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Equations

By Boling Guo, Liming Ling, and Q. P. Liu

By means of certain limit technique, two kinds of generalized Darboux
transformations are constructed for the derivative nonlinear Schrödinger
equations (DNLS). These transformations are shown to lead to two solution
formulas for DNLS in terms of determinants. As applications, several different
types of high-order solutions are calculated for this equation.

1. Introduction

The derivative nonlinear Schrödinger equations (DNLS) [1, 2]

iut + uxx + i(|u|2u)x = 0, (1)

has many physical applications, especially in space plasma physics and
nonlinear optics. It well describes small-amplitude nonlinear Alfvén waves in
a low-β plasma, propagating strictly parallel or at a small angle to the ambient
magnetic field. It was shown that the DNLS also models large-amplitude
magnetohydrodynamic (MHD) waves in a high-β plasma propagating at an
arbitrary angle to the ambient magnetic field. In nonlinear optics, the modified
nonlinear Schrödinger equations [3], which is gauge equivalent to DNLS, arises
in the theory of ultrashort femtosecond nonlinear pulses in optical fibres, when
the spectral width of the pulses becomes comparable with the carrier frequency
and the effect of self-steepening of the pulse should be taken into account.
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High-order solitons describe the interaction between N solitons of equal
amplitude but having a particular chirp [4]. In the terminology of inverse
scattering transformation (IST), they correspond to multiple-pole solitons. In
the case of the Korteweg-de Vries equation (KdV), the poles must be simple,
that is the reason why high-order nonsingular solitons do not exist. Indeed we
could obtain multiple-pole solutions by Darboux transformation (DT), such
as positon solutions [5]. The high-order solitons for nonlinear Schrödinger
equations (NLS) had been studied by many authors [4, 6, 7]. To the best of our
knowledge, the high-order solitons of DNLS have never been reported. The
aim of this paper is to show that such solutions may be obtained by so-called
generalized Darboux transformations (gDT).

Recently, the rogue wave phenomenon [8], which “appears from nowhere
and disappears without a trace,” has been a subject of extensive study. Those
waves, also known as freak, monster, or giant waves, are characterized with
large amplitudes and often appear on the sea surface. One of the possible
ways to explain the rogue waves is the rogue wave solutions and modulation
instability and there is a series of works done by Akhmediev’s group [9–11].
Different approaches have been proposed to construct the generalized rogue
wave solutions of NLS, for example, the algebro-geometric method is adopted
by Dubard et al. [12, 13], Ohta and Yang work in the framework of Hirota
bilinear method [14] while the present authors use the gDT as a tool [15]. In
the IST terminology, the high-order rogue wave corresponds to multiple-pole
solution at the branch points of the spectrum in the non-vanishing background
[16]. The first-order rogue wave for DNLS was obtained by Xu and coworkers
recently [17]. However, the high-order rogue waves had never been studied.
We will tackle this problem by constructing gDT.

The DT [18, 19], which does not need to do the inverse spectral analysis,
provides a direct way to solve the Lax pair equations algebraically. However,
there is a defect that classical DT cannot be iterated at the same spectral
parameter. This defect makes it impossible to construct the high-order rogue
wave solutions by DT directly. Thus, we must modify the DT method. In this
work, we extend the DT by the limit technique, so that it may be iterated at the
same spectral parameter. The modified transformation is referred as gDT.

The inverse scattering method was used to study DNLS with vanishing
background (VBC) and non-vanishing background (NVBC) [3, 20–23]. The
N -bright soliton formula for DNLS was established by Nakamura and Chen
by the Hirota bilinear method [24] and the DT for DNLS was constructed by
Imai [25] and Steudel [26] (see also [17]). One key aim of this work is the
construction of the gDT and based on it, the high-order soliton solutions and
rogue waves are obtained. In addition to above two kinds of solutions, new
N -solitons and high-order rational solutions are also found.

The organization of this paper is as follows. In Section 2, we provide a
rigorous proof for elementary DT of Kaup-Newell system (KN). Furthermore,
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based on the elementary DT, we construct for KN the binary DT, which is
referred as the DT-II while the elementary DT is referred as DT-I. We also
iterate these DT’s and work out the N -fold DT’s both for DT-I and DT-II,
and consider two different kinds of reductions of the DT of the KN to the
DNLS. In Section 3, the generalized DT-I and DT-II are constructed in detail
by the limit technique. In Section 4, we consider the applications of the gDT
and calculate various high-order solutions, which include high-order bright
solitons with the VBC, and high-order rogue wave solutions. Final section
concludes the paper and offers some discussions.

2. Darboux transformation for DNLS

Let us start with the following system—KN system [27]

iut + uxx + i(u2v)x = 0,

−ivt + vxx − i(uv2)x = 0,
(2)

which may be written as the compatibility condition

Ut − Vx + [U, V ] = 0, (3)

of the linear system or Lax pair

�x = U�, (4a)

�t = V�, (4b)

where

U = − i

ζ 2
σ3 + 1

ζ
Q, V = − 2i

ζ 4
σ3 + 2

ζ 3
Q − i

ζ 2
Q2σ3 + 1

ζ
Q3 − i

ζ
Qxσ3,

with

σ3 =
(

1 0

0 −1

)
, Q =

(
0 u

−v 0

)
.

These Equations (2) are reduced to the DNLS (1) for v = u∗. For convenience,
we introduce the following adjoint linear system for (4),

−�x = �U, (5a)

−�t = �V . (5b)

2.1. DT-I

In the following, we first consider the DT of the unreduced linear system (4).
Generally speaking, DT is a special gauge transformation which keeps the
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form of Lax pair invariant. The explicit steps for constructing DT in 1 + 1
dimensional integrable system are as following: first, we consider the gauge
transformation

D[1] = ζD1 + D0,

where D1 and D0 are unknown matrices which do not depend on ζ . Then
imposing that D[1] is a DT we have

D[1]x + D[1]U = U [1]D[1], (det(D[1]))x = Tr(U [1] − U ) det(D[1]),

where U [1] represents the transformed U matrix. After some analysis, we find
the following elementary DT (eDT) for (4):

D[1] = σ1 (ζ + ζ1 − 2ζ1 P1) , P1 = �1�
T
1 σ1

�T
1 σ1�1

, σ1 =
(

0 1

1 0

)
, (6)

where �1 = (ϕ1, φ1)T is a special solution for linear system (4) at ζ = ζ1, and
�T

1 σ1 is a special solution for adjoint linear system (5) at ζ = −ζ1. Here we
point out that this DT for DNLS was first derived by Imai [25]. With the help
of the DT, Steudel [26] and Xu et al. [17] calculated various solutions for
DNLS. Next, we give a rigorous proof that the above transformation does
qualify as a DT.

THEOREM 1. With �1 and D[1] defined above, �[1] = D[1]� solves

�[1]x = U [1]�[1], �[1]t = V [1]�[1]

where

U [1] = − i

ζ 2
σ3 + 1

ζ
Q[1], Q[1] = σ1 Qσ1 − 2ζ1σ1 P1,xσ1,

and

V [1] = − 2i

ζ 4
σ3 + 2

ζ 3
Q[1] − i

ζ 2
Q[1]2σ3 + 1

ζ
Q[1]3 − i

ζ
Q[1]xσ3.

Namely, D[1] qualifies as a Darboux matrix. Correspondingly,D[1]−1 is a
Darboux matrix for the adjoint Lax system.

Proof : To begin with, we notice

D[1]−1 = 1

ζ + ζ1

(
I + 2ζ1

ζ − ζ1
P1

)
σ1.

What we need to do is to verify

U [1] = D[1],x D[1]−1 + D[1]U D[1]−1, (7)

V [1] = D[1],t D[1]−1 + D[1]V D[1]−1. (8)
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First we consider (7). The residue for function F1(ζ ) ≡ D[1],x D[1]−1 +
D[1]U D[1]−1 − U [1] at ζ = ζ1 is

Resζ1 (F1(ζ ) = 2ζ1σ1[−(I − P1)P1,x + (I − P1)U (ζ1)P1]σ1

= −2ζ1σ1(I − P1)�1

[
σ1�

T
1

σ1�
T
1�1

]
x

σ1 = 0,

where we used the relation D[1],x D[1]−1 = −D[1](D[1]−1)x . Similarly, the
residue of function F1(ζ ) at ζ = −ζ1 is

Res−ζ1 (F1(ζ )) = −2ζ1σ1[−P1,x (I − P1) + P1U (−ζ1)(I − P1)]σ1

= 2ζ1σ1

[
�1

σ1�
T
1�1

]
x

σ1�
T
1 (I − P1)σ1 = 0.

Due to

U [1] = − 1

ζ 2
σ3 + 1

ζ
Q[1],

and

Q[1] = σ1 Qσ1 − 2ζ1σ1 P1,xσ1, (9)

the function F1(ζ )D[1] is equal to zero at ζ = 0. Thus the function F1(ζ ) is
analytic at ζ = 0. It is easy to see that F1(ζ ) → 0 at ζ → ∞. Therefore the
equality (7) is valid.

Now we turn to the time evolution part (8). We introduce a matrix V̂ [1] =
− 2i
ζ 4σ3 + 2

ζ 3 Q[1] + i
ζ 2 V2 + 1

ζ
V1, so that F2(ζ ) ≡ D[1],t D[1]−1 + D[1]

VD[1]−1 − V̂ [1]. Proceeding similarly as above, it is found that
F2(ζ ) is analytic at ζ = ±ζ1, 0 and tends to zero as ζ → ∞, thus F2(ζ ) ≡ 0.

In the following, we show V̂ [1] = V [1]. Because of the compatibility
condition (D[1]�)xt = (D[1]�)t x , we have

U [1]t − V̂ [1]x + [U [1], V̂ [1]] = 0. (10)

Identifying terms of O(ζ ) in (10), we have

[σ3, V2] = 0, (11)

[σ3, V1] = [V2, Q[1]] + 2Q[1]x , (12)

[Q[1], V1] = V2,x . (13)

From (11), we have V off
2 = 0, where V off

2 denotes the off-diagonal part of V2.
Similarly, we have

V off
1 = iσ3 Q[1]x − i

2
σ3[Q[1], V2] (14)
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through (12). Substituting (14) into (13) and solving it yields

V2 = −iQ[1]2σ3 + f (t).

Letting ζ1 = 0, one can readily obtain V2 = −iσ1 Q2σ1σ3. Therefore we have
f (t) = 0. Moreover, V1 = Q[1]3 − iQ[1]xσ3.

Similar argument could show that D[1]−1 does qualify as a Darboux matrix
for the adjoint Lax system. Thus the proof is completed. �

Remark 1. In addition to (9) there is a different representation for Q[1]

Q[1] = σ1(I − 2P1)Q(I − 2P1)σ1 + 2i

ζ1
σ3σ1(I − 2P1)σ1, (15)

which appeared in papers [17, 26]. We will use (9) rather than (15), since the
former is more compact.

To derive the N -fold DT for this elementary DT (6), which is referred as
DT-I, we rewrite it as

D[1] =
(−ζ1

ϕ1

φ1
ζ

ζ −ζ1
φ1

ϕ1

)
.

Assuming N different solutions�i = (ϕi , φi )T of (4) at ζ = ζi (i = 1, 2, . . . , N )
are given, we may have

PROPOSITION 1. [17, 25, 26] The N-fold DT for DT-I can be represented as

DN = D[N ]D[N − 1] · · · D[1] = ζ Nσ N
1 +

N−1∑
k=0

(
αk 0
0 βk

)
σ k

1 ζ
k, (16)

where αi are determined by the following equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α0ϕi + α1ζiφi + · · · + α2l−1ζ
2l−1
i φi + α2lζ

2l
i ϕi = −ζ 2l+1

i φi ,

when N = 2l + 1;

α0ϕi + α1ζiφi + · · · + α2l−2ζ
2l−2
i ϕi + α2l−1ζ

2l−1
i φi = −ζ 2l

i ϕi ,

when N = 2l,

i = 1, 2, . . . , N . And βi = αi (ϕ j ↔ φ j ), (i, j = 1, 2, . . . , N ).
The transformation between the fields is the following:

(i) When N = 2l + 1

u[N ] = −v −
[

det(B)

det(A)

]
x

, v[N ] = −u +
[

det(B(ϕ j ↔ φ j ))

det(A(ϕ j ↔ φ j ))

]
x

, (17)

Administrator
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where A = (
AT

1 , AT
2 , . . . , AT

N

)
, B = (

BT
1 , BT

2 , . . . , BT
N

)
,

Ai = (
ϕi , ζiφi , . . . , ζ

2l−2
i ϕi , ζ

2l−1
i φi , ζ

2l
i ϕi

)
,

Bi = (
ϕi , ζiφi , . . . , ζ

2l−2
i ϕi , ζ

2l−1
i φi , ζ

2l+1
i φi

)
.

(ii) When N = 2l

u[N ] = u −
[

det(D)

det(C)

]
x

, v[N ] = v +
[

det(D(ϕ j ↔ φ j ))

det(C(ϕ j ↔ φ j ))

]
x

, (18)

where C = (
CT

1 ,CT
2 , . . . ,CT

N

)
, D = (

DT
1 , DT

2 , . . . , DT
N

)
,

Ci = (
ϕi , ζiφi , . . . , ζ

2l−3
i φi , ζ

2l−2
i ϕi , ζ

2l−1
i φi

)
,

Di = (
ϕi , ζiφi , . . . , ζ

2l−3
i φi , ζ

2l−2
i ϕi , ζ

2l
i ϕi

)
.

2.2. DT-II

In this section, we will show that the so-called dressing-Bäcklund transformation
[28, 29], denoted by DT-II in this paper, may be constructed from above DT-I.
For convenience, we rewrite D[1] and D[1]−1 as following

D[1] =
(−ζ1

ϕ1

φ1
ζ

ζ −ζ1
φ1

ϕ1

)
, D[1]−1 = 1

ζ 2 − ζ 2
1

(
ζ1
φ1

ϕ1
ζ

ζ ζ1
ϕ1

φ1

)
. (19)

Suppose another solution �1 = (χ1, ψ1) for the adjoint system (5) at ζ = ξ1

is given, then �1[1] = �1 D[1]−1|ζ=ξ1 is a new solution for adjoint system
(�[1],U [1], V [1]) at ζ = ξ1. It is easy to see that σ1�1[1]T is a special
solution for Lax pair (�[1],U [1], V [1]) at ζ = −ξ1. Therefore, we could
construct the second step DT D[2] by the seed solution σ1�1[1]T . By direct
calculations, removing the overall factor ζ 2 − ξ 2

1 , we have the DT-II

T [1] = I + A

ζ − ξ1
− σ3 Aσ3

ζ + ξ1
, A = ξ 2

1 − ζ 2
1

2

(
α 0
0 β

)
�1�1, (20)

where

α−1 = �1

(
ξ1 0
0 ζ1

)
�1, β−1 = �1

(
ζ1 0
0 ξ1

)
�1.

Furthermore, we have

T [1]−1 = I + B

ζ − ζ1
− σ3 Bσ3

ζ + ζ1
, B = ζ 2

1 − ξ 2
1

2
�1�1

(
β 0
0 α

)
. (21)
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The transformation between Q and new potential function Q̂ is

Q̂ = Q + (A − σ3 Aσ3)x . (22)

Above discussion indicates that T [1], namely the DT-II, is indeed a two-fold
DT for D[1] in the case of DNLS. We remark that for the two component
DNLS the analogy of DT-II exists [30] while the corresponding DT-I has not
been constructed.

In what follows, we consider the iteration of the DT-II. Assume that we
have N distinct solutions �i (μi ) = (ϕi , φi )T of (4) at ζ = μi and N distinct
solutions �i (νi ) = (χi , ψi ) of (5) at ζ = νi . Similar to DT-I, we work with
DT-II and have the following proposition

PROPOSITION 2. The N-fold DT for the DT-II could be written as the
following form

TN = T [N ]T [N − 1] · · · T [1] = I +
N∑

i=1

(
Ci

ζ − νi
− σ3Ciσ3

ζ + νi

)
, (23)

and

T −1
N = T [1]−1T [2]−1 · · · T [N ]−1 = I +

N∑
i=1

(
Di

ζ − μi
− σ3 Diσ3

ζ + μi

)
. (24)

Proof : We calculate the residues for both sides of (23)

Res|ζ=νi (TN )

=
(

I + AN

νi − νN
− σ3 ANσ3

νi + νN

)
· · · Ai · · ·

(
I + A1

νi − ν1
− σ3 A1σ3

νi + ν1

)
,

Res|ζ=−νi (TN )

= −
(

I + AN

−νi − νN
− σ3 ANσ3

−νi + νN

)
· · · σ3 Aiσ3 · · ·

(
I + A1

−νi − ν1
− σ3 A1σ3

−νi + ν1

)
.

Because of Res|ζ=νi (TN ) = −σ3Res|ζ=−νi (TN )σ3, Equation (23) is valid.
Similarly, (24) can be proved. �

The N -fold DT-II TN allows us to find the transformations between the
fields u, v and u[N ], v[N ], which are given below

THEOREM 2. The N-fold DT-II TN induces the following transformations
for the fields

u[N ] = u − 2

(
det M1

det M

)
x

, v[N ] = v + 2

(
det N1

det N

)
x

, (25)



High-order Solutions of DNLS 325

where M = (Mi j )N×N , N = (Ni j )N×N , Mi j = �iσ3� j

μ j +νi
− �i� j

μ j −νi
, Ni j =

−[�iσ3� j

μ j +νi
+ �i� j

μ j −νi
],

M1 =

⎛⎜⎜⎜⎜⎝
M11 M12 · · · M1N ψ1

M21 M22 · · · M2N ψ2
...

...
. . .

...
...

MN1 MN2 · · · MN N ψN

φ1 φ2 · · · φN 0

⎞⎟⎟⎟⎟⎠, N1 =

⎛⎜⎜⎜⎜⎝
N11 N12 · · · N1N χ1

N21 N22 · · · N2N χ2
...

...
. . .

...
...

NN1 NN2 · · · NN N χN

ϕ1 ϕ2 · · · ϕN 0

⎞⎟⎟⎟⎟⎠.

Proof : Since TN (23) is the N-fold DT of (4), we have

TN ,x + TN U = U [N ]TN .

It follows that

Q[N ] = Q +
N∑

i=1

[Ci − σ3Ciσ3]x .

Thus, we need to calculate the explicit forms for Ci . Proposition 2 gives
Ci = Res|ζ=μi (TN ), and implies that Ci ’s are the matrices of rank one. Thus
we may assume Ci = |xi 〉〈yi |. Similarly we may set Di = |wi 〉〈vi |.

On the one hand, because of TN T −1
N = I , we have〈

yl

∣∣T −1
N

∣∣
ζ=νl

= 0, (26)

where the fact that the residue of TN T −1
N at ζ = νl equals to zero is taken

account of. On the other hand, we have

�l T
−1
N

∣∣
ζ=νl

= 0.

Noticing that the rank of T −1
N |ζ=νi is 1, we may obtain

〈yl | = �l .

Now substituting 〈yl | into (26) leads to

�l +
N∑

i=1

( |xi 〉�i�l

μl − νi
− σ3|xi 〉�iσ3�l

μl + νi

)
= 0, (l = 1, 2, . . . , N ). (27)

Solving (27) gives us

[|x1〉, |x2〉, . . . , |xN 〉]1 = [ϕ1, ϕ2, . . . , ϕN ] M−1,

[|x1〉, |x2〉, . . . , |xN 〉]2 = [φ1, φ2, . . . , φN ] N−1,
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where subscripts 1 and 2 stand the first and second rows, respectively. Finally,
the relations between the fields can be represented as

u[N ] = u + 2

⎡⎢⎢⎢⎣[ϕ1, ϕ2, . . . , ϕN ] M−1

⎡⎢⎢⎢⎣
ψ1

ψ2
...
ψN

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

x

= u − 2

(
det M1

det M

)
x

,

v[N ] = v − 2

⎡⎢⎢⎢⎣[φ1, φ2, . . . , φN ] N−1

⎡⎢⎢⎢⎣
χ1

χ2
...
χN

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

x

= v + 2

(
det N1

det N

)
x

.

This completes the proof. �

2.3. Reductions

So far we have been working with the DTs for the general Lax problem (4)
and certain solution formulae have been given for the system (2). However our
main task is to construct solutions for DNLS (1), therefore we have to study
reduction problem. It is easy to see that two reductions v = u∗ and v = −u∗

are simply related [26], so we may consider either of them. For the DT-I, let us
assume v = u∗ or Q† = −Q, where † denotes the complex conjugation and
matrix transpose. To implement the reduction, we need to choose the seed
solutions properly. Indeed, assuming

ζ1 ∈ iR, and ϕ1 = φ∗
1 , (28)

then Q[1], defined by (9), satisfies the reduction relation Q[1]† = −Q[1]. The
DT (6) with the reduction condition (28) may be employed to construct bright
or dark solitons of DNLS with the nonvanishing background.

Let us now turn to the reduction of the DT-II. Assuming Q = −Q† and

ξ1 = ζ ∗
1 , and (χ1, ψ1) = (ϕ∗

1 , φ
∗
1 ), (29)

(22) yields Q̂ = −Q̂†.
To iterate the reduced DT-I and DT-II, we must verify that they keep the

reduction conditions (28) and (29). The latter merely depends on the symmetry
of Equation (4), thus it holds automatically. For the former (28) we claim that

Proposition 3. Both DT D[1] and T [1] keep the reduction condition (28)
invariant.

Proof : Direct calculations. �
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Due to above analysis, both DT-I and DT-II may be reduced to find solutions
for DNLS. However, the DT-I under (28) is conveniently used to construct
the N -dark or bright soliton solutions of DNLS with NVBC, while DT-II
with (29) may be properly adopted to represent the N -bright solitons and
N-breathers of DNLS.

3. Generalized Darboux transformations

In this section, we construct the corresponding gDT’s associated with D[1]
and T [1]. We will follow the approach proposed for the nonlinear Schrödinger
equations in [15]. Indeed, while both DT-I and DT-II considered above are
degenerate at ζ = ζ1 in the sense that D[1]|ζ=ζ1�1 = T [1]|ζ=ζ1�1 = 0, we
may work with

�
[1]
1 = lim

ε→0

(D[1]�1)|ζ=ζ1+ε
ε

,

or

�
[1]
1 = lim

ε→0

(T [1]�1)|ζ=ζ1+ε
ε

,

which serves the seed solution for doing the next step transformation.

3.1. gDT-I

To construct the gDT associated with DT-I, we assume that n solutions
(ϕi , φi )T are given for the Lax pair at ζ = ζi (i = 1, . . . , n). First, we have the
elementary DT

D[0]
1 =

(
−ζ1

ϕ1

φ1
ζ

ζ −ζ1
φ1

ϕ1

)
.

As observed earlier, by virtue of the limit process, we find that(
ϕ

[1]
1

φ
[1]
1

)
= limε→0

D[0]
1

∣∣
ζ=ζ1

+ εσ1

ε

(
ϕ1(ζ1 + ε)
φ1(ζ1 + ε)

)

= D[0]
1

∣∣
ζ=ζ1

d

dζ

(
ϕ1(ζ )
φ1(ζ )

)
ζ=ζ1

+ σ1

(
ϕ1(ζ1)
φ1(ζ1)

)
is a nontrivial solution for Lax pair (4) with u = u[1] and v = v[1] at ζ = ζ1,
which may lead to the next step transformation

D[1]
1 =

⎛⎜⎝−ζ1
ϕ

[1]
1

φ
[1]
1

ζ

ζ −ζ1
φ

[1]
1

ϕ
[1]
1

⎞⎟⎠.
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This process may be continued and we have the following theorem

THEOREM 3. Let (ϕi , φi )T be the solutions of Lax pair at ζ = ζi

(i = 1, . . . , n) and assume that DT-I possesses mi order zeros at ζ = ζi . Then
we have the following gDT-I:

DN = D[mn−1]
n · · · D[1]

n D[0]
n · · · D[m1−1]

1 · · · D[1]
1 D[0]

1 , (30)

where

N =
n∑

i=1

mi ,

and

D[ j]
i =

⎛⎝−ζi
ϕ

[ j−1]
i

φ
[ j−1]
i

ζ

ζ −ζi
φ

[ j−1]
i

ϕ
[ j−1]
i

⎞⎠,
(
ϕ

[ j−1]
i

φ
[ j−1]
i

)
=

j−1∑
l=1

� j−1−l

l!

d

dζ l

(
ϕi

φi

) ∣∣
ζ=ζi ,

(
ϕ

[0]
i

φ
[0]
i

)
=

(
ϕi

φi

)
, (31)

and

�l =
∑

∑
δk

i =l

M [ j−2]
i · · · M [0]

i · · · M [m1−1]
1 · · · M [0]

1 , M [k]
i =

⎧⎪⎪⎨⎪⎪⎩
σ1, if δk

i = 1;

D[k]
i

∣∣
ζ=ζi

, if δk
i = 0.

Proof : To construct the gDT-I, we start with the elementary DT

D[0]
1 =

(
−ζ1

ϕ1

φ1
ζ

ζ −ζ1
φ1

ϕ1

)
.

By means of the nontrivial solutions (ϕ1[1], φ1[1]), we may do the next step of
transformation D[1]

1 . Taking account of the given seeds (ϕi , φi )T , we perform
the following limit(
ϕ

[ j]
i

φ
[ j]
i

)
= limε→0

[
D[ j−1]

i · · · D[1]
i D[0]

i · · · D[m1−1]
1 · · · D[1]

1 D[0]
1

] ∣∣∣
ζ=ζi +ε

ε j

(
ϕi (ζi + ε)

φi (ζi + ε)

)
,

which yields the formulae presented in above theorem. This completes the
proof. �

To have a compact determinant representation for the gDT-I, we may take
the limit directly on the N-fold DT-I (16). It follows from (17) and (18) that
the transformations between the fields are:
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(i) When N = 2l + 1

u[N ] = −v −
[

det(B)

det(A)

]
x

, v[N ] = −u +
[

det(B(ϕ j ↔ φ j ))

det(A(ϕ j ↔ φ j ))

]
x

, (32)

where

A=
(

AT
1 ,

d

dζ
AT

1 , . . . ,
dm1−1

(m1−1)!dζm1−1
AT

1 , . . . , AT
n ,

d

dζ
AT

n , . . . ,
dmn−1

(mn −1)!dζmn−1
AT

n

)
,

B =
(

BT
1 ,

d

dζ
BT

1 , . . . ,
dm1−1

(m1−1)!dζm1−1
BT

1 , . . . , BT
n ,

d

dζ
BT

n , . . . ,
dmn−1

(mn −1)!dζmn−1
BT

n

)
,

and Ai , Bi are the same as (17).
(ii) When N = 2l

u[N ] = u −
[

det(D)

det(C)

]
x

, v[N ] = v +
[

det(D(ϕ j ↔ φ j ))

det(C(ϕ j ↔ φ j ))

]
x

, (33)

where

C =
(

CT
1 ,

d

dζ
CT

1 , . . . ,
dmn−1

(mn − 1)!dζmn−1
CT

1 , . . . ,CT
n ,

d

dζ
CT

n , . . . ,
dmn−1

(mn − 1)!dζmn−1
CT

n

)
,

D =
(

DT
1 ,

d

dζ
DT

1 , . . . ,
dmn−1

(mn − 1)!dζmn−1
DT

1 , . . . , DT
n ,

d

dζ
DT

n , . . . ,
dmn−1

(mn − 1)!dζmn−1
DT

n

)
,

and Ci , Di are the same as (18).

Thus, we complete the construction of gDT-I for (4), which could be
considered as a generalization for DT studied in [17, 25, 26].

3.2. gDT-II

In this subsection, we consider the generalization for DT-II. To this end, we
assume that n solutions �i (ζ = μ) = (ϕi , φi )T are given for the Lax pair (4) at
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μ = μi and n solutions �i (ζ = ν) = (χi , ψi ) are given for the adjoint Lax
pair (5) at ν = νi (i = 1, . . . , n).

THEOREM 4. Let �i be the solutions of Lax pair (4) atζ = μi and �i be
the solutions of adjoint Lax pair (5) at ζ = νi (i = 1, . . . , n),

r∑
i=1

mi = N ,

assume that DT-II possesses mi order zeros at ζ = ±μi and inverse of DT-II
possesses mi order zeros atζ = ±νi . Then we have the following gDT-II

TN = T [mi −1]
n · · · T [0]

n · · · T [m1−1]
1 · · · T [0]

1 ,

T −1
N = (

T [0]
1

)−1 · · · (T [m1−1]
1

)−1 · · · (T [0]
n

)−1 · · · (T [mi −1]
n

)−1
(34)

where

T [ j]
i = I + A[ j]

i

ζ − νi
− σ3 A[ j]

i σ3

ζ + νi
,

(
T [ j]

i

)−1 = I + B[ j]
i

ζ − μi
− σ3 B[ j]

i σ3

ζ + μi
,

A[ j]
i = ν2

i − μ2
i

2

(
α

[ j]
i 0

0 β
[ j]
i

)
�

[ j]
i �

[ j]
i , B[ j]

i = μ2
i − ν2

i

2
�

[ j]
i �

[ j]
i

(
β

[ j]
i 0

0 α
[ j]
i

)
,

(
α

[ j]
i

)−1 = �
[ j]
i

(
νi 0

0 μi

)
�

[ j]
i ,

(
β

[ j]
i

)−1 = �
[ j]
i

(
μi 0

0 νi

)
�

[ j]
i ,

and

�
[ j]
i =

j∑
l=0

�l

( j −l)!

d j−l

dμ j−l
�i |μ=μi , �l =

∑
δ

j
i =l∑

M [ j−1]
i · · · M [0]

i · · · M [m1−1]
1 · · · M [0]

1 ,

�
[ j]
i =

j∑
l=0

d j−l

dμ j−l
�i |ν=νi

�l

( j − l)!
, �l =

∑
δ

j
i =l∑

N [ j−1]
i · · · N [0]

i · · · N [m1−1]
1 · · · N [0]

1 ,

M [ j]
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
μ2

i −ν2
i
, if δ j

i = 2;

2μi +A[ j]
i −σ3 A[ j]

i σ3

μ2
i −ν2

i
, if δ j

i = 1;

T [ j]
i

∣∣
ζ=μi

, if δ j
i = 0.

, N [ j]
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
ν2

i −μ2
i
, if δ j

i = 2;

2νi +B[ j]
i −σ3 B[ j]

i σ3

ν2
i −μ2

i
, if δ j

i = 1;(
T [ j]

i

)−1∣∣
ζ=νi

, if δ j
i = 0.
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Proof : Noting that the DT-II is given (20) and using the limit technique,
we could obtain special solutions for new Lax pair (4) (�[1],U [1], V [1]) at
ζ = μ1 and adjoint Lax pair (5) (�[1],U [1], V [1]) at ζ = ν1, that is,

�
[1]
1 = lim

δ→0

T [0]
1

∣∣
ζ=μ1+δ�1(μ1 + δ)

δ
= T [0]

1

∣∣
ζ=μ1

d

dμ
�1|μ=μ1 + S1�1(μ1),

�
[1]
1 = lim

δ→0

�1(ν1 + δ)T [0]−1
1

∣∣
ζ=ν1+δ

δ
= d

dν
�1|ν=ν1 T [0]−1

1

∣∣
ζ=ν1

+�1(ν1)R1,

where

S1 = 2μ1 + A1 − σ3 A1σ3

μ2
1 − ν2

1

, R1 = 2ν1 + B1 − σ3 B1σ3

ν2
1 − μ2

1

.

Therefore, we may continue to construct for the new system the DT-II T [2]

T [1]
1 = I + A[1]

1

ζ − ν1
− σ3 A[1]

1 σ3

ζ + ν1
,

(
T [1]

1

)−1 = I + B[1]
1

ζ − μ1
− σ3 B[1]

1 σ3

ζ + μ1
.

Generally, taking account of the given seeds �i and �i , we perform the
following limit

�
[ j]
i = lim

δ→0

(
T [ j−1]

i · · · T [0]
i · · · T [m1−1]

1 · · · T [0]
1

)∣∣
ζ=μi +δ

δ j
�i (μi + δ),

�
[ j]
i = lim

δ→0
�i (νi + δ)

(
T [0]−1

1 · · · (T [m1−1]
1

)−1 · · · (T [0]
i

)−1 · · · (T [ j−1]
i

)−1)∣∣
ζ=νi +δ

δ j
,

and mathematical induction leads to gDT-II (34). This completes the
proof. �

Due to above proposition, the transformations between the fields are

u[N ] = u + 2
n∑

i=1

mi −1∑
j=0

[(
A[ j]

i

)
12

]
x
, (35)

v[N ] = v − 2
n∑

i=1

mi −1∑
j=0

[(
A[ j]

i

)
21

]
x
. (36)

As before, the formulas (35) and (36) could be rewritten in terms of
determinants, that is,

u[N ] = u − 2

(
det(P1)

det(P)

)
x

, v[N ] = v + 2

(
det(Q1)

det(Q)

)
x

(37)
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where

P1 =

⎛⎜⎜⎜⎜⎜⎝
P [11] P [12] · · · P [1r ] ψ̂1

P [21] P [22] · · · P [2r ] ψ̂2
...

...
. . .

...
...

P [r1] P [r2] · · · P [rr ] ψ̂r

ϕ̂1 ϕ̂2 · · · ϕ̂r 0

⎞⎟⎟⎟⎟⎟⎠, P =

⎛⎜⎜⎜⎝
P [11] P [12] · · · P [1r ]

P [21] P [22] · · · P [2r ]

...
...

. . .
...

P [r1] P [r2] · · · P [rr ]

⎞⎟⎟⎟⎠,
with

ψ̂i =
(
ψi ,

∂

∂ν
ψi ,. . . ,

1

(mi − 1)!

∂mi −1

∂νmi −1
ψi

)T
∣∣∣∣∣
ν=ν j

,

ϕ̂ j =
(
ϕ j ,

∂

∂μ
ϕ j ,. . . ,

1

(m j − 1)!

∂m j −1

∂μm j −1
ϕ j

)∣∣∣∣∣
μ=μi

,

P [i j] =
(

P [i j]
kl

)
mk ,ml

,

P [i j]
kl = 1

(k−1)!(l−1)!

∂k+l−2

∂νk−1∂μl−1

(
�i (ν)σ3� j (μ)

μ+ν − �i (ν)� j (μ)

μ−ν
) ∣∣∣∣∣

μ=μi ,ν=ν j

,

and

Q1 =

⎛⎜⎜⎜⎜⎜⎝
Q[11] Q[12] · · · Q[1r ] χ̂1

Q[21] Q[22] · · · Q[2r ] χ̂2
...

...
. . .

...
...

Q[r1] Q[r2] · · · Q[rr ] χ̂r

φ̂1 φ̂2 · · · φ̂r 0

⎞⎟⎟⎟⎟⎟⎠, Q =

⎛⎜⎜⎜⎝
Q[11] Q[12] · · · Q[1r ]

Q[21] Q[22] · · · Q[2r ]

...
...

. . .
...

Q[r1] Q[r2] · · · Q[rr ]

⎞⎟⎟⎟⎠,
with

χ̂i =
(
χi ,

∂

∂ν
χi ,. . . ,

1

(mi − 1)!

∂mi −1

∂νmi −1
χi

)T
∣∣∣∣∣
ν=νi

,

φ̂ j =
(
φ j ,

∂

∂μ
φ j ,. . . ,

1

(m j − 1)!

∂m j −1

∂μm j −1
φ j

)∣∣∣
μ=μ j

,

Q[i j] = (
Q[i j]

kl

)
mk ,ml

,

Q[i j]
kl =− 1

(k−1)!(l−1)!

∂k+l−2

∂νk−1∂μl−1

(
�i (ν)σ3� j (μ)

μ+ν + �i (ν)� j (μ)

μ−ν
) ∣∣∣∣∣

μ=μi ,ν=ν j

.
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According to above theorems, it is not difficult to see that the reductions
(28) and (29) are still valid for gDT-I and gDT-II. For the gDT-II, to reduce
system (4) to DNLS, we must set μi = ν∗

i .

4. High-order solutions for DNLS

Integrable nonlinear partial differential equations are well known for their
richness of solutions. To construct those solutions, a number of approaches
have been proposed including IST, Dressing method, Hirota’s bilinear theory
and Darboux (Bäcklund) method, etc.

While classical DT is known to be a convenient tool to construct N -soliton
solutions, it may not be directly used to obtain the high-order solutions, which
correspond to multiple poles of the reflection coefficient in the IST terminology
(see [6] and the references there). We will show in this section that the gDT
derived above can be applied to obtain various solutions for DNLS. Indeed,
apart from the high-order solutions, a kind of new N -soliton solutions will also
appear. In Section 4.1, we consider the solutions with the VBC. In particular,
N -rational solitons, high-order rational solitons and high-order solitons are
worked out. In Section 4.2, we construct the high-order solutions with NVBC
which include the high-order rational solutions with NVBC and high-order
rogue wave solutions.

4.1. Solutions with VBC

Applying DT-I to vacuum, we may obtain three kinds of solutions, namely
plane wave solutions, N -phase solutions (periodic solutions) and N -soliton
solutions (see [17]). Additionally, if we take limit of the soliton solutions, we
can find rational solutions [17, 27]. In this section, we consider the N -rational
solutions first. As we pointed out, the rational solitons are the limit cases to the
soliton solutions. The different behaviours of the high-order rational solitons
and high-order solitons are indicated.

In the first two cases, gDT-I will be used, while for the case 3, it is
more convenient to use the gDT-II since the spectral parameters need to be
conjugated with each other.

Case 1: N-rational solutions

We first consider the rational solitons and their higher order analogies. For
the seed solution u = 0, the special solution for Lax pair (4) with the reduction
u = v∗ is (

ϕ

φ

)
=

(
e−iζ−2(x+2ζ−2t+c)

eiζ−2(x+2ζ−2t+c)

)
, (38)
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where c is a complex constant, which will be taken as a polynomial function
of ζ so that the high-order solutions with free parameters may be constructed.

To obtain the N -rational solitons, we introduce vectors

y = (ϕ, ζφ, . . . , ζ 2N−2ϕ, ζ 2Nϕ), z = (ϕ, ζφ, . . . , ζ 2N−2ϕ, ζ 2N−1φ),

and define the matrices

Y =

⎛⎜⎜⎜⎜⎜⎝
y1

y(1)
1
...

yN

y(1)
N

⎞⎟⎟⎟⎟⎟⎠, Z =

⎛⎜⎜⎜⎜⎜⎝
z1

z(1)
1
...

zN

z(1)
N

⎞⎟⎟⎟⎟⎟⎠,

where yi = y|ζ=ζi ,c=ci and zi = z|ζ=ζi ,c=ci , the superscript (1) represents the
first-order derivative to ζ . Then the N -rational soliton can be represented as

u[N ] = −
(

det (Y )

det (Z )

)
x

. (39)

Taking ζ1 = ia, we have

u[1] = 4a3[4i(a2x − 4t + a2c) − a4]e
2i(a2x−2t+a2c)

a4

[4i(a2x − 4t + a2c) + a4]2
,

which appeared already in [26]. The velocity for this rational soliton is a2/4
and the center is along the line a2x − 4t + a2c = 0. The altitude for |u[1]|2 is
16/a2. A simple analysis shows that this two-rational soliton does not possess
phase shift when t → ±∞, which is different from the two-soliton of NLS.
This phenomenon is illustrated by Figure 1.

Case 2: High-order rational solitons

Next we consider the high-order rational solitons. Set the matrices

Y1 =

⎛⎜⎜⎜⎝
y1

y(1)
1
...

y(2N−1)
1

⎞⎟⎟⎟⎠, Z1 =

⎛⎜⎜⎜⎝
z1

z(1)
1
...

z(2N−1)
1

⎞⎟⎟⎟⎠,
where the superscript (i) represents the i th derivative with respect to ζ . It follows
that the N -order rational soliton for DNLS with VBC can be formulated as

u[N ] = −
(

det(Y1)

det(Z1)

)
x

. (40)

By choosing appropriate parameters, we have the first and second order rational
solitons with VBC, which are plotted in Figure 2.
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Figure 1. Two-soliton (1,2) with the parameters ζ1 = 2i, ζ2 = 4i and c1 = c2 = 1; One
soliton-1 with parameters ζ1 = 4i and c1 = 1; One soliton-2 with parameters ζ1 = 2i and c1 = 1.

Figure 2. High-order rational solution with VBC: The parameters ζ1 = 2i and c1 = 0.

Case 3: High-order solitons

To obtain the high-order soliton solutions, we start with the seed solution
u = 0. The special solution for Lax pair (4) with the reduction u = v∗ at u = 0 is

(
ϕ

φ

)
=

(
e−iμ−2(x+2μ−2t+c)

eiμ−2(x+2μ−2t+d)

)
,

and the special solution for adjoint Lax pair (5) with the reduction u = v∗ at
u = 0 reads as

(
χ,ψ

) = (
eiν−2(x+2ν−2t+c∗), e−iν−2(x+2ν−2t+d∗)

)
,
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Figure 3. High-order soliton with VBC: The parameters μ = 1 + i and c = d = 0.

where c, d are constants which may depend on the spectral parameters. Then,
the N th order soliton solution for DNLS is given by

u[N ] = −2

(
det(M1)

det(M)

)
x

, M = (Mi j )N×N (41)

where

Mi j = di+ j−2

dνi−1dμ j−1

2[νei(ν−2−μ−2)[x+2(ν−2+μ−2)t] + μe−i(ν−2−μ−2)[x+2(ν−2+μ−2)t]]

ν2 − μ2

∣∣∣∣
ν=μ∗

,

M1 =
⎛⎝M Y T

X 0

⎞⎠, X =
(
ϕ,

d

dμ
ϕ, . . . ,

dN−1

dμN−1
ϕ

)
, Y =

(
ψ,

d

dν
ψ, . . . ,

dN−1

dνN−1
ψ

)
.

The second order and third order soliton solutions are shown in Figure 3.
The high-order soliton with more free parameters may be obtained if c or d
are taken as polynomial functions of μ.

4.2. Solution with NVBC

The solutions with NVBC may be obtained by applying DT to zero solution. As
illustrated in [26], one fold DT-I could be used to yield the plane wave solution.
Thus we will consider the high-order rational soliton solutions resulted from
vacuum first. To find more general solutions with NVBC, we may apply DT to
the general plane wave solution. This will be considered in case 2 and the
genuine rational solutions and their higher order analogies with NVBC will be
calculated. In case 3, we construct high-order rogue wave solutions. As above,
gDT-I will be employed in first two cases and gDT-II will be adopted in the
last case.

To the high-order rational solution with NVBC and high-order rogue waves,
because they all locate at the branch points of the spectrum, we must use some
tricks to deal with this problem. Besides the high-order rogue wave solutions,
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the high-order breather solutions and periodic solutions can be readily to obtain
similarly. Because they are nothing but using the formula (37) directly like the
case 3 of above section. Thus we omit them in our work.

Case 1: High-order rational solitons with NVBC from vacuum

To obtain high-order rational solutions with NVBC, the order of determinants
should be odd. Define the matrices

Ŷ1 =

⎛⎜⎜⎜⎜⎝
ŷ1

ŷ1
(1)

...

ŷ1
(2N )

⎞⎟⎟⎟⎟⎠, Ẑ1 =

⎛⎜⎜⎜⎜⎝
ẑ1

ẑ1
(1)

...

ẑ1
(2N )

⎞⎟⎟⎟⎟⎠,

where

ŷ1 = (
ϕ, ζ1φ, . . . , ζ

2N−1
1 φ, ζ 2N+1

1 φ
)
, ẑ1 = (

ϕ, ζ1φ, . . . , ζ
2N−1
1 φ, ζ 2N

1 ϕ
)
,

and φ, ψ are given by (38). Then the high-order rational solitons with NVBC
can be represented as

u[N ] = −
(

det(Ŷ1)

det(Ẑ1)

)
x

. (42)

Taking the parameters ζ1 = ia (a is a real constant) and c = 0, we have the
first-order rational solutions in NVBC

u[1] = 2L2L∗
1

aL2
1

e− 2i(a2x−2t)

a4 , (43)

where

L1 = 16ξ 2 + a8 + 8ia4(ξ − 4t), L2 = 16ξ 2 − 3a8 − 8ia4(ξ + 4t)

and ξ = a2x − 4t . The norm of u[1] attains the maximum value 6
|a| at origin,

and vanishes at (x, t) = (0,±
√

3
16 a4). The “ridge” of the solution (43) lays

approximately on the line a2x − 4t = 0, and decays to 2
a slowly.

The first and second order rational solitons in NVBC are plotted in Fig. 4.

Case 2: High-order rational solitons with NVBC from plane wave solution

To construct these solutions, we take the seed solution as

u = A exp(2iθ2),
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Figure 4. Rational solitons with NVBC: The parameters ζ1 = 2i and c1 = 0.

where θ2 = 1
2 [ax − (A2a + a2)t + c], c ∈ R. The corresponding fundamental

solution for Lax pair (4) is

� =
(

ei(θ1+θ2)+φ e−i(θ1−θ2)−φ

e−i(θ1+θ2)+φ ei(θ1−θ2)−φ

)
, (44)

where

θ1 = 1

2
arccos

(
−2 + aζ 2

2iAζ

)
,

and

φ = 1

2

√
−(2ζ−2 + a)2 − 4A2ζ−2[x − (a + A2 − 2ζ−2)t + d].

To resolve the reduction (28), we assume −4A2ζ 2 − (2 + aζ 2)2 > 0, d ∈ R,
ζ ∈ iR. The corresponding dark solitons and bright solitons were studied and
analyzed in [17, 26] in details. The author of [26] also illustrated certain limit
cases, but he did not give the explicit expression for those solutions.

In the case −4A2ζ 2 − (2 + aζ 2)2 = 0, � given by the formula (44), which
does not qualify as the fundamental solution, is in fact a constant. Thus the gDT
could not generate interesting solutions. To obtain meaningful solutions, we
must find another solution for (4). To this end, we turn to the limit technique.

For convenience, we consider the special case a = c = 0, A = 1 which leads
to the genuine rational solutions. We will expand the solution for Lax pair at
ζ = i. With the special solution

�1 = �|ζ=i(1+ f )C

f 1/2
, C =

(
1
1

)
,

at f = 0, which satisfies the reduction (28), we have

�1 = Y0 + Y1 f + · · · + Yn f n + · · · ,

Yn =
(

xn

yn

)
= lim f =0

1

n!

dn

d f n
�1( f ).
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The high-order genuine rational solution in NVBC is represented as the
following:

(i) When N = 2l − 1, we have

u[2l − 1] = −1 −
[

det(B)

det(A)

]
x

, (45)

where

Ai,2 j−1 = Bi,2 j−1 = i2 j−1
min(i−1,2 j−2)∑

k=0

Ck
2 j−1xk, ( j = 1, 2, . . . , l − 1),

Bi,2l−1 = i2l
i−1∑
k=0

Ck
2l xk,

Ai,2 j = Bi,2 j = i2 j
min(i−1,2 j−1)∑

k=0

Ck
2 j yk, Cn

m = m!

n!(m − n)!
.

(ii) When N = 2l, we have

u[2l] = 1 −
[

det(D)

det(C)

]
x

, (46)

where

Ci,2 j−1 = Di,2 j−1 = i2 j−1
min(i−1,2 j−2)∑

k=0

Ck
2 j−1xk,

Ci,2 j = i2 j

min(i−1,2 j−1)∑
k=0

Ck
2 j yk, ( j = 1, 2, . . . , l)

Di,2k = Ci,2k, (k = 1, 2, . . . , l − 1), Di,2l = i2l+1
i−1∑
k=0

Ck
2l+1 yk .

In particular, taking d = e f , where e is real number, we have

x0 = √
2(2x − 6t − i), y0 = √

2(2x − 6t + i),

x1 = √
2

[
2

3
x3 − 6x2t + 18xt2 − 18t3 − 4x + 20t + 2e + i

(
1

2
− x2 + 6xt − 9t2

)]
,

y1 = √
2

[
2

3
x3 − 6x2t + 18xt2 − 18t3 − 4x + 20t + 2e + i

(
x2 − 1

2
− 6xt + 9t2

)]
.
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Thus by means of above formula (45), the first order genuine rational soliton
solution reads

u[1] = − (−2x + 6t − i)(−2x + 6t + 3i)

(−2x + 6t + i)2
, (47)

which is nothing but the rational traveling wave solution with NVBC. Similarly,
(46) provides us the following second order genuine rational soliton with NVBC

u[2] = L∗
1 L2

L2
1

, (48)

where

L1 = 8η3 + 18η + 48t + 12e + i(12η2 + 3),

L2 = 8η3 − 30η + 48t + 12e + i(36η2 − 15),

and η = 3t − x and e is an arbitrary real number. The norm of solution (48)
attains the maximum value five which locates at (x, t) = (− 3

4 e,− 1
4 e), and

vanishes (48) at ( 7τ−4τ 3−6e
8 , 15τ−4τ 3−6e

24 ), where τ = ±
√

5
12 . The “ridge” of this

soliton (48) approximately lays on the line x = 3t . When t → ±∞, above
u[2] approaches to u[1] represented by (47) along its “ridge.” It is should be
emphasized that there exists no rational dark soliton.

Case 3: High-order rogue wave solutions

The rogue wave solutions for DNLS were first derived in [17] via DT, to the
best of our knowledge. However, the classical DT can not be used directly to
obtain high-order rogue wave solutions. According to above, we can see that
the gDT is a very efficient way to obtain high-order solutions.

To get the high-order rogue wave solutions, for simplicity, we consider
the seed solution u[0] = exp(−ix). The corresponding fundamental-matrix
solution for Lax pair is

� = E

(
α α−1

−α−1 −α
)(
β 0
0 β−1

)
, E =

(
exp

( − 1
2 ix

)
0

0 exp
(

1
2 ix

))
where

α= [(2ζ )−1(λ− 2i + iζ 2)]1/2, β = exp

[
1

2
λζ−2(x + 2ζ−2t + F(ζ ))

]
,

λ= (−4 − ζ 4)1/2

and F(ζ ) is a polynomial function for ζ . As above, by means of the limit
technique, we expand the special solution at ζ = 1 + i

�1 = �|ζ=(1+i)(1+ f )C

f 1/2
, C =

(
1
1

)
,
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at f = 0, and find

�1 = Y0 + Y1 f + · · · + Yn f n + · · · ,
where

Yn =
(

xn

yn

)
= lim f =0

1

n!

d

d f n
�1( f ).

Explicitly, we have

x0 = exp

[
−1

2
ix

]
(2x − 2it − 1 − i),

y0 = exp

[
1

2
ix

]
(2x − 2it + 1 + i),

x1 = exp

[
−1

2
ix

] [
−1

3
x3 + ix2t + xt2 − 1

3
it3 + 1 + i

2
x2 + (1 − i)xt − 1 + i

2
t2

− 1

2
ix − 5

2
x + 13

2
it − 1

2
t + 2e + 1

2
+ 2ig

]
,

y1 = exp

[
1

2
ix

] [
−1

3
x3 + ix2t + xt2 − 1

3
it3 − 1 + i

2
x2 − (1 − i)xt + 1 + i

2
t2

− 1

2
ix − 5

2
x + 13

2
it − 1

2
t + 2e − 1

2
+ 2ig

]
.

Therefore, the N th order rogue wave can be represented as following

u[N ] = exp[−ix] − 2

(
det(M1)

det(M)

)
x

, (49)

where M = (
Mi j

)
N×N

,

M1 =

⎛⎜⎜⎜⎜⎝
M11 M12 · · · M1N y0

M21 M22 · · · M2N y1
...

...
. . .

...
...

MN1 MN2 · · · MN N yN−1

x0 x1 · · · xN−1 0

⎞⎟⎟⎟⎟⎠,

Mi j =
i−1, j−1∑
k=0,l=0

−
(

−1

2

)i+ j−(k+l+1)

Ci−k−1
i+ j−(k+l+2)

×[
Y †

k σ3Yl(1 − i)i−k−1(1 + i) j−l−1 + iY †
k Yl(1 + i)i−k−1(1 − i) j−l−1

]
.
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Figure 5. Second order rogue wave with the parameters (a) e = g = 0; (b) e = 0 and g = 100.

In particular, the first order and the second order rogue wave solutions are
given by

u[1] = − [2t2 + 2x2 − 3 − 2i(x + 3t)][2x2 + 2t2 − 2i(x − t)]

[2x2 + 2t2 + 1 + 2i(x − t)]2
exp[−ix],

and

u[2] = L∗
1 L2

L2
1

exp[−ix],

where

L1 = 72[e2 + g2] + [48x3 − 144xt2 + 72ix2 + 144ixt − 72it2 − 144x − 72t

+ 36i]e + [−144x2t + 48t3 + 72ix2 − 144ixt − 72it2 − 72x + 432t

− 36i]g + 8x6 + 24x4t2 + 24x2t4 + 8t6 + 24ix5 − 24ix4t + 48ix3t2

− 48ix2t3 + 24ixt4 − 24it5 − 12x4 + 48x3t − 216x2t2 + 48xt3 + 180t4

+ 48ix3 − 288ixt2 − 336it3 + 90x2 − 72xt + 666t2 + 54ix − 198it + 9,

L2 = 72[e2 + g2] + [48x3 − 144xt2 − 72ix2 + 432ixt + 72it2 + 144x + 216t

− 180i]e + [−144x2t + 48t3 + 216ix2 + 144ixt − 216it2 + 216x + 144t

+ 36i]g + 8x6 + 24x4t2 + 24x2t4 + 8t6 − 24ix5 − 72ix4t − 48ix3t2

− 144ix2t3 − 24ixt4 − 72it5 − 60x4 − 144x3t − 504x2t2 − 144xt3

− 60t4 + 48ix3 + 288ix2t + 576ixt2 − 528it3 − 198x2 + 504xt − 486t2

+ 90ix + 414it + 45,

e and f are arbitrary real number. These solutions with different parameters
are plotted in Fig. 5.
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5. Conclusion and Discussion

The theory of DT is developed and two generalized DTs, gDT-I, and gDT-II,
are constructed for DNLS. With the help of them, two generalized determinant
solution formulae are obtained for this physically relevant equation. Moreover,
high-order solitons, high-order rogue waves, and rational solutions are given
explicitly. We remark that the gDT-II is still valid for N-component DNLS
system. In addition, the above formula can be easily modified and applied to
so-called Fokas-Lenells Equation [28].

As shown in Figure 5, the second-order rogue waves exhibit dynamics which
varies according to the different values of the parameters. It is interesting to
study the dynamics of the general high-order solutions. Also, it is interesting to
calculate the energy of the high-order solutions, which could be done directly.
However, the calculations involved in is very tedious. These questions may
be answered efficiently by a detailed analysis of DNLS in the framework of
inverse scattering method.
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