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We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components.
Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new
dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation
patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we
find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for
the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped
Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear
excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear
fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

DOI: 10.1103/PhysRevE.92.022924 PACS number(s): 05.45.Yv, 02.30.Ik

I. INTRODUCTION

The integrable nonlinear model plays an exceptional role
in the study of nonlinear wave dynamics [1]. It has been
demonstrated that not only a fundamental state but also
many nonlinear localized states can be stable in nonlinear
system. Moreover, some fundamental physical mechanisms,
e.g., modulation instability and Fermi-Pasta-Ulam recurrence,
can be described well by an Akhmediev breather or other
types of nonlinear waves. Many different integrable nonlinear
equations have been presented and studied for different
physical systems. Among them, the nonlinear Schrödinger
equation (NLS) has been given much attention because
of its widespread applications in optics, water wave tank,
plasmas, and financial systems, as well as the quantum world
of superfluids and Bose-Einstein condensates [2]. Recently,
coupled NLSs (CNLS) have become a topic of intense research
in theory, since the components are usually more than two
practically for many physical systems [3–8]. Generally, the
population or particle number in each component is conserved
for integrable CNLSs. However, in practical physical systems,
the particle numbers in each component are not necessarily
conserved. For instance, in microscopic particle transport, the
particle in one component can transfer to another component
through quantum tunneling [9–15]. In such systems, particle
population in each mode cannot be conserved, and dynamics of
nonlinear waves are expected to be more exotic. But the CNLS
with particle transition is usually nonintegrable [9], and it is not
convenient to study for nonlinear wave dynamics analytically.
Therefore, it is essential and meaningful to discover some
integrable CNLS with particle transitions.

Recently two-mode CNLSs with pair-transition effects
(CNLS-p) were shown to be integrable, for which the transition
dynamics of some nonlinear waves can be investigated
exactly based on the solutions [16]. Some types of nonlinear
excitations for a similar integrable model have been obtained
based on special Hirota bilinearization and the Darboux
transformation (DT) [17], such as bright solitons [18] or rogue
waves [19]. Based on the studies of CNLS without particle
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transition [3–8], we expect that there should be more abundant
nonlinear excitations in the CNLS-p system.

In this paper, we revisit the CNLS-p derived from a
Hamiltonian which can be used to describe dynamics of
a one-dimensional two-component Bose-Einstein condensate
system with particle transition. We present two different
DT forms for the CNLS-p, which can be used to derive
many different types of nonlinear localized wave solutions.
In particular, these new types nonlinear wave solutions can be
represented as the linear combination of well-known solutions
for classical NLS. These solutions suggest that there are many
new nonlinear excitations in the CNLS-p described systems,
such as waterfall-like breathers, kink-dark solitons, rogue
waves with particle transition dynamics, breather-soliton pairs,
etc. Possibilities to observe them are discussed in a Bose
condensate system.

II. THE COUPLED NONLINEAR SCHRÖDINGER
EQUATIONS WITH PARTICLE TRANSITION

A one-dimensional two-component Bose-Einstein
condensate system with particle transition can be described
by the Hamiltonian Ĥ = ∑

j [ �
2

2m
∂2
x q̂j q̂

†
j + gj,j

2 n̂j n̂j +
gj,3−j n̂j n̂3−j + J1(q̂†

j q̂3−j + q̂
†
3−j q̂j ) + J2

2 (q̂†
j q̂

†
j q̂3−j q̂3−j +

q̂
†
3−j q̂

†
3−j q̂j q̂j )] where nj = q̂

†
j q̂j is the particle number

operator, and the symbol † represents the Hermite conjugation.
gi,i and g3−i,i (i = 1,2) are the internal and external
interactions between atoms. J1 and J2 denote single particle
and pair particle transition coupling strength separately
[20,21]. In most studies, J1,2 are set to be zero usually because
it was believed that the presence of tunneling makes the
systems become nonintegrable [5–8]. Recent experimental
results in a double-well Bose-Einstein condensate suggested
that pair tunneling can become dominant with strong
interaction between atoms [22,23]. Therefore, we consider
that the case for second-order transition is dominant, namely,
J1 = 0 and J2 �= 0. We find the integrable CNLS-p can be
derived from the Hamiltonian with gj,3−j = 2gj,j = 2J2.

It is convenient to set gj,j = −σ (σ = ±1 corresponds to
attractive or repulsive interactions between atoms) without
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losing generality, for there is a trivial scalar transformation
for different values. The corresponding dynamic evolution
equation can be derived from the Heisenberg equation
i�(∂q̂j /∂t) = [q̂j ,Ĥ ] for the field operator. Performing the
mean field approximation 〈q̂j 〉 = qj , we can get the following
integrable CNLS-p with scale dimensions m = � = 1:

iq1,t + 1
2q1,xx + σ (|q1|2 + 2|q2|2)q1 + σq2

2 q̄1 = 0,

iq2,t + 1
2q2,xx + σ (2|q1|2 + |q2|2)q2 + σq2

1 q̄2 = 0,
(1)

where the symbol overbar represents the complex conjugation.
The coupled model can be also used to describe the propaga-
tion of orthogonally polarized optical waves in an isotropic
medium [24]. Bond soliton fiber laser and soliton interac-
tions were studied in a similar coupled model [25,26]. The
propagation of optical beams in terms of the two orthogonal
modes of a planar waveguide where the beams are allowed to
diffract only in one spatial dimension can be described by the
coupled model with some constrains on the ratio of cross- and
self-phase modulation coefficients, cross-phase modulation,
and four-wave-mixing term [27,28]. What needs mentioning is
that the above coupled equations without the last term usually
are deemed as nonintegrable CNLSs [29]. However, when
we add the particle transition term, the nonintegrable CNLSs
become integrable, which was also proven by Painlevé analysis
[17]. The bright soliton and rogue wave were studied for
the model that the nonlinear coefficients and pair-transition
coefficients are different [18,19].

III. THE LAX PAIR AND DARBOUX TRANSFORMATION

The integrable equations are found to admit the following
Lax pair:

�x =U (x,t ; λ)�,

�t =V (x,t ; λ)�,
(2)

where

U (x,t ; λ) ≡i(λσ3 + Q),

V (x,t ; λ) ≡i(λ2σ3 + λQ) − 1
2σ3(iQ2 − Qx),

and

σ3 = diag(1,1,−1,−1), Q =
[

0 σq†

q 0

]
, q =

[
q1 q2

q2 q1

]
.

The compatibility condition for the Lax pair equations (2)
�xt = �tx yields the CNLS-p (1). Thus we can study nonlinear
dynamics of CNLS-p with the aid of the linear system (1). To
obtain some interesting exact solutions for system (1), it is
essential to derive the corresponding DT.

Before presenting the DT, we discuss some symmetries for
a system (1). It is evident that Eq. (1) possess the following
scaling transformation: Galileo transformation, time and space
displacement invariants, and phase invariants. We would like
to use these symmetries to reduce the parameters for solutions.

The linear system (2) is a reduction for the 2 × 2 matrix
NLS [30]. The DT for the AKNS system is well known
from different authors [31–33]. But for the reduction system,
we need to find an additional symmetry relation to remain
invariant of the DT. To find this relation, we investigate the

following symmetry relations for matrices U (λ) and V (λ): the
first reality condition [33],

U †(λ̄) = −σU (λ), V †(λ̄) = −σV (λ), (3)

which is the classical su(4)-reality condition [33]; and the
second reality condition is

�U (λ)� = U (λ), �V (λ)� = V (λ), (4)

where

� =
[
σ1 0
0 σ1

]
, σ1 =

[
0 1
1 0

]
.

The DT for matrix NLS is obtained in Ref. [33] with the loop
group method:

T = I − P1

λ − λ1
, P1 = �1

(
�

†
1J�1

λ1 − λ1

)−1

�
†
1J, (5)

where �1 is a special matrix solution for linear system (2) with
λ = λ1, and J = diag(1,1,σ,σ ); the column of matrix �1 can
be one or two. By the above transformation, we can convert
(U (λ),V (λ)) of the system (2) into (U [1](λ),V [1](λ)), where

U [1](λ) =TxT
−1 + T U (λ)T −1,

V [1](λ) =TtT
−1 + T V (λ)T −1.

To keep the second reality condition for the new system
(U [1](λ),V [1](λ)), we need to restrict the Darboux matrix
T (λ) = �T (λ)�. We give two different reductions through
the rank of P1.

For the first case, the column of matrix solution �1 is
one. Furthermore, we have �1�

†
1J = ��1�

†
1J�, i.e., �1 =

δ��1, δ = ±1. This kind of DT was derived in Ref. [16]. It
is evident that the DT is constructed through a special vector
solution possessing special symmetry. A natural problem is
how to use the other vector solution to construct the DT. To
complete this aim, we give another type of reduction.

For the second case, the column of the matrix solu-
tion �1 is two. Furthermore we have �1(�†

1J�1)−1�
†
1J =

��1(�†
1J�1)−1�

†
1J�, where �1 = [�1,�̂1], �1 and �̂1 are

two linear independent vector solutions for the linear system
(2) at λ = λ1. To keep the linear system with the symmetry
relation, we choose �̂1 = δ��1. If �1 is a special vector
solution without the symmetry �1 = δ��1 for the linear
system at λ = λ1, then δ��1 is also a special vector solution
by the symmetry relation (4). It follows that we can use this
solution to construct the DT. We can see that the second case
is a supplement for the first case.

In what follows, we use the special vector solution 	1 to
construct the Darboux matrix and exact solution for Eq. (1).
In the first case, when 	1 = δ�	1, then set |y1〉 = A(x,t)	1,
A(x,t) is the appropriate nonsingular function to simplify the
calculation, and the DT is

T1 = I − λ1 − λ1

λ − λ1

|y1〉〈y1|J
〈y1|J |y1〉 ,

(6)
|y1〉 = [φ1, δφ1, δψ1, ψ1]T , 〈y1| = |y1〉†,
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and the transformations between the q1, q2, and q1[1], q2[1]
are

q1[1] = q1 − δψ1φ̄1

(|φ1|2 + σ |ψ1|2)/(λ1 − λ1)
,

q2[1] = q2 − ψ1φ̄1

(|φ1|2 + σ |ψ1|2)/(λ1 − λ1)
.

(7)

When 	1 �= δ�	1, �1 = A(x,t)[	1,δ�	1], we can con-
struct the second form for Darboux matrix:

T2 = I − λ1 − λ1

λ − λ1
�1(�†

1J�1)−1�
†
1J,

(8)

�1 =
[

φ1 ϕ1 χ1 ψ1

δϕ1 δφ1 δψ1 δχ1

]T

,

and the transformations between the q1, q2 and q1[1], q2[1] are

q1[1] = q1 − N1 − N2, q2[1] = q2 + N1 − N2, (9)

where

N1 = (ϕ̄1 − φ̄1)(ψ1 − χ1)

(|ϕ1 − φ1|2 + σ |ψ1 − χ1|2)/(λ1 − λ1)
,

N2 = (ϕ̄1 + φ̄1)(ψ1 + χ1)

(|ϕ1 + φ1|2 + σ |ψ1 + χ1|2)/(λ1 − λ1)
.

The above formulas (7) and (9) could be nonsingular with
the limit λ1 → λ1 for the defocusing case, which can be used
to construct the dark-type soliton solution [34]. Performing
the transformation, we can derive different kinds of nonlinear
wave solutions from related seed solutions.

The two forms for DT presented above can be used
to construct single and double nonlinear localized waves
separately. For the attractive case, we find that kink-like
breather, the rogue wave with particle transition, can exist
in the two-component coupled system. For the repulsive case,
the stable kink-dark soliton can exist in the coupled system.
Their dynamics are all different from the ones reported before
[16–19]. In particular, we present the localized wave pair
as linear superpositions of well-known solutions of simplest
NLSE. In the follows, we list all nontrivial solutions for the
system (1) in two cases according to the two DT forms.

IV. SOLUTIONS DERIVED FROM THE FIRST DT FORM

The solution obtained through the first kind of DT can be
represented as follows:

q1[1] =
[

1

2
+ ve−2iθ

2

]
eiσ t , q2[1] =

[
1

2
− ve−2iθ

2

]
eiσ t ,

(10)

where θ ∈ [0,π/2]. The first term of the solution in each com-
ponent denotes a plane wave background, which means that
the localized waves are excited in a Bose-Einstein condensate
with homogeneous particle density. There are two cases for the
coupled system: attractive and repulsive interactions between
atoms. The system admits different nonlinear excitations for
the two cases. For different localized waves, the expressions
of v are different in the above solution. We discuss them
separately as follows.

A. Attractive case σ = 1

There are three main types of nonlinear localized waves:
breather with periodic particle transition, kink-type (waterfall
type) breathe, and rogue wave (beak type). We present them
one by one as follows.

1. Breather with periodic particle transition

Choosing v = S(α1,β1; a1,b1)ei(2θ−t) where

S(α1,β1; a1,b1) = 2iβ1e−2i[α1x+(α2
1−β2

1 )t]+ib1

cosh[2β1(x + 2α1t) + a1]
, (11)

and a1, b1 are real parameters, we can obtain a breather
on the plane wave background along the line 2β1(x +
2α1t) + a1 = 0, which oscillates with the line vertical to
2[α1x + (α2

1 − β2
1 )t] − b1 − π/2 = 0 with period 2π . Particle

transition emerges periodically with time. Moreover, we find
that the oscillation is not a standard cosine or sine type as
in standard Josephson oscillation [35]. Instead, it has been
modified by the nonlinear interactions, similar to the nonlinear
Josephson effects observed in BEC experiments [36].

2. Kink-type breather solution

Setting v = B(x1,t1), where

B(x1,t1)

≡cosh(κ1) cosh(A1 + 2iϑ1) + sin(ϑ1) cos(A2 + 2iκ1)

cosh(κ1) cosh(A1) − sin(ϑ1) cos(A2)

(12)

and

A1 = 2 sin(ϑ1)[sinh(κ1)(x − x1)

+ cos(ϑ1)(2 cosh2(κ1) − 1)(t − t1)],

A2 = 2 cosh(κ1)[cos(ϑ1)(x − x1)

+ sinh(κ1)(2 cos2(ϑ1) − 1)(t − t1)].

x1 and t1 are real constants; they determine the localized
wave’s location on the temporal-spatial distribution plane.
This is a kink-type breather, as shown in Fig. 1. The periodic
humps located along the spatial dimension at a certain time,
which are very similar to the Akhmediev breather in NLS
or CNLS without particle transition. But the background
amplitudes before and after the periodic humps emerging are
quite different, namely, a large amount of particles’ transition
happen near the certain time, and they do not transit back.
This can be proved precisely by the asymptotical analysis. The
striking transition behavior is quite different from the related
transition process or tunneling process studied in Refs. [9–11].
The whole particles are kept well since the whole Hamiltonian
is a Hermitian operator. This can be proven by calculating the
particle number in one whole period.

3. Rogue wave solution

Let v = −R(x1,t1), where

R(x1,t1) ≡ 1 − 4[2i(t − t1) + 1]

1 + 4(x − x1)2 + 4(t − t1)2
; (13)

we can obtain a beak-type rogue wave solution, shown in
Fig. 2. For the rogue wave in |q1|2, there are one hump
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(a) (b)

FIG. 1. (Color online) The dynamics of waterfall structure non-
linear waves: (a) for component q1 and (b) for component q2. It is
seen that the background amplitudes before and after the breather
emerges are unequal, in contrast to the breather reported before.
This corresponds to a drastic nonlinear particle transition behavior.
Parameters: θ = arccos( 4

5 ), ϑ1 = arcsin( 3
5 ), and κ1 = 0.

and two valleys on the temporal-spatial distribution, which
admits a distinctive spatial-temporal distribution, in contrast
to the well-known eye-shaped structure, four-petaled flower
structure, and anti-eye-shaped structure [37]. The structure of
the rogue wave is inverse for the |q2|2. Also the particle number
is not conserved for each component. Different from the kink
type breather, the particles transit back. This kind of structure
is not observed in other integrable models [7,8,37–39]. The
hump in one component corresponds to two valleys in the
other component, which clearly demonstrate the transition
dynamics between the two components. The one hump and two
valleys structure for a fundamental rogue wave can be proven

FIG. 2. (Color online) Fundamental rogue wave which possesses
one hump and two valleys: (a) for component q1 and (b) for
component q2. It is seen that the pattern is quite different from the
eye-shaped rogue wave reported before. Parameters: θ = arccos(

√
2

2 ),
x1 = t1 = 0.

FIG. 3. (Color online) The evolution of kink-dark waves: (a) for
component q1 and (b) for component q2. It is seen that there are a kink
and a dark soliton coexisting in the intensity distribution. Parameters:
c1 = 0, θ = π/6, ϑ2 = π/2.

exactly through calculating the extreme points. For different θ

values, we can obtain different structures for the fundamental
beak-type rogue wave. When θ = 0,π/2, the structure can be
reduced to the ones considered in Ref. [16].

B. Repulsive case σ = −1

In this case, we derive a kink solution, which has not been
found in CNLS with no particle transition and in NLS with
repulsive interactions.

1. Kink-dark soliton solution

We choose v = D(c1), where

D(c1) = [cos(ϑ2) + i sin(ϑ2) tanh(Y1)] exp(−iϑ2) (14)

and

Y1 = sin(ϑ2)[x + cos(ϑ2)t + c1];

c1 is real constant, 0 < ϑ2 < π . Then we can obtain the
topological kink-dark soliton excitations. For example, we
demonstrate one case for the kink-dark soliton in Fig. 3.
With different values of θ and ϑ2, one can obtain dark soliton
and kink waves with many different structures independently.
These kink-dark solitons are very stable against small pertur-
bations, since there is no modulational instability in the system
with repulsive interactions.

V. PAIR SOLUTIONS DERIVED FROM THE SECOND
DT FORM

The solution obtained by the second DT could be repre-
sented as follows:

q1[1] =
[
v1

2
+ v2e−2iθ

2

]
eiσ t ,

q2[1] =
[
v1

2
− v2e−2iθ

2

]
eiσ t .

(15)
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FIG. 4. (Color online) The evolution of rogue wave and rogue
wave pair in the coupled model: (a) for component q1 and (b) for
component q2. Parameters: θ = arccos(3/5), x1 = 0, and t1 = 1.

This transformation form brings a localized wave pair to the
coupled system. The localized wave pair solutions can be
written as a linear superposition form of well-known solutions
of the simplest NLS. This is a striking character for the coupled
model with particle transition terms, in contrast to the CNLS
without particle transition terms. The results are still presented
as two cases according to interactions between atoms.

A. Attractive case σ = 1

There are mainly five types of nonlinear localized wave
pairs as follows.

1. Breather and soliton pair

We choose v1 = B(x1,t1) and v2 =
S(sinh(κ1) cos(ϑ1), cosh(κ1) sin(ϑ1); a1,b1)ei(2θ−t) where
the expressions of B and S are given in (12) and (11),
respectively. When the breather and soliton possesses
different velocities, they behave like two breathers interacting.
When breather and soliton possess the same velocity (it must
be zero), they behave as a breather possessing a different
oscillating behavior with a classical Ma breather.

2. Breather and rogue wave pair

We choose v1 = −R(x1,t1) and v2 = S(0,1; a1,b1)ei(2θ−t)

where the expressions of R and S are given in (13) and (11),
respectively. The breather is stationary and vibrates on the
plane wave background, and the rogue wave is the fundamental
rogue wave. The particle transition always happens near the
locations of humps. Based on the solution, we can observe
the interaction of a breather and rogue wave at many different
cases conveniently though varying the parameters x1, t1, a1,
and b1.

3. Breather and breather pair

We choose v1 = B(x1,t1) and v2 = B(−x1,−t1) where
the expressions of B is given in (12). They behave as
two breathers coexist with the same velocity. The periodic

transition dynamics is kept well for the breather pair. This
indicates that the transition period is determined by the initial
breather condition.

4. Rogue wave and rogue wave pair

Choosing v1 = −R(x1,t1) and v2 = −R(−x1,−t1), we can
obtain the rogue wave and rogue wave pair solution. When
the distance between two rogue waves is far enough, they
behave as two rogue waves’ superposition on the plane wave
background. When the distance of two rogue waves is close,
their interaction will induce new behaviors. As an example,
we demonstrate one case in Fig. 4. It is seen that there are
two humps in one component, and correspondingly there
are four valleys in the other component. There are also
some complicated transition dynamics which come from the
interaction between two rogue waves.

5. Soliton and soliton pair

We choose v1 = S(a1,b1)e−it and v2 = S(−a1,−b1)ei(2θ−t),
where the expressions of S(a1,b1) and S(−a1,−b1) are given in
Eq. (11). From the expression, we can find the soliton solution
is composed of a linear combination of two classical soliton
solutions of the NLS with the same velocity. The shape of
soliton will be appear as two cases: one is a bell shape, the other
is an M shape. Similar properties are reported in Ref. [29] for
the nonintegrable coupled NLS. However, this phenomenon
never appears in classical NLSs or multicomponent integrable
NLSs. This partly indicates that the pair-transition effects play
a nontrivial role in the structure and dynamics of nonlinear
excitations.

B. Repulsive case σ = −1

In this case, we only obtain the dark-dark soliton pair
solution by the second DT form.

1. Kink-dark soliton pair

We choose v1 = D(c1) and v2 = D(−c1), where D(c1) and
D(−c1) are given in Eq. (14). The linear combination of kink-
dark and dark soliton solutions would demonstrate some novel
stable excitation structures, e.g., W-shape, top hat-shape, and
hole-shape. The explicit conditions for their existence can be
analyzed precisely. This is meaningful for nonlinear localized
wave applications.

The stability is very important to the solution in a nonlinear
equation, and now we discuss this issue for these nonlinear
excitations. We simulate the localized waves by numerical
calculation from the initial condition given by the exact
solution through performing the finite difference method
[40,41]. It indicates that these nonlinear localized waves can be
excited in the system even with some small noises. The kink-
dark soliton and dark-dark soliton pair are very robust against
perturbations since there is no modulational instability for the
coupled model with repulsive interactions. And the soliton
and soliton pair are also robust against perturbations. The
breather and rogue wave can be evolved from corresponding
initial conditions with small noises. But there are some other
localized waves emerging after long time evolution, induced
by the modulational instability of the background fields [42].
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FIG. 5. (Color online) The numerical simulation of the rogue
wave and rogue wave pair with small noise. The initial excitation
condition is given by the exact ones at t = −3 in Fig. 4 by multiplying
a factor (1 + 0.01Random[−1,1]). It is seen that the rogue wave pair
are robust against small noise.

For instance, we show the simulation results for the rogue
wave and rogue wave pair in Fig. 5, for which we use the
initial excitation form given by the exact ones at t = −3
in Fig. 4 with adding small noise [by multiplying a factor
(1 + 0.01Random[−1,1])]. It is seen that their is are similar
during the first five scalar units from the same initial excitation.
Some other localized waves emerge after the rogue wave pair
emerging, which comes from the modulational instability [43].
This partly means that the localized wave obtained here can
be excited in a real condensate system. It should be mentioned
that some more rigorous or analytical stability results exist for
rogue wave and breather solutions to NLSs [44–46].

VI. POSSIBILITIES TO OBSERVE THESE
NONLINEAR EXCITATIONS

Recently, rogue waves and Akhmediev breathers have
been excited experimentally in a nonlinear fiber system
under the direction of related exact solutions [47,48]. Vector
solitons including dark-dark, bright-dark solitons, bright-
bright solitons, and even half-solitons have been excited
experimentally in a multicomponent Bose-Einstein condensate
based on density and phase modulation techniques [49]. The
experiments indicated that the initial conditions for these
nonlinear excitations can be made nearly precisely by density
and phase modulation techniques. The pair-transition (PT)
term corresponds to pair particle transition in a two-component
Bose-Einstein condensate [20,21] or four-wave-mixing effect
in a nonlinear planar waveguide [27,28]. The nonlinear
localized waves obtained here are all superposed by the
well-known nonlinear excitations which have been realized
in real experiments. Moreover, the numerical simulations
indicate that these nonlinear localized waves are robust against
small perturbations or noises. Therefore, they can be realized in
a two-component ultracold atomic system or planar waveguide
with two orthogonal modes through combining these intensity
and phase modulation techniques. As an example, we discuss
possibilities to observe the rogue wave and rogue wave pair
as shown in Fig. 4 in a cigar-shaped condensate with two
hyperfine states, q1 and q2.

For simplicity, we assume the initial condensation occurring
in the trapped state q2. State q1 is coupled to q2 by an RF or
microwave field tuned near the q2 → q1 transition. The PT
effects can be realized by the RF field in the strong interaction

regimes [22,23]. The total number of 87Rb atoms in the
condensate is N = 5 × 104. ai,j (i,j = 1,2) are s-wave scat-
tering lengths which can be adjusted by Feshbach resonance
technique. Setting a1,2 = a2,1 = 1.6 nm and a2,2 = a1,1 =
0.8 nm, under mean-field approximation, the s-wave scattering
effective interaction strengths between atoms in the same
hyperfine state are Uj,j = 4π�

2aj,j /m (m is the atom mass),
and the scattering effective interaction strengths between
atoms in different hyperfine state are Uj,3−j = 4π�

2aj,3−j /m.
When the interaction between atoms is attractive and the PT
coefficient is NU1,1, the units in the axial direction and time
are scaled to be 2.0 μm and 0.5 ms, respectively, and the
dynamics of the condensate with PT effects can be described
well by Eq. (1). The exact solution (15) for the rogue wave and
rogue wave pair with θ = arccos(3/5), x1 = 0, and t1 = 1 can
be used to direct initial density and phase modulation explicitly
in the two components. It has been shown that the density and
phase of Bose condensate can be manipulated nearly precisely
[3]. The time of the transition process is about 2.5 ms for the
rogue wave and rogue wave pair. The time duration is much
shorter than the life time of a Bose condensate. The localized
size of the rogue wave pair is about 12.0 μm on the spatial
distribution, which means the plane wave background can be
approached well by a much wider envelope. Moreover, the
above numerical simulation has shown that the evolution of
these nonlinear excitations is robust against small noises or
perturbations. Therefore, the localized waves can be observed
from the initial conditions approaching the ideal ones given by
these exact solutions in the two-component condensate system.

VII. CONCLUSION AND DISCUSSION

In conclusion, we present two different DT forms for the
CNLS-p with attractive or repulsive interactions, which can be
used to describe transition dynamics of a one-dimensional two-
component Bose-Einstein condensate system with particle
transition in strong interaction regimes and other nonlinear sys-
tems [24–28]. Based on exact solutions of the coupled model,
we predict that some new dynamics of nonlinear excitations
can exist, such as the striking transition dynamics of breather,
new excitation patterns for rogue waves, topological kink
excitations, and other new stable excitation structures. The
solution can be written as a linear superposition of nonlinear
wave solutions of the simplest scalar NLS. Possibilities to
observe them are discussed in a cigar-shaped condensate with
two hyperfine states. The results here can be extended to other
multicomponent NLSs or matrix NLS system, which creates
opportunities to study the tunneling or transition dynamics of
nonlinear localized waves exactly and analytically.
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