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Darboux transformation is constructed for a third-order spectral problem. By proper
reduction, a Darboux transformation for a long-short wave model is obtained.
Furthermore, a closed multi-soliton solution formula is found for this equation.
C© 2011 American Institute of Physics. [doi:10.1063/1.3589285]

I. INTRODUCTION

Construction of solution for nonlinear systems has been a difficult and yet an important problem.
During last four decades, important progress has been made and many methods have been developed
serving this purpose. For instance, one may try to find solution for a given system by now well-known
methods such as inverse scattering transformation,1, 2 Hirota method,8 or Darboux or Bäcklund
transformation.9

The aim of the this paper is to study a long wave-short wave model, which reads as

At = 2σ (|B|2)x ,

Bt = i Bxx − Ax B + i A2 B − 2iσ B|B|2,
(1)

where A = A(x, t) represents the amplitude of the long wave and B(x, t) the envelope of the short
wave. This equation was considered by Newell13, 14 in terms of the inverse scattering transformation.
Chowdhury and Chanda3 took the Weiss-Tabor-Carnevale approach to the Painlevé analysis and
considered its integrabilty and Bäcklund transformation. In Ref. 11, it was shown that (1) is related
with a model equation proposed by Yajima and Oikawa through a Muira transformation. For its
physical relevance, we refer to the recent paper.4 While this is an important model, to our knowledge,
not much is known for its solutions. In particular, while one-soliton solution was calculated in the
framework of the inverse scattering transformation, a compact formula is not available for the general
N -soliton solution.

In this paper, we will take up this problem. We will construct a Darboux transformation for
(1). Indeed, Darboux transformation approach has been very successful for construction of soliton
solutions for some nonlinear systems.5–7, 12 We will work with a general 3 × 3 spectral problem
and construct its Darboux transformation. This will be done in Sec. II. Then, in Sec. III, we reduce
this Darboux transformation to the particular case we are interested in. In Sec. IV, we will give the
N−fold Darboux matrix. In the last section, we present some explicit solutions.
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II. DARBOUX TRANSFORMATION

We begin with the following general spectral problem:

�x = U�, (2a)

�t = V �, (2b)

where

U = ζ J + P, V =
N∑

i=0

ζ i Vi (3)

with

J =

⎛
⎜⎜⎝

i 0 0

0 0 0

0 0 −i

⎞
⎟⎟⎠, P =

⎛
⎜⎜⎝

0 B i A

C 0 D

i E F 0

⎞
⎟⎟⎠,

and ζ is the spectral parameter; A, B, C, D, E, F are field variables depending on x and t and
Vi (i = 1, 2, . . . , N ) are the matrices which could be determined by means of the zero-curvature
condition

Ut − Vx + [U, V ] = 0

or

[J, VN ] = 0,

[J, VN−1] + [P, VN ] = 0,

[J, Vi−1] + [P, Vi ] − Vi,x = 0, i = 1, . . . , N − 1,

Pt − V0,x + [P, V0] = 0. (4)

Generally, Eq. (4) is an evolution equation.
To construct a Darboux transformation for (2), we also consider the associated conjugate

equations

−�T
x = �T U, (5a)

−�T
t = �T V, (5b)

where �T is the 3-row vector.
Now according to Refs. 6 and 10, by combining the elementary Darboux transformation of

original spectral problem and that of conjugate spectral problem, we can construct a new Darboux
transformation. Indeed, the Darboux matrix for the spectral problem (2) reads as

T = I + ν1 − ξ1

ζ − ν1

�1�
T
1

�T
1 �1

, (6)

and the Darboux matrix for the conjugate spectral problem (5) is

T c = I + ξ1 − ν1

ζ − ξ1

�1�
T
1

�T
1 �1

, (7)

where �1 is a special solution of the spectral problem (2) with ζ = ξ1, �T
1 is a special solution of

the conjugate spectral problem (5) at ζ = ν1. It is easy to see that T cT = T T c = I .
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III. REDUCTIONS

With the results above, we now turn to Eq. (1). According to Newell,13, 14 the corresponding
spectral problem for (1) is the one (2) but with the specific U and V given by

U =

⎛
⎜⎝

iζ B i A

σ B∗ 0 σ B∗

i A B −iζ

⎞
⎟⎠ , (8)

V =

⎛
⎜⎜⎝

− 1
3 iζ 2 − iσ B B∗ −Bζ + i Bx − AB iσ B B∗

−σ (B∗ζ + B∗
x + AB∗) 2

3 iζ 2 + 2iσ B B∗ σ (B∗ζ − i B∗
x − AB∗)

iσ B B∗ Bζ + i Bx − AB − 1
3 iζ 2 − iσ B B∗

⎞
⎟⎟⎠ , (9)

where σ = ±1. Thus, instead of the previous six field variables, we now have only two dependent
variables and our task is to construct a proper Darboux transformation for this particular case. To
this end, for the general spectral problem of Sec. II, we may take a two-step reduction. At the first
step, we impose on the U given by (3) the following condition:

U †(ζ ) = −σ1U (ζ ∗)σ1, V †(ζ ) = −σ1V (ζ ∗)σ1, (10)

where σ1 = diag{1,−σ, 1}.
The above constraint reduces the number of field variables by half and we are led to

U =

⎛
⎜⎝

iζ B i A

σ B∗ 0 D

i A∗ σ D∗ −iζ

⎞
⎟⎠ .

At the second step, we ask for

σ2U (ζ )σ2 = U (−ζ ), σ2V (ζ )σ2 = V (−ζ ), (11)

where

σ2 =

⎛
⎜⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎟⎠.

This constraint gives (8).
With the first constraint (10) and �i being a solution for the linear spectral problem at ζ = ξi , it

is easy to show that �
†
i σ1 is a special solution to the conjugate spectral problem at ζ = ξ ∗

i . Similarly,
under the second constraint (11), it is straightforward to check that σ2�i is a special solution to the
linear spectral problem at ζ = −ξi , providing that �i is a solution to the equation at ζ = ξi .

Now we implement these constraints so that we can find a Darboux transformation for (1). We
can readily show that if U and V satisfy (10), after a Darboux transformation with the following
Darboux matrix:

T [1] = I + ξ ∗
1 − ξ1

ζ − ξ ∗
1

�1�
†
1σ1

�
†
1σ1�1

,

the transformed fields U [1] and V [1] also fulfill (10).
As shown above, a single Darboux transformation can be formulated for the first reduction, but

the similar thing could not be done for the second reduction (11). Thus we naturally consider two-
or more-step Darboux transformation. With ξ2 = −ξ1 and �2 = σ2�1, the two-step Darboux matrix
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reads as

T = T [2]T [1]

=
[

I + ξ1 − ξ ∗
1

ζ + ξ ∗
1

T [1]|ζ=−ξ1σ2�1�
†
1σ2T [1]c|ζ=−ξ∗

1

�
†
1σ2T [1]c|ζ=−ξ∗

1
T [1]|ζ=−ξ1σ2�1

] [
I + ξ ∗

1 − ξ1

ζ − ξ ∗
1

�1�
†
1σ1

�
†
1σ1�1

]

= I − �1

ζ − ξ ∗
1

− �2

ζ + ξ ∗
1

,

(12)

where

�1+�2=
[

�
†
1σ2σ1σ2�1

−ξ1+ξ∗
1

�1�
†
1σ1−�

†
1σ2σ1�1

ξ1+ξ∗
1

σ2�1�
†
1σ1

]
+

[
�

†
1σ1�1

ξ1−ξ∗
1

σ2�1�
†
1σ2σ1−�

†
1σ1σ2�1

−ξ1−ξ∗
1

�1�
†
1σ2σ1

]
∣∣∣∣∣∣∣

�
†
1σ1�1

ξ1−ξ∗
1

�
†
1σ1σ2�1

−ξ1−ξ∗
1

�
†
1σ2σ1�1

ξ1+ξ∗
1

�
†
1σ2σ1σ2�1

−ξ1+ξ∗
1

∣∣∣∣∣∣∣
.

Then, by direct calculation, one may verify that this Darboux transformation preserves the constraint
(10) as well as (11). The associated transformations between field variables are given by

Â = A + 2(�1 + �2)13,

B̂ = B + i(�1 + �2)12,

where (�1 + �2)kl denotes the entry of kth row and lth column for �1 + �2.
As usual, this particular Darboux transformation may be iterated. However, an alternative

approach to this problem may be adopted and a better form exists as we will show in Sec. IV.

IV. THE ITERATED DARBOUX TRANSFORMATION

We consider the fractional form of Darboux matrices (6) and (7) and at first we study
the general problem with no reduction involved. Suppose that we are given N solutions �k at
ζ = ξk (ξi �= ξ j , i �= j) of (2) and N solutions �T

k at ζ = νk(νi �= ν j , i �= j) (ξm �= νn) of (5) (k
= 1, 2, . . . , N ), respectively, then composition of Darboux transformations leads to the N -fold
Darboux transformation

T = T [N ]T [N − 1] · · · T [1], T c = T [1]cT [2]c · · · T [N ]c, (13)

where

T [k] = I + νk − ξk

ζ − νk

�k[k − 1]�T
k [k − 1]

�T
k [k − 1]�k[k − 1]

,

T [k]c = I + ξk − νk

ζ − ξk

�k[k − 1]�T
k [k − 1]

�T
k [k − 1]�k[k − 1]

,

and

�k[k − 1] = T [k − 1]T [k − 2] · · · T [1]|ζ=ξk �k,

�T
k [k − 1] = �T

k T [1]cT [2]c · · · T [k − 1]c|ζ=νk .

Thus, we infer that T and T c take the following forms:

T = I + A1

ζ − ν1
+ A2

ζ − ν2
+ · · · + AN

ζ − νN
, (14)

T c = I + C1

ζ − ξ1
+ C2

ζ − ξ2
+ · · · + CN

ζ − ξN
. (15)
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It is easy to see that the rank of Ak is less than or equal to 1. Taking account of the following facts:

det T = (ζ − ξ1)(ζ − ξ2) · · · (ζ − ξN )

(ζ − ν1)(ζ − ν2) · · · (ζ − νN )
, det T c = (ζ − ν1)(ζ − ν2) · · · (ζ − νN )

(ζ − ξ1)(ζ − ξ2) · · · (ζ − ξN )
,

we find that both Ak’s and Ck’s are all rank one matrices. Therefore, we assume

Ak = |ak〉〈bk |, Ck = |ck〉〈dk |,

where |ak〉 and |ck〉 are column vectors, while 〈bk |, 〈dk | are row vectors. Keeping the identity
T T c = I , T cT = I at ζ = ξk , ζ = νk in mind, we arrive at the following:

T |ζ=ξk |ck〉 = 0, 〈bk |T c|ζ=νk = 0, (16)

T c|ζ=νk |ak〉 = 0, 〈dk |T |ζ=ξk = 0. (17)

Owning to equation (13)–(16), we have the identifications |ck〉 = �k and 〈bk | = �T
k . Rewriting the

equations (16) and (17), we obtain

|ck〉 = −
N∑

l=1

|al〉〈bl |ck〉
ξk − νl

, 〈bk | =
N∑

l=1

〈bk |cl〉〈dl |
ξl − νk

, (18)

|ak〉 = −
N∑

l=1

|cl〉〈dl |ak〉
νk − ξl

, 〈dk | =
N∑

l=1

〈dk |al〉〈bl |
νl − ξk

. (19)

Introducing the notions

D =
( 〈bl |ck〉

ξk − νl

)
lk

, D̂ =
( 〈dl |ak〉

νk − ξl

)
lk

,

which fulfill the relation DD̂ = I , then in general case we obtain the iterated Darboux matrices

T = I −
N∑

k,l=1

1

ζ − νk
|cl〉(D−1)lk〈bk |, (20)

T c = I +
N∑

k,l=1

1

ζ − ξk
|cl〉(D−1)lk〈bk |. (21)

As discussed in the last section, to have a meaningful Darboux transformation for (1), one needs
to choose seed solutions properly. Indeed, let μk, (k = 1, 2, ..., N ) be distinct complex numbers and
�k be the solution of (2) under the constraints (10) and (11) at ζ = μk . Then, we assume

ξ2k−1 = μk, ξ2k = −μk, �2k−1 = �k, �2k = σ2�k,

ν2k−1 = μ∗
k , ν2k = −μ∗

k �T
2k−1 = �

†
k, �T

2k = �
†
kσ2σ1,

(k = 1, 2, . . . , N ), the 2N-fold Darboux transformation preserves the constraints (10) and (11). A
direct calculation yields

P̂ = P +
[

J,

2N∑
k,l=1

|cl〉(D−1)lk〈bk |
]

, (22)
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where |c2k−1〉 = �k , |c2k〉 = σ2�k , 〈b2k−1| = �
†
kσ1, 〈b2k | = �

†
kσ2σ1, and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
†
1σ1�1

μ1−μ∗
1

�
†
1σ1σ2�1

−μ1−μ∗
1

· · · �
†
1σ1�N

μN −μ∗
1

�
†
1σ1σ2�N

−μN −μ∗
1

�
†
1σ2σ1�1

μ1+μ∗
1

�
†
1σ2σ1σ2�1

−μ1+μ∗
1

· · · �
†
1σ2σ1�N

μN +μ∗
1

�
†
1σ2σ1σ2�N

−μN +μ∗
1

· · · · · · · · · · · · · · ·
�

†
N σ1�1

μ1−μ∗
N

�
†
N σ1σ2�1

−μ1−μ∗
N

· · · �
†
N σ1�N

μN −μ∗
N

�
†
N σ1σ2�N

−μN −μ∗
N

�
†
N σ2σ1�1

μ1+μ∗
N

�
†
N σ2σ1σ2�1

−μ1+μ∗
N

· · · �
†
N σ2σ1�N

μN +μ∗
N

�
†
N σ2σ1σ2�N

−μN +μ∗
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is,

Â = A + 2

(
2N∑

k,l=1

|cl〉(D−1)lk〈bk |
)

13

= A + 2
2N∑
k=1

det Dk

det D
, (23)

B̂ = B + i

(
2N∑

k,l=1

|cl〉(D−1)lk〈bk |
)

12

= B + i
2N∑
k=1

det Sk

det D
, (24)

where D2k−1 is the matrix D with (2k − 1)th row replaced by the vector[
φ

(1)
1 φ

(k)∗
3 , φ

(1)
3 φ

(k)∗
3 , . . . , φ

(N )
1 φ

(k)∗
3 , φ

(N )
3 φ

(k)∗
3

]
,

D2k is the matrix D with 2kth row replaced by the vector[
φ

(1)
1 φ

(k)∗
1 , φ

(1)
3 φ

(k)∗
1 , . . . , φ

(N )
1 φ

(k)∗
1 , φ

(N )
1 φ

(k)∗
1

]
,

S2k−1 is the matrix D with (2k − 1)th row replaced by the vector[
−σφ

(1)
1 φ

(k)∗
2 , −σφ

(1)
3 φ

(k)∗
2 , . . . , −σφ

(N )
1 φ

(k)∗
2 , −σφ

(N )
3 φ

(k)∗
2

]
, (25)

and S2k is the matrix D with 2kth row replaced by the above vector (25).

V. EXPLICIT SOLUTIONS

In what follows, we will construct some solutions for (1) by means of the Darboux transformation
constructed above.

(23) and (24) supply us

A[1] = A − 4αβ
2α Im(ψ1ψ

∗
3 )G − β

(|ψ1|2 − |ψ3|2
)

H

α2G2 + β2 H 2
, (26)

B[1] = B − 2σαβ(ψ1 − ψ3)ψ∗
2

αG − iβH

α2G2 + β2 H 2
, (27)

where G = |ψ1|2 + |ψ3|2 − σ |ψ2|2, H = 2Re(ψ∗
1 ψ3) − σ |ψ2|2, and (ψ1, ψ2, ψ3)T is a special so-

lution of the linear spectral problems at ζ = μ1 = α + iβ. Depending on the values of the seeds A
and B, we have two types of solutions for the system (1).

• A = B = 0.
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In this case, the solution to the linear spectral problems at ζ = μ1 = α + βi is given by⎛
⎜⎜⎝

ψ1

ψ2

ψ3

⎞
⎟⎟⎠ = exp(−4

3
αβt + i[

2

3
(α2 − β2)t + θ2])

×

⎛
⎜⎜⎝

k1 exp(−βx + 2αβt + i[αx − (α2 − β2)t + θ1])

k2

k3 exp(βx + 2αβt + i[−αx − (α2 − β2)t + θ3])

⎞
⎟⎟⎠, (28)

where ki ≥ 0, θi , (i = 1, 2, 3) are arbitrary real numbers. Substituting (28) to (26) and (27)
leads to the explicit solutions. By choosing the parameters differently, we obtain the solutions
with different behaviors.
(I) Traveling solitary solution
Suppose k3 = 0, we obtain the first kind traveling wave solution

A[1] = −4αβ2σk2
1k2

2 exp(−2βx + 4αβt)

α2
[
k2

1 exp(−2βx + 4αβt) − σk2
2

]2 + β2k4
2

,

|B[1]|2 = 4α2β2k2
1k2

2 exp(−2βx + 4αβt)

α2
[
k2

1 exp(−2βx + 4αβt) − σk2
2

]2 + β2k4
2

.

Taking k1 = 0, we have the second kind traveling wave solution

A[1] = 4αβ2σk2
2k2

3 exp(2βx + 4αβt)

α2
[
k2

3 exp(2βx + 4αβt) − σk2
2

]2 + β2k4
2

,

|B[1]|2 = 4α2β2k2
2k2

3 exp(2βx + 4αβt)

α2
[
k2

3 exp(2βx + 4αβt) − σk2
2

]2 + β2k4
2

,

which is nothing but the soliton solution obtained by inverse scattering transformation13 up to

k2
3 =

√
α2+β2

α2 k2
2.

(II) Y-V-type solutions
With the assumption that the parameters ki are all nonzero we obtain

A[1] = 4αβ
−2αk1k3 exp(4αβt) sin(v3)G1 + β

[
k2

1 exp(v1) − k2
3 exp(v2)

]
H1

α2G2
1 + β2 H 2

1

,

|B[1]|2 = 4α2β2 k2
2

[
k2

1 exp(v1) + k2
3 exp(v2) − 2k1k3 cos(v3) exp(4αβt)

]
α2G2

1 + β2 H 2
1

,

where v1 = −2βx + 4αβt , v2 = 2βx + 4αβt , v3 = 2αx + θ1 − θ3,

G1 = k2
1 exp(v1) + k2

3 exp(v2) − k2
2σ,

H1 = 2k1k3 cos(v3) exp(4αβt) − k2
2σ.

In this case, the solutions would yield the singular at

x = ln(k1) − ln(k3)

4β
, t = 2 ln(k2) − (ln(k1) + ln(k3) + ln(2))

4αβ
,

with σ = 1 and α(ln(k1)−ln(k3))+β(θ1−θ3)
4βπ

∈ Z.
We also notice that the solitary solutions considered in (I) above can be regarded as the
appropriate limits of the Y-V-solutions. Indeed, the first kind traveling solution is recovered
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FIG. 1. (Color online) (a), (b): Normal breather type (μ1 = 1 + √
3i , σ = −1, c1 = c3 = 1, c2 = 0); (c), (d): Y-V-Breather

type (μ1 = 1 + √
3i , σ = −1, c1 = c2 = c3 = 1).

if −x + 2αt = 1
2β

ln(|α|
√

α2 + β2k2
1k2

2) and αβt → −∞, while the second kind traveling

solution can be obtained with x + 2αt = 1
2β

ln(|α|
√

α2 + β2k2
2k2

3) and αβt → −∞.
• A = 0, B = exp(−2iσ t).

In present case, the solutions to the linear spectral problems at ζ = μ1 reads as⎛
⎜⎜⎝

ψ1

ψ2

ψ3

⎞
⎟⎟⎠ = exp(

2

3
iμ2

1t)

⎛
⎜⎜⎝

i
μ1

exp(−2iσ t) 1
2σν2 exp(w1) − 1

2σν3 exp(w2)

1 exp(w1 + 2iσ t) exp(w2 + 2iσ t)

− i
μ1

exp(−2iσ t) 1
2σν3 exp(w1) − 1

2σν2 exp(w2)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎠,

(29)

where ν1 =
√

−μ2
1 + 2σ , ν2 = iμ1 + ν1, ν3 = −iμ1 + ν1, w1 = ν1x − iμ2

1t , w2 = −ν1x −
iμ2

1t , and ck (k=1, 2, 3) are arbitrary complex numbers. Substituting (29) into (26), we have
two breather type solutions, whose plots are given by Fig. 1 above.
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5 J. L. Ciesĺinśki, J. Phys. A: Math. Theor. 42, 404003 (2009).
6 E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics (Springer-Verlag, Berlin, 2007).
7 C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications

(Springer-Verlag, Berlin, 2005).
8 R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, England, 2004).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.1063/1.527174
http://dx.doi.org/10.1007/BF00669298
http://dx.doi.org/10.1103/PhysRevLett.100.153905
http://dx.doi.org/10.1088/1751-8113/42/40/404003


053513-9 Long waves-short waves model J. Math. Phys. 52, 053513 (2011)
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