systems, the velocity
of the background field has no real effect on the pattern
structure for RWs, since the corresponding solutions can be
correlated through Galileo transformation. But for a coupled
system, the relative velocity between different component
fields has real physical effects, and cannot be erased by
any trivial transformation. Therefore, the extended studies on
vector RWs are nontrivial and meaningful. Recently, some
novel patterns for RWs were presented in the coupled systems,
such as dark RWs [25,26], the interaction between RWs
and other nonlinear waves [26–28], a four-petaled flower
structure [29,30], and so on. These studies indicate that
there are very abundant pattern dynamics for RWs in the
multicomponent coupled systems, which are quite distinctive
from the ones in scalar systems.
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Very recently, high-order RWs [31,32] were excited suc-
cessfully in a water wave tank. This suggests that a high-order
analytic RW solution is meaningful physically and can be
realized experimentally [33]. However, as far as we know, the
high-order vector RW has not been taken seriously until now.
In [34], the authors consider the high-order RW solutions,
which can be reduced into scalar ones, by a modified Darboux
transformation (DT) method. As high-order scalar RWs are
nontrivial superpositions of elementary RWs, the high-order
vector ones could be nontrivial and possess more abundant
dynamics characters. The knowledge about them would enrich
our realization and understanding of RW complex dynamics.

In this Brief Report, we introduce a family of high-order
rational solutions in a coupled nonlinear Schrödinger equation
(CNLSE), which describes RW phenomena in multicompo-
nent systems prototypically. We find that four fundamental
RWs can emerge from the second-order vector RW in the
coupled system, which is quite different from the scalar
high-order ones for which it is impossible for four fundamental
RWs to emerge. Moreover, six fundamental RWs can emerge
in the distribution for the second-order vector RW.

The two-component coupled model. We begin with the well-
known CNLSE in dimensionless form,

iq1,t + q1,xx + g(|q1|2 + |q2|2)q1 = 0,
(1)

iq2,t + q2,xx + g(|q1|2 + |q2|2)q2 = 0,

where g is the nonlinear coefficient. The CNLSE model
can describe the dynamics of matter waves in quasi-one-
dimensional two-component Bose-Einstein condensate [20],
the evolution of optical fields in a two-mode or polarized
nonlinear fiber [21], and even the vector financial system [35].
With g = 2, Eq. (1) admits the following Lax pair:

�x = (iλ� + Q)�,
(2)

�t = [3iλ2� + 3λQ + iσ3(Qx − Q2)]�,

where

Q =
⎛
⎝ 0 q1 q2

−q̄1 0 0
−q̄2 0 0

⎞
⎠,

� = diag(−2,1,1),
σ3 = diag(1,−1,−1),

the overbar represents complex conjugation. The compatibility
condition �xt = �tx gives the CNLSE (1).
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The standard DT [36] for linear system (2) is

�[1] = T �, T = I + λ̄1 − λ1

λ − λ̄1

�1�
†
1

�
†
1�1

,

(3)
Q[1] = Q + i(λ̄1 − λ1)[P1,�],

where �1 is a special solution for system (1) at λ = λ1, and the
symbol † represents the Hermitian transpose. It is well known
that the standard N-fold DT should be done with different
spectral parameters, or there will be some singularity in the
DT matrix. The generalized DT was presented to solve this
problem in [15], which can be used to derive high-order RWs
conveniently by taking a special limit about the parameters λi .

The studies on the first-order vector RW in Refs. [26,28]
indicate that there should be some restriction conditions on the
plane-wave background fields (αj exp [ikjx + wj t], j = 1,2)
to obtain the general RW solutions for CNLSE. The wave-
vector difference of background plane wave |k1 − k2| between
the two components should satisfy certain relations with the
background amplitudes αj and nonlinear coefficient g, namely,

α1 = α2 = α and |k1 − k2| =
√

g

2 α [26]. In Ref. [28], they
chose the seed solution

q1 = αei( 1
2 αx+ 15

4 α2t), q2 = αei(− 1
2 αx+ 15

4 α2t).

In fact, the parameter α can be rescaled by scaling transfor-
mation. Thus we can consider a much simpler seed solution as
the background where RWs exist without losing generality

q1 = exp θ1, q2 = exp θ2, (4)

where θ1 = [i( 1
2x + 15

4 t)] and θ2 = [i(− 1
2x + 15

4 t)].
We have proved that high-order RWs can be derived by

taking a certain limit of the spectral parameter [15]. To take the
limit conveniently, we set λj =

√
3i
2 (1 + ε3

j ), j = 1,2, . . . ,N .
Substituting seed solution (4) into Eq. (2), we can obtain the
fundamental solution

�i(λj ) = D

⎡
⎢⎣

[
i
(
λj + 1

2

) − ξi

][
i
(
λj − 1

2

) − ξi

]
exp ωi[

i
(
λj − 1

2

) − ξi

]
exp ωi[

i
(
λj + 1

2

) − ξi

]
exp ωi

⎤
⎥⎦,

where i = 1,2,3,

D = diag(e
5it
2 , e− i

4 (2x+5t), e
i
4 (2x−5t)),

ωi = ξix +
(

iξ 2
i + 2λjξi + 2iλ2

j + 3i

2

)
t,

and ξi satisfies the following cubic equation:

ξ 3 −
(

9

2
ε3
j + 9

4
ε6
j

)
ξ − 3

2

√
3ε3

j − 9

4

√
3ε6

j − 3

4

√
3ε9

j = 0.

(5)

By the Taylor expansion of the fundamental solution form as
done in [15], the generalized DT can be used to derive the
RW solution. However, Taylor expansions of the fundamental
solution form are quite complicated which results in very
complex calculations. We find this process can be simplified

greatly by the following special solution form:

�1(λj ) = 1

3
[�1(λj ) + �2(λj ) + �3(λj )],

�2(λj ) =
3
√

2

3εj

[�1(λj ) + ω2�2(λj ) + ω�3(λj )], (6)

�3(λj ) =
3
√

4

3ε2
j

[�1(λj ) + ω�2(λj ) + ω2�3(λj )],

where ω = exp[2iπ/3], which are also the solution of the Lax
pair with the seed solutions (4). We can prove that

�(εj ) = f �1 + g�2 + h�3, (7)

where

f = f1 + f2ε
3
j + f3ε

6
j + · · · + fNε

3(N−1)
j ,

g = g1 + g2ε
3
j + g3ε

6
j + · · · + gNε

3(N−1)
j ,

h = h1 + h2ε
3
j + h3ε

6
j + · · · + hNε

3(N−1)
j ,

and fi , gi , and hi are complex numbers, can be expanded
around εj = 0 with the following form:

�(εj ) = �[1] + �[2]ε3
j + �[3]ε6

j + · · · + �[N]ε
3(N−1)
j

+O
(
ε3N
j

)
.

To obtain the vector RW solution, we merely need to take
the limit εj → 0 [17]. After performing the generalized DT,
we can present the Nth-order localized solution on the plane
backgrounds with the same spectral parameter λj =

√
3i
2 (1 +

ε3
j ) as

q1[N ] = exp θ1
det(M1)

det(M)
,

(8)

q2[N ] = exp θ2
det(M2)

det(M)
,

where

M1 = M − 3iY
†
2 Y1, M2 = M − 3iY

†
3 Y1,

(9)

X =
⎡
⎣X1

X2

X3

⎤
⎦ = [�[1], �[2], . . . ,�[N]],

Y1 = X1e
− 5it

2 , Y2 = X2e
i
4 (2x+5t), Y3 = X3e

i
4 (−2x+5t), and M =

(Ml,m)1�l,m�N . The Ml,m can be derived by

〈�(εj ),�(εj )〉
λj − λ̄j

=
+∞,+∞∑
l,m=1

Ml,mε
3(m−1)
j ε̄

3(l−1)
j .

The compact solution formula (8) can be used to derive an
Nth-order RW solution. With N = 1, the first-order vector
RW can be derived directly, which agrees well with the
ones in [26,28]. We find the dynamics structures of high-order
RWs in the coupled system are much more abundant than the
ones in scalar systems [14–18]. Even for the second-order
RWs, their distributions possess many different structures,
which are quite different from the second-order scalar ones.
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FIG. 1. (Color online) (a), (b) The rhombus structure for the
second-order vector RW which contains four fundamental ones. The
parameters are f1 = 0, f2 = 0, g1 = 1, g2 = 0, h1 = 0, h2 = 10 000.
(c), (d) The rectangle structure for the second-order vector RW which
contains four fundamental ones. The parameters are f1 = 0, f2 = 0,
g1 = 1, g2 = 1000, h1 = 10, h2 = 0.

As an example, we exhibit the dynamics behavior of a second-
order vector RW solution. Since the expressions of the high-
order RW solution are quite complicated, we will present them
elsewhere.

The dynamics of second-order vector rogue waves. There
are six free parameters in the generalized second-order RW
solution, denoted by fj , gj , and hj (j = 1,2), which can be
used to obtain different types or patterns for the rogue-wave
dynamics. We find that there are mainly two kinds of RW
solutions which correspond to four fundamental RWs and
six fundamental ones obtained by setting f1 = 0 and f1 �= 0,
respectively.

First, we discuss the second-order RW solution which
possesses four fundamental RWs. The pattern is quite different
from the ones in a scalar NLSE system [17,18], for which it
is impossible for four fundamental RWs to emerge on the
temporal-spatial distribution plane. To obtain this kind of
solution, we merely need to choose the parameter f1 = 0. We
classify them by parameters f2, g1, g2, h1, h2 whether or not
they are zeros. By this classification, there could be 25 kinds
of different solutions which correspond to different patterns
on the temporal-spatial distribution. We find there are mainly
three types of the patterns, such as quadrilateral, triangle, and
line structures.

The explicit shape of the quadrilateral can be varied through
the parameters. As an example, we show two cases for the
quadrilateral structure in Fig. 1. In the first case, the four RWs

FIG. 2. (Color online) (a), (b) The triangle structure for the
second-order vector RW which contains four fundamental ones. The
parameters are f1 = 0, f2 = 100, g1 = 1, g2 = 0, h1 = 0, h2 = 0.
(c), (d) The line structure for the second-order vector RW which
contains four fundamental ones. The parameters are f1 = 0, f2 = 0,
g1 = 1, g2 = 0, h1 = 10, h2 = 0.

arrange with the rhombus structure [Figs. 1(a) and 1(b)]. The
spatial-temporal distributions are similar globally in the two
components, but the RW with the highest peak emerges at
different times: it appears at time t = −5 for the component
q1, and at t = 5 for the component q2. In the second case,
the four RWs arrange with a rectangle structure [Figs. 1(c)
and 1(d)]. It is seen that the peak values of the two RWs on the
right-hand side are much higher than the ones on the left-hand
side in the component q1. The character is inverse for the
component q2.

Varying the other parameters, we can observe the interac-
tion between the four RWs. When two of them fuse into a
new RW, the three RWs can emerge with a triangle structure
on the temporal-spatial distribution [Figs. 2(a) and 1(b)].
The structure of the triangle can be changed by varying the
parameters. Especially, the three RWs can emerge into a line
[Figs. 2(c) and 2(d)] which is perpendicular to the t axis.
Namely, at a certain time, three or four RWs can emerge
synchronously.

Second, we consider the second case of the second-order
RW, which possesses six fundamental RWs. To obtain this
kind of RW, we choose the parameter f1 = 1. We find
that the six fundamental RWs can constitute many different
structures, such as pentagon, quadrilateral, triangle, and line
structures. As an example, we show the pentagon structure
in Figs. 3(a) and 3(b). The pentagon structure can be varied
too by changing the parameters. There is one RW in the
internal region of the pentagon, and its location in the
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FIG. 3. (Color online) (a), (b) The pentagon structure for the
second-order vector RW which contains six fundamental ones. The
parameters are f1 = 1, f2 = 0, g1 = 0, g2 = 0, h1 = 0, h2 = 10 000.
(c), (d) The rectangle structure for the second-order vector RW which
contains six fundamental ones. The parameters are f1 = 1, f2 = 0,
g1 = 0, g2 = 0, h1 = 100, h2 = 0.

distribution plane can be varied too. This case is similar
to the pentagon structure of the third-order RW of a scalar
NLS equation [17,18]. The six RWs can be arranged with
the rectangle structure by varying the parameters, such as the
one in Figs. 3(c) and 3(d). The structure is similar to the
one in Figs. 1(c) and 1(d). But there is a new RW inside
the rectangle, which is formed by the interaction of the other
two fundamental RWs.

The six RWs can be also arranged with the triangle
structure, shown in Figs. 4(a) and 4(b). In this case, there
are two fundamental RWs and a new RW to form a triangle.
The new RW is formed by the interaction between the other
four fundamental RWs. Moreover, the RWs can be arranged
with a line structure too, shown in Figs. 4(c) and 4(d). There
should be six fundamental RWs arranged in one line case, but
it is very complicated to derive the case since the parameters
are too many to be managed well. We just show a particular
one of the line cases.

Possibilities to observe these vector rogue waves. It is
expected that these vector RWs could be observed in two-
mode nonlinear fibers [8,9]. As an example, we consider the
case that the operation wavelength of each mode is nearly
1.55 μm, the group-velocity dispersion (GVD) coefficients
are −20 ps2 km−1 in the anomalous regime, and the Kerr
coefficients are nearly 1.1 W−1 km−1, corresponding to the
self-focusing effect in the fiber [37]. The unit in x direction
will be denoted as 0.23 ps, and the one in t will be
denoted as 0.55 km. One can introduce two distinct modes

FIG. 4. (Color online) (a), (b) The triangle structure for the
second-order vector RW which contains six fundamental ones. The
parameters are f1 = 1, f2 = 0, g1 = 10, g2 = 0, h1 = 0, h2 = 0 . (c),
(d) The line structure for the second-order vector RW which contains
six fundamental ones. The parameters are f1 = 1, f2 = 0, g1 = 0,
g2 = 0, h1 = 0, h2 = 0.

to the nonlinear fiber operating in the anomalous GVD
regime [38,39]. The spontaneous development of RWs seeded
from some perturbation should be on the continuous waves
as those in [8,9]. The continuous-wave background intensities
in the two modes should be equal (assume to be 1 W), and
the frequency difference between the two modes should be
0.23 ps−1 to observe the vector RW. We can manipulate the
initial perturbation approaching the ideal initial condition to
observe these vector RW patterns. The ideal initial condition
including intensity and phase profiles can be given by the exact
second-order vector RW solution with given parameters in the
scaled units. Moreover, the initial intensity and phase profiles
can be made through the related modulation operator [9,37].
The vector RWs could be observed in the nonlinear fiber
while approaching the ideal initial excitation form presented
here [9].

Conclusions. We present a generalized RW solution of the
CNLSE which can be used to obtain an arbitrary-order vector
RW. We find that there are mainly two kinds of rogue-wave
solutions for the second-order vector RW in CNLSE, which
correspond to four fundamental RWs and six fundamental
ones. Based on these results, we expect that there are many
more abundant exotic patterns for RWs in NLSEs with three
or more components.
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