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Nondegenerate bound-state solitons in multicomponent Bose-Einstein condensates

Yan-Hong Qin,1,2 Li-Chen Zhao ,1,2,* and Liming Ling3,†

1School of Physics, Northwest University, Xi’an 710127, China
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China

3School of Mathematics, South China University of Technology, Guangzhou 510640, China

(Received 15 April 2019; revised manuscript received 23 July 2019; published 15 August 2019)

We investigate nondegenerate bound-state solitons systematically in multicomponent Bose-Einstein conden-
sates, through developing the Darboux transformation method to derive exact soliton solutions analytically. In
particular, we show that bright solitons with nodes correspond to the excited bound states in effective quantum
wells, in sharp contrast to the bright solitons and dark solitons reported before (which usually correspond to
ground state and free state, respectively). We further demonstrate that bound-state solitons with nodes are induced
by incoherent superposition of solitons in different components. Moreover, we reveal that the interactions
between these bound-state solitons are usually inelastic, caused by the incoherent interactions between solitons
in different components and the coherent interactions between solitons in the same component. Additionally,
the detailed spectral stability analysis demonstrates the stability of nondegenerate bound-state solitons. The
bound-state solitons can be used to study many different physical problems, such as beating dynamics, spin-orbit
coupling effects, quantum fluctuations, and even quantum entanglement states.
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I. INTRODUCTION

Multicomponent Bose-Einstein condensates (BECs) pro-
vide a good platform to study the dynamics of vector soli-
tons [1]. Many different vector solitons have been obtained
in two-component BECs, such as bright-bright solitons [2–4],
bright-dark solitons [5], dark-antidark solitons [6], dark-dark
solitons [7,8], and dark-bright solitons [9,10]. Those soliton
states can be related with eigenstates in quantum wells [11].
From the general properties of eigenstates in one-dimensional
quantum wells [12], one can know that fundamental bright
solitons and dark solitons correspond to the ground state and
the first-excited state, respectively, in an effective quantum
well. Therefore, bright-bright solitons and dark-dark solitons
are degenerate solitons (more than one component admits the
same spatial mode), and bright-dark solitons and dark-bright
solitons are nondegenerate soliton states. A bright soliton
is a bound state which admits zero density at infinity. A
dark soliton is a free state which admits nonzero density at
infinity. This means that the nondegenerate solitons (dark-
bright solitons and bright-dark solitons) both involve a free
state [5,9,10]. We would like to look for nondegenerate
bound-state solitons (NDBSSs), for which all eigenstates are
bound states. The bound-state solitons can be used to inves-
tigate much more abundant beating and tunneling dynamics
in multicomponent BECs [13]. Many other different physical
problems, such as spin-orbit coupling effects [14–17], quan-
tum fluctuations [18–23], and even quantum entanglement
states [24], can be investigated.
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In this paper, we obtain NDBSSs in multicomponent BECs
with attractive interactions, by performing a Darboux trans-
formation. Especially, we note that bright solitons with nodes
correspond to the excited eigenstates in the effective quantum
wells. The incoherent superposition between solitons in dif-
ferent components can be used to understand the formation of
NDBSSs. The incoherent interaction corresponds to the non-
linear interaction between solitons in different components,
for which the relative phase of solitons does not affect the
interaction patterns. Furthermore, we investigate the interfer-
ence properties of the NDBSSs. We show that the interference
between them exhibits multiperiodicity, significantly differ-
ing from scalar solitons or bright-dark solitons. Moreover,
our analysis reveals that the interactions between NDBSSs
are inelastic in general, induced by the nonlinear incoherent
interactions between solitons in different components and the
nonlinear coherent interactions between solitons in same com-
ponent. Double-hump and triple-hump solitons are presented
in two-component and three-component BECs, respectively.
We also show that NDBSSs admit spectral stability. These fas-
cinating dynamics of NDBSSs enrich the nonlinear dynamics
in BECs greatly. Similar studies can be extended to cases with
more than three components, and more abundant bound-state
solitons are expected.

Our presentation is structured as follows. In Sec. II, we
introduce the theoretical model and present the NDBSSs
solutions. We further show that the incoherent interactions
between solitons in different components can be used to
understand the formation of these bound-state solitons. In
Sec. III, we reveal that the collisions of NDBSSs are usually
inelastic, due to the incoherent interactions and the coherent
interactions between these bound-state solitons. In Sec. IV,
we exhibit the NDBSSs in three-component BECs. In Sec. V,
the stability of NDBSSs is discussed in detail. Possibilities
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to observe them are discussed in BEC systems. Finally, we
summarize our results in Sec. VI.

II. THEORETICAL MODEL AND NONDEGENERATE
BOUND-STATE SOLITON SOLUTIONS

In the framework of the mean-field theory, the dynamics of
two-component BECs can be described well by the following
dimensionless two-component coupled nonlinear Schrödinger
equations [25]:

iq1,t + q1,xx + 2(|q1|2 + |q2|2)q1 = 0,

iq2,t + q2,xx + 2(|q1|2 + |q2|2)q2 = 0,
(1)

where q1(x, t ) and q2(x, t ) represent the mean-field wave
functions of the two-component BECs [26]. The interac-
tions between atoms are attractive for the above model,
and similar discussions can be had for repulsive interactions
cases. The model can be also used to describe the evolu-
tion of light in nonlinear optical fibers [27,28]. With the
aid of the Darboux transformation (DT) [29–32], the Hirota
method [33,34], the Bäcklund transformation [35], and the
Kakomtsev-Petviashvili hierarchy reduction method [36–38],
many different vector solitons have been obtained in various
nonlinear systems, such as bright-bright solitons [2,39,40],
bright-dark solitons [5], dark-dark solitons [7,8], and dark-
bright solitons [9,10,35]. We would like to look for NDB-
SSs, for which all eigenstates are bound states, in contrast
to the reported bright-dark soliton [5] and the dark-bright
soliton [9,10,35].

DT is a very powerful method for constructing soliton
solutions. Therefore, we would like to develop a DT method to
derive the NDBSSs. The twofold DT with spectral parameters
λ1 = a1 + ib1 and λ2 = a1 + ib2 generates one NDBSS. The
derivation process is given in Appendix A in detail, which
is different from the processes for generating bright-bright
solitons and bright-dark solitons [29–32]. The exact general
double-hump soliton solution for Eq. (1) can be written as
follows:

q1(x, t ) = −2ib1c∗
11

N1

M1
e−i[a1x+(a2

1−b2
1 )t],

q2(x, t ) = −2ib2c∗
22

N2

M1
e−i[a1x+(a2

1−b2
2 )t]. (2)

with

N1 =
(

b1 − b2

b1 + b2
+ |c22|2e−2b2(x+2a1t )

)
e−b1(x+2a1t ),

N2 =
(

b2 − b1

b1 + b2
+ |c11|2e−2b1(x+2a1t )

)
e−b2(x+2a1t ),

M1 = |c11|2e−2b1(x+2a1t ) + |c22|2e−2b2(x+2a1t )

+ |c11c22|2e−2(b1+b2 )(x+2a1t ) + (b1 − b2)2

(b1 + b2)2
,

where a1, b1, and b2 are real parameters, and c11 and c22 are
complex parameters. The velocity of the soliton is −2a1. The
parameters b1, b2, |c11|, and |c22| determine the soliton profile.
According to the expressions in Eq. (2), we see that soliton
profiles will be kept except for the translation of the position
under the transforms |c11| → |c11|eb1δ and |c22| → |c22|eb2δ ,

where δ is an arbitrary real constant. These parameters non-
trivially contribute to the profile of the soliton. It is noted
that the solitons in two components admit different modes.
When b1 < b2, the soliton in the q2 component admits no
node, and the one in the q1 component always has one node,
and vice versa. Since a nonlinear Schrödinger equation can be
mapped to a linear Schrödinger equation with proper quantum
wells [11,12], the nonlinear term −2|q1(x, t )|2 − 2|q2(x, t )|2
in Eq. (1) can be understood as an effective quantum well,
V (x, t ). If −2|q1(x, t )|2 − 2|q2(x, t )|2 does not depend on
time, the soliton states can be related with eigenproblems
in the quantum well V (x), namely, [−∂2

x + V (x)]q j = μ jq j .
Then the soliton solutions can be mapped to the eigenvalues
μ j and the eigenstates q j in the effective quantum well.
From the node properties of the corresponding eigenstates
in quantum wells [12], we know that the eigenstate with
one node corresponds to the first-excited state in effective
quantum wells [11]. Therefore, the bound-state solitons in
two components correspond to ground state and first-excited
state in effective quantum wells respectively. A bound-state
soliton with one node is in sharp contrast to the bright soli-
ton and the dark soliton reported before. The NDBSSs are
similar to the “soliton complexes” which have been used to
describe different composition solitons [41–43]; however, it
is not convenient to distinguish nodes of solitons based on
the concept of “soliton complexes.” To emphasize the node
properties and their relations with eigenstates in quantum
wells, we discuss them from the quantum well viewpoint.
Moreover, the Manakov model can be transformed into the
parametrically driven nonlinear Schrödinger equation [42,43],
when the solutions can be transformed into stationary states of
the Manakov model. In this way, NDBSSs can be related with
the soliton complexes in Refs. [42,43]. Additionally, for the
soliton solutions which cannot be transformed into stationary
states of the Manakov model, they do not hold anymore for
the parametrically driven nonlinear Schrödinger equation. In
what follows, we discuss the profile types of the fundamental
NDBSSs.

The profiles of NDBSSs can be mainly classified as
three different types: asymmetric double-hump solitons (two
components both admit asymmetric double-hump solitons),
symmetric single-hump–double-hump solitons (one compo-
nent admits single-hump solitons and the other compo-
nent has a symmetric double-hump soliton), and symmetric
double-hump solitons (two components both admit symmetric
double-hump solitons). This classification is different from
the one given in Ref. [44], based on different aspects of soliton
profiles. The three different cases are shown in Figs. 1(a1)–
1(a3); the solid blue line and the dashed red line corresponds
to the q1 component and the q2 component, respectively.
Figure. 1(a1) depicts the intensity profiles of asymmetric
double-hump solitons in both components. The solitons in
the q1 component and the q2 component correspond to the
first-excited state and the ground state, respectively, in an
effective quantum double-well potential. Particularly, we find
that the asymmetric double-hump soliton solution, Eq. (2),
can be reduced to a symmetric form by choosing the pa-
rameters c11 = c22 = √

3/3, b2 = 2b1, and δ = 0. For this
case, we rewrite the solutions as q1 = √

3b1 sech[b1(x +
2a1t )] tanh[b1(x + 2a1t )]e−i[a1x+(a2

1−b2
1 )t−π/2] and q2 = √

3b1
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FIG. 1. Three different density profiles for double-hump solitons in two-component coupled systems: (a1) asymmetric double-hump
solitons in both components, (a2) symmetric single-hump–double-hump solitons, and (a3) approximate symmetric double-hump solitons in
both components. solid blue line and the dashed red line correspond to the q1 component and the q2 component, respectively. It is seen that
solitons in q1 and q2 components correspond to first-excited state and ground state, respectively, in the effective double-well potential. The
parameters are as follows: (a1) c11 = c22 = 1, a1 = 0, b1 = 1, b2 = 1.1, and δ = −2.8; (a2) c11 = c22 = √

3/3, a1 = 0, b1 = 1, b2 = 2b1, and
δ = 0; and (a3) c11 = c22 = 1, a1 = 0, b1 = 2, b2 = 2.001, and δ = −4.1.

sech2[b1(x + 2a1t )]e−i[a1x+(a2
1−4b2

1 )t+π/2]. The amplitudes of
the q1 and q2 components are

√
3b1/2 and

√
3b1, respectively.

One can see that a symmetric double-hump bright soliton
presents in the q1 component, which corresponds to the first-
excited bound state, while a single-hump ground bound-state
soliton emerges in the q2 component. This type of soliton can
be seen as a symmetric single-hump–double-hump soliton. As
an example, we show it in Fig. 1(a2). Additionally, when b1

and b2 are very close to each other, Eq. (2) will show nearly
symmetrical double-hump bright solitons in both components.
Typical intensity profiles are shown in Fig. 1(a3). The two
humps distribute symmetrically in each component for this
case. Remarkably, it is clear that a bright soliton with one node
(the first-excited bound-state soliton) emerges in just one of
the components for all three cases.

The soliton solutions of the above Manakov model have
been studied widely. However, bright solitons with nodes
are absent in most of the previously published studies on
vector solitons [29–32]. Therefore, we would like to dis-
cuss why there are NDBSSs in the coupled systems. Based
on the derivation method for NDBSSs, we note that these
bound-state solitons are generated from two solitons with zero
relative velocity and some special parameters. The analysis
indicates that the choice of special parameters corresponds
to the incoherent interactions between solitons in different
components. The incoherent interaction corresponds to the
nonlinear interaction between incoherent solitons, for which
the relative phase of solitons does not affect the interaction
pattern. It is different from the coherent interaction of two
solitons in the same component for which the relative phase of
them affects the interaction pattern. The double-hump soliton
is related to two incoherent solitons, for which each bright
soliton emerges in just one certain component (they are phase
separated), in contrast to the well-known bright-bright soliton.
Therefore, we investigate the interaction of two incoherent
solitons with different velocities, to investigate the role of
relative velocity in forming the NDBSSs. This can be done
exactly by changing the spectral parameters λ1 = a1 + ib1

and λ2 = a2 + ib2 in the solution Eq. (A5). We change the
velocity of the soliton (v j = −2a j) in each component, and
other parameters are fixed as in Fig. 1(a1). The relevant dy-

namical processes of incoherent interactions between solitons
are depicted in Fig. 2, and the relative velocities of solitons
(v2 − v1) in two components correspond to 0.08, 0.004, and
0.0004 from top to bottom, respectively (see captions for
detailed parameter settings). The characters of incoherent
interactions between solitons are shown clearly in Fig. 2(a).
The incoherent interaction mainly includes two cases: in-
coherent collision and incoherent superposition. Incoherent
superposition can be approached from incoherent collision
by decreasing the relative velocity. One can see that the
relative velocity between solitons is smaller, and the nonlinear

FIG. 2. The incoherent interactions between solitons in different
components with different relative velocities (2a1–2a2). From top to
bottom, the parameters are as follows: (a1) and (a2) a1 = −a2 =
0.02, (b1) and (b2) a1 = −a2 = 0.001, and (c1) and (c2) a1 =
−a2 = 0.0001. The left panels show the density distributions of the
q1 component; the right panels show the density distributions of the
q2 component. The evolution dynamics suggest that nondegenerate
bound-state solitons are induced by incoherent superpositions of
bright solitons in different components. The other parameters are
c11 = c22 = 1, b1 = 1, b2 = 1.1, and δ = −2.8 [the same as those
in Fig. 1(a1)].
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incoherent interaction between solitons in different compo-
nents is becoming stronger. When the relative velocity of
solitons decreases to zero, the nonlinear incoherent interac-
tion will become an incoherent superposition of them, which
induces the profile of the bright soliton in one of component
changes to be a double-hump soliton with one node (first-
excited bound eigenstate) and the profile of the bright soliton
in the other component becomes a double-hump soliton with
no node (ground bound state), such as solitons in Fig. 1(a1).
These dynamical processes indicate that NDBSSs are induced
by the incoherent superposition between solitons in different
components.

It should be mentioned that similar multihump solitons
have been observed for a long time in dispersive nonlinear
medium [45–47]. Stationary multihump solitons have also
been obtained in Kerr-like media [48]. Recently, many dif-
ferent static nondegenerate solitons were derived from eigen-
states in some certain quantum wells [11]. However, bright
solitons with nodes are symbiotic with dark solitons; that is,
the bound state and the free state always coexist in the coupled
systems. Moreover, these solutions are stationary and it is
inconvenient to discuss their collision properties analytically.
Very recently, nondegenerate solitons in the Manakov system
were reported by the Hirota’s bilinear method [44]. In this
paper, we develop the DT method to derive NDBSSs, which
enables us to discuss the underlying mechanism for these
bound-state solitons. Furthermore, we develop the DT method
to investigate the collision processes between the NDBSSs
analytically.

III. COLLISION BETWEEN DIFFERENT
NONDEGENERATED SOLITONS

First, we investigate the collision between one NDBSS and
one degenerate bright soliton, by performing the threefold
DT with spectral parameters λ1 = a1 + ib1, λ2 = a1 + ib2,
and λ3 = a2 + ib3 (see Appendix A for the solution process).
More complicated interactions between solitons can be inves-
tigated by performing the N-fold DT in Appendix A, Eq. (A8).
For this case, typical densities are depicted in the Figs. 3(a1)
and 3(a2) corresponding to the q1 component and the q2 com-
ponent, respectively. It is seen that the interference patterns
between an asymmetric double-hump soliton and a single-
hump soliton appear in both components. One first-excited-
state soliton interferes with a ground-state soliton in the q1

component, while two ground-state solitons collide with each
other in the q2 component. Detailed analysis indicates that the
collisions between them are usually inelastic, and they can be
elastic under some special initial conditions.

Second, we investigate the interaction between two NDB-
SSs by performing the fourfold DT with spectral parameters
λ1 = a1 + ib1, λ2 = a1 + ib2 (generates one NDBSS), λ3 =
a2 + ib3, and λ4 = a2 + ib4 (generates another NDBSS). We
exhibit the dynamical evolution of them in the right-hand pan-
els of Fig. 3, based on the two double-hump solitons solution
Eq. (A7). Figures 3(b1) and 3(b2) correspond to the q1 com-
ponent and the q2 component, respectively. As one can see in
Figs. 3(b1) and 3(b2), the collision of two identical symmetric
double-hump solitons (two first-excited bound-state solitons)
in the q1 component and two identical single-hump solitons

FIG. 3. The collision dynamics between one nondegenerate
bound-state soliton and one degenerate bright soliton or one nonde-
generate bound-state soliton. (a1) and (a2): The interference behavior
between an asymmetric double-hump soliton (moving to the right
direction) and a degenerate bright soliton (moving to the left direc-
tion). Related parameters are c21 = c12 = 0, c11 = c22 = c13 = c23 =
1, a1 = −10, a2 = 10, b1 = 1, b2 = 1.1, b3 = 0.8, and δ1 = δ2 = 0.
(b1) and (b2): The interference patterns between two nondegenerate
bound-state solitons. The parameters are c11 = c22 = c13 = c24 =√

3/3, a1 = 10, a2 = −10, b1 = 1, b2 = 2, b3 = 1, b4 = 2, and δ1 =
δ2 = 0. The top panels show the density of the first component, and
the bottom panels show the density of the second component. The
soliton profiles change too slightly to be visible after the collision at
these parameters.

(two ground bound-state solitons) in the q2 component both
generate interference patterns. Moreover, we further explore
the interference properties of them by the asymptotic analysis
technique (see the detailed solution process in Appendix A).
Interestingly, we find that the interference of double-hump
solitons presents multiperiodicity. The periodic functions
are governed by the factors sin[(a1 − a2)x + (a2

1 − a2
2 + b2

3 −
b2

1)t] and sin[(a1 − a2)x + (a2
1 − a2

2 − b2
2 + b2

4)t] and their
corresponding cosine forms. These mean that there are three
periodic oscillation behaviors in the interference process of
two double-hump bright solitons. The spatial period is D =
2π/(a1 − a2) = 4π/(v1 − v2), and the temporal periods are
T1 = 2π/(a2

1 − a2
2 + b2

3 − b2
1) and T2 = 2π/(a2

1 − a2
2 − b2

2 +
b2

4), in a striking contrast to interference patterns between
bright solitons reported before [49]. This comes from more
than two energy eigenvalues involved in the interference pro-
cesses. In Figs. 3(b1) and 3(b2), only the spatial interference
pattern is visible, due to the parameters settings a2

1 = a2
2,

b1 = b3, and b2 = b4, which make two temporal periods be
zero. For Figs. 3(a1) and 3(a2), the parameter settings make
two temporal periods too small to be visible (see caption for
details).

It should be emphasized that the collision dynamics be-
tween bound-state solitons in Fig. 3 are indeed inelastic,
where the solitons’ profiles change too slightly to be visible
after the collision. Further analysis suggests that the collisions
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FIG. 4. The inelastic collision between two nondegenerate
bound-state solitons. Left panels: Dynamical evolution for coherent
collision of nondegenerate bound-state solitons. Right panels: Inten-
sity plots for both components before (t = −30, solid blue line) and
after (t = 30, dashed red line) the collision. It is seen that profiles of
double-hump solitons indeed change after the collision. The analysis
suggests that the collisions between these bound-state solitons are
usually inelastic, due to the incoherent interaction and the coherent
collision between them. The parameters are c11 = c22 = c13 = c24 =
1, a1 = −1/10, a2 = 1/10, b1 = 1, b2 = 1.2, b3 = 2, b4 = 1.9, and
δ1 = δ2 = 0.

between bound-state solitons are usually inelastic unless the
parameters satisfy the sufficient condition Eq. (A15). Inelastic
collision refers to that the soliton’s profile changes after the
collision. A typical example for inelastic collision is shown
in Fig. 4, where two double-hump solitons collide with each
other in both components. The panels on the left show the
related density evolutions; Figs. 4(a) and 4(b) correspond
to the q1 component and the q2 component, respectively.
The panels on the right depict the corresponding intensity
profiles of two solitons before (t = −30, solid blue line)
and after (t = 30, dashed red line) the collision in both
components. These figures clearly show that the double-
hump solitons’ profiles undergo dramatic change after the
collision in each component [see Figs. 4(a1) and 4(a2) and
Figs. 4(b1) and 4(b2)]. Then, what causes inelastic collisions
of NDBSSs? As mentioned in Sec. II, NDBSSs are induced
by the incoherent interactions between solitons in different
components. Moreover, the collision between NDBSSs also
involve the coherent collision between solitons in the same
component. Therefore, the incoherent interactions between
solitons in different components and the coherent collision
between solitons in the same component both affect collision
properties. By investigating the interactions between solitons
with different ε values (the spectral parameters are chosen as
λ1 = a1 + ib1, λ2 = a1 + ε1 + ib2, λ3 = a2 + ib3, and λ4 =
a2 + ε2 + ib4), we can see that the collisions between bound-
state solitons are usually inelastic.

Very recently, three-component soliton states were ob-
served in a spinor BEC system [50]. Motivated by these devel-

opments, we would like to extend our studies on NDBSSs to
three-component BECs. Similar discussions can be extended
to cases with more than three components.

IV. NONDEGENERATE BOUND-STATE SOLITONS
IN THREE-COMPONENT CONDENSATES

In this section, we consider the NDBSSs in three-
component BECs with attractive interactions. The dynamics
can be described well by the following three-component,
coupled nonlinear Schrödinger equations in dimensionless
form ( j = 1, 2, 3):

iq j,t + q j,xx + 2(|q1|2 + |q2|2 + |q3|2)q j = 0. (3)

By directly performing the similar DT method with λ1 =
a1 + ib1, λ2 = a1 + ib2, and λ3 = a1 + ib3 as presented in
Appendix A, the exact triple-hump bound-state soliton solu-
tion of Eq. (3) can be written as follows (we do not show the
explicit solution process here for brevity):

q1(x, t ) = −2ib1c1e−iα1

(
χ1

	1
+ 2b3
1
2

(b2 + b3)2	2	
2
1

eβ1

)
,

q2(x, t ) = −2ib2c2e−iα2

(
χ2

	1
+ 2b3
1
3

(b2 + b3)2	2	
2
1

eβ2

)
,

q3(x, t ) = −2ib3c3

1e−iα3+β3

(b2 + b3)	2	1
, (4)

where β j = −b j (x + 2a1t ) and α j = a1x + (a2
1 − b2

j )t . The
explicit expressions of 	1,2, χ1,2, and 
1,2,3 are given in
Appendix B. a1, b1, b2, and b3 are real parameters; c1, c2,
and c3 are complex parameters. The velocity of the soliton
is −2a1. Parameters b1, b2, b3, |c1|, |c2|, and |c3| govern the
soliton profiles. According to the expressions in Eq. (4), we
see that the profiles of solitons will be kept except for the
translation of position under the transforms |c1| → |c1|eb1δ ,
|c2| → |c2|eb2δ , and |c3| → |c3|eb3δ , where δ is an arbitrary
real constant. These parameters nontrivially contribute to the
profiles of solitons. A typical example of the intensity profiles
are displayed in Fig. 5. It can be seen that a triple-hump bright
soliton is exhibited in each component. The effective quan-
tum wells for this three-component case is −2|q1(x, t )|2 −
2|q2(x, t )|2 − 2|q3(x, t )|2, and it is a triple-well form. Based
on the correspondence between solitons and eigenstates in
quantum wells [11,12], one can know that the triple-hump
bright soliton with no node in the q3 component is the ground
bound state (dashed green line in Fig. 5), the triple-hump
bright soliton with one node in the q2 component is the first-
excited bound state (dotted-dashed blue line in Fig. 5), and the
triple-hump bright soliton with two nodes in the q1 component
is the second-excited bound state (solid red line in Fig. 5)
in the effective quantum wells. Double-hump or single-hump
solitons can be also obtained in the three-component case by
choosing some proper parameters. This suggests that more
abundant NDBSSs exist in multi-component coupled systems,
since many-component coupled BECs can induce deeper
quantum wells [11]. Similarly, the collision between triple-
hump solitons and single-hump solitons can be investigated in
three-component BECs by performing the fourfold DT. The
interaction between triple-hump solitons and double-hump
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FIG. 5. Intensity profiles for triple-hump bright solitons of three-
component BECs. The triple-hump bright soliton with no node in
the q3 component is the ground bound state (dashed green line),
the triple-hump bright soliton with one node in the q2 component
is the first-excited bound state (dotted-dashed blue line), and the
triple-hump bright soliton with two nodes in the q1 component is the
second-excited bound state (solid red line) in the effective quantum
wells. The parameters are c1 = c2 = c3 = 1, a1 = 0, b1 = 1.99, b2 =
2, b3 = 2.02, and δ = −5.2.

solitons can be studied by performing the fivefold DT. The
interplay between two triple-hump solitons can be explored
by performing the sixfold DT. The inelastic collision of these
bound-state solitons can be also expected.

V. STABILITY OF NONDEGENERATE
BOUND-STATE SOLITONS

We discuss the stability of these bound-state solitons by
calculating the Bogoliubov-de Gennes excitation spectrum
around a stationary soliton solution. We introduce the
ansatz q = q0 + ε[Pe−iλt + Q∗eiλ∗t ]e−iμt , where q0 is a
NDBSS solution, ε is a small parameter, and {λ, (P, Q∗)}
defines an eigenvalue-eigenvector pair. Then, substituting
this ansatz into related dynamical equations and linearizing
the equations, we arrive at O(ε) at an eigenvalue problem
for eigenvectors (P, Q∗) and eigenvalues λ. Note that the
latter may, in principle, be complex, i.e., λ = λr + iλi,
instability corresponds to λi �= 0. As an example, we
consider the case of the asymmetric double-hump solitons
in both components based on the solution Eq. (2). The
corresponding eigenvalue spectrum is shown in Fig. 6, and
the parameters are the same as those in Fig. 1(a). It can
be seen that the spectrum of the double-hump solitons
consists of purely real eigenvalues, showing spectral
stability. Numerical simulations from the corresponding
initial conditions also support the stability of solitons. On
the other hand, experimental observations demonstrated
that two-component solitons can be produced based on
well-developed density and phase modulation tech-
niques [9,51,52]. Solitons’ interactions have also been
demonstrated experimentally in BEC systems [53–56].
Therefore, based on the established experimental techniques,

FIG. 6. The excitation spectrum of nondegenerate bound-state
solitons. It is seen that nondegenerate bound-state solitons admit
spectral stability. The related parameters are same as those in
Fig. 1(a).

the presented NDBSSs have many possibilities to be observed
in multicomponent attractive BECs.

VI. CONCLUSION AND DISCUSSION

In summary, we derive and investigate double-hump and
tripe-hump bound-state solitons in multicomponent BECs.
The analysis indicates that bright solitons with nodes cor-
respond to the excited bound eigenstates in the effective
quantum wells. Particularly, we reveal that the incoherent
superposition between solitons in different components is the
generation mechanism of the bound-state solitons. Further-
more, we demonstrate that the collisions of NDBSSs are
inelastic in general cases, which are induced by incoherent
interactions and coherent collisions. More abundant bound-
state solitons are expected in multi-component coupled BECs.

In fact, these NDBSSs can be also obtained from more
general multisolitons (obtained using different methods) with
some special constraint conditions. But the constraint con-
ditions were not addressed in previous studies [34–36]. Our
incoherent superposition form can be used to determine the
constraint conditions. Moreover, NDBSSs can be mapped to
eigenstates in a quantum well, in sharp contrast to the general
multisolitons.

Note added. Recently, we noticed nondegenerate solitons
were discussed in nonlinear optical fibers by the Hirota bi-
linear method [44]. In this paper, we perform the Darboux
transformation method to derive NDBSS solutions. Moreover,
the discussions on the mechanism and the node properties
could be helpful for our understanding of NDBSSs.
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APPENDIX A: DERIVATION OF THE VECTOR
DOUBLE-HUMP BRIGHT SOLITON SOLUTIONS

OF EQ. (1)

The two-component coupled nonlinear Schrödinger equa-
tion, Eq. (1), is the compatibility condition of the linear
spectral problems [25,31]:

�x = U (x, t ; λ)�,
(A1)

�t = V (x, t ; λ)�,

where

U =
⎛
⎝−i 2

3λ q1 q2

−q∗
1

i
3λ 0

−q∗
2 0 i

3λ

⎞
⎠,

V = Uλ +

⎛
⎜⎜⎝

i|q1|2 + i|q2|2 iq1x iq2x

iq∗
1x −i|q1|2 −iq2q∗

1
iq∗

2x −iq∗
2q1 −i|q2|2

⎞
⎟⎟⎠. (A2)

The star denotes the complex conjugate. With the trivial
seed solutions q1[0] = 0, q2[0] = 0 and the spectral param-
eter λ = λ j = a j + b ji ( j = 1, 2, . . . , N ), the vector eigen-
functions of the linear system Eq. (5) can be written as

� j =
⎛
⎝�1 j

�2 j

�3 j

⎞
⎠ =

⎛
⎝ e−2θ j

c1 jeθ j

c2 jeθ j

⎞
⎠, θ j = i

3
λ jx + i

3
λ2

j t, (A3)

where c1 j and c2 j are the coefficients of eigenfunctions, and
they are complex parameters. The fundamental bright solitons
can be obtained by the following Darboux transformation:

�[1] = T [1]�, T [1] = I − λ1 − λ∗
1

λ − λ∗
1

P[1],

q1[1] = q1[0] + (λ∗
1 − λ1)(P[1])12,

q2[1] = q2[0] + (λ∗
1 − λ1)(P[1])13. (A4)

Here, P[1] = �1�
†
1

�
†
1�1

, where �1 is a special solution at λ = λ1;

a dagger denotes the matrix transpose and complex conjugate.
(P[ j])1 j represents the entry of matrix P[ j] in the first row
and j column. To obtain a double-hump one soliton, we need
to do the second step of the transformation. We employ �2,
which is mapped to �2[1] = T [1]|λ=λ2�2; one double-hump
soliton solution can be obtained with the spectral parameter
λ2 = a1 + ib2:

�[2] = T [2]�[1], T [2] = I − λ2 − λ∗
2

λ − λ∗
2

P[2],

q1[2] = q1[1] + (λ∗
2 − λ2)(P[2])12, (A5)

q2[2] = q2[1] + (λ∗
2 − λ2)(P[2])13,

where P[2] = �2[1]�2[1]†

�2[1]†�2[1] . For this case, we choose the coeffi-
cients of the eigenfunctions �1,2 in Eq. (A3) in the following
way: (i) c21 = c12 = 0, and c11 and c22 are nonzero complex
parameters, or (ii) c11 = c22 = 0, and c21 and c12 are nonzero
complex parameters. The corresponding simplified solution

has been present in Eq. (2). Examples of the relevant intensity
profiles have been exhibited in Fig. 1.

To study the interaction between nondegenerate solitons,
one needs to do a multiple-step transition. For example, by
performing the third step of the transition, we employ �3,
which is mapped to �3[2] = (T [2]�3[1])|λ=λ3 , with �3[1] =
(T [1]�3)|λ=λ3 , and then the collision between a double-hump
soliton and a single-hump soliton can be obtained with the
spectral parameter λ3 = a2 + ib3:

�[3] = T [3]�[2], T [3] = I − λ3 − λ∗
3

λ − λ∗
3

P[3],

q1[3] = q1[2] + (λ∗
3 − λ3)(P[3])12, (A6)

q2[3] = q2[2] + (λ∗
3 − λ3)(P[3])13,

where P[3] = �3[2]�3[2]†

�3[2]†�3[2] . For this case, we choose the coeffi-
cients of the eigenfunctions �3 in Eq. (A3) in the following
way: (i) c13 and c23 are nonzero complex parameters, or (ii)
c13 = 0 or (iii) c23 = 0, and the coefficients of the eigenfunc-
tions �1,2 are the same as those in Eq. (A5). A typical example
for this case has been shown in Figs. 3(a1) and 3(a2).

Naturally, by performing the fourth-step of the trans-
formation, one can investigate the interaction between two
double-hump solitons. We employ �4, which is mapped
to �4[3] = (T [3]�4[2])|λ=λ4 = (T [3]T [2]T [1]�4)|λ=λ4 , and
then two double-hump solitons’ solutions can be obtained as
follows with the spectral parameter λ4 = a2 + ib4:

q1[4] = q1[3] + (λ∗
4 − λ4)(P[4])12,

(A7)
q2[4] = q2[3] + (λ∗

4 − λ4)(P[4])13,

where P[4] = �4[3]�4[3]†

�4[3]†�4[3] . For this case, the coefficients of
the vector eigenfunctions �3,4 are analogous to �1,2, i.e.,
(i) c23 = c14 = 0, and c13 and c24 are nonzero complex pa-
rameters, or (ii) c13 = c24 = 0, and c23 andc14 are nonzero
complex parameters. One typical case has been shown in
Figs. 3(b1) and 3(b2).

In general, the N-fold Darboux matrix can be constructed
as follows:

TN = I − XN M−1
N (λI − DN )−1X†

N ,

XN = [�1,�2, . . . , �N ],

DN = diag(λ∗
1, λ

∗
2, . . . , λ

∗
N ),

MN =
(

�
†
i � j

λ j − λ∗
i

)
1�i, j�N

, (A8)

and the Bäcklund transformation between old potential func-
tions and new ones can be written as

q1[N] = q1 + det(MN,1)

det(MN )
,

(A9)

q2[N] = q2 + det(MN,2)

det(MN )
,

where

MN,1 =
[

MN X†
N,2

XN,1 0

]
, MN,2 =

[
MN X†

N,3

XN,1 0

]
.

Here, XN,i represents the ith row of matrix XN .
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For the two double-hump solitons, we choose the
parameters as the following: λ1 = a1 + b1i, λ2 = a1 + b2i,
c21 = 0, and c12 = 0, and c11 and c22 are nonzero complex
parameters, which determine the first double-hump soliton;
and λ3 = a2 + b3i, λ4 = a2 + b4i, c23 = 0, and c14 = 0,
and c13 and c24 are nonzero complex parameters, which
determine the second double-hump soliton. The oscillator
for the two solitons is governed by the factors sin[(a1 −
a2)x + (a2

1 − a2
2 + b2

3 − b2
1)t], cos[(a1 − a2)x + (a2

1 − a2
2 +

b2
3 − b2

1)t], sin[(a1 − a2)x + (a2
1 − a2

2 − b2
2 + b2

4)t], and
cos[(a1 − a2)x + (a2

1 − a2
2 − b2

2 + b2
4)t]. The velocity of the

solitons is controlled by x + 2ajt = const, j = 1 and 2,
respectively, i.e., the velocity of the soliton is equal to −2aj .
Assume that b j > 0 ( j = 1, 2, 3, 4) and a1 > a2, and fix the
parameters of the first double-hump soliton x + 2a1t = const,
then x + 2a2t = x + 2a1t + 2(a2 − a1)t . If t → +∞, we
have x + 2a2t → −∞. Then we see that

�3 ‖
⎛
⎝e−iλ j x−iλ2

j t

c13

0

⎞
⎠ →

⎛
⎝ 0

c13

0

⎞
⎠

and

�4 ‖
⎛
⎝e−iλ j x−iλ2

j t

0
c24

⎞
⎠ →

⎛
⎝ 0

0
c24

⎞
⎠.

Since the order of iteration for the Darboux transformation
can be exchanged, we rewrite

T [1] = I − λ3 − λ∗
3

λ − λ∗
3

�3�
†
3

�
†
3�3

→ diag

(
1,

λ − λ3

λ − λ∗
3

, 1

)

along the line of x − a1t = const as t → ∞. It follows that

�4[1] ‖ T [1]|λ=λ4

⎛
⎝ 0

0
c24

⎞
⎠ →

⎛
⎝ 0

0
c24

⎞
⎠,

which deduces that

T [2] → diag

(
1, 1,

λ − λ4

λ − λ∗
4

)
.

Combining the first and second Darboux matrices, we obtain

T [2]T [1] → diag

(
1,

λ − λ3

λ − λ∗
3

,
λ − λ4

λ − λ∗
4

)
,

which yields that

�1[2] = T [2]T [1]|λ=λ1�1 → �
[+]
1 =

⎛
⎝ e−2θ1

c[+]
11 eθ1

0

⎞
⎠,

(A10)

�2[2] = T [2]T [1]|λ=λ2�2 → �
[+]
2 =

⎛
⎝ e−2θ2

0

c[+]
22 eθ2

⎞
⎠,

where c[+]
11 = λ1−λ3

λ1−λ∗
3
c11 and c[+]

22 = λ2−λ4
λ2−λ∗

4
c22.

Thus, when t → +∞, the Darboux matrix tends to

T4 → [I − X[+]
2 (M[+]

2 )−1(λI − D2)−1(X[+]
2 )†]

× diag

(
1,

λ − λ3

λ − λ∗
3

,
λ − λ4

λ − λ∗
4

)
, (A11)

where

X[+]
2 = [�[+]

1 ,�
[+]
2 ], D2 = diag(λ∗

1, λ
∗
2 ),

and

M[+]
2 =

⎡
⎣ 1+|c[+]

11 |2
e6Re(θ1 )

λ1−λ∗
1

1
λ2−λ∗

1

1
λ1−λ∗

2

1+|c[+]
22 |2

e6Re(θ2 )

λ2−λ∗
2

⎤
⎦.

From the Darboux matrix Eq. (A11), we obtain that the
double-hump soliton approaches

q1[4] → q1(x, t ; a1, b1, b2, c[+]
11 , c[+]

22 ),
(A12)

q2[4] → q2(x, t ; a1, b1, b2, c[+]
11 , c[+]

22 ),

as t → ∞ along the line x + 2a1t = const, where q1 and q2

are given in Eqs. (2). In a similar manner, as t → −∞, we
have

q1[4] → q1(x, t ; a1, b1, b2, c[−]
11 , c[−]

22 ),

(A13)
q2[4] → q2(x, t ; a1, b1, b2, c[−]

11 , c[−]
22 ),

as t → −∞ along the line x + 2a1t = const, where c[−]
11 =

λ1−λ∗
3

λ1−λ3

λ1−λ∗
4

λ1−λ4
c11 and c[−]

22 = λ2−λ∗
3

λ2−λ3

λ2−λ∗
4

λ2−λ4
c22.

Now we consider the asymptotic behavior of the second
soliton. Fixing x + 2a2t = const, as t → ±∞, and we have
the asymptotic expressions

q1[4] → q1(x, t ; a2, b3, b4, c[±]
13 , c[±]

24 ),
(A14)

q2[4] → q2(x, t ; a2, b3, b4, c[±]
13 , c[±]

24 ),

where c[+]
13 = λ3−λ∗

1
λ3−λ1

λ3−λ∗
2

λ3−λ2
c13, c[+]

24 = λ4−λ∗
1

λ4−λ1

λ4−λ∗
2

λ4−λ2
c24, c[−]

13 =
λ3−λ1
λ3−λ∗

1
c13, and c[−]

24 = λ4−λ2
λ4−λ∗

2
c24.

In the general case, the interaction between two-hump
solitons is still inelastic. But under the special case,

|c[+]
11 | = |c[−]

11 |eb1δ1 , |c[+]
22 | = |c[−]

22 |eb2δ1 ,
(A15)

|c[+]
13 | = |c[−]

13 |eb3δ2 , |c[+]
24 | = |c[−]

24 |eb4δ2 ,

the interaction is elastic. In other words, this is the sufficient
condition, Eq. (A15), of elastic interaction of a two-hump
soliton.

APPENDIX B: THE EXPRESSIONS OF �1,2, χ1,2, AND �1,2,3

The general one triple-hump soliton solution in a three-
component NLSE is expressed as Eq. (4), where 	1,2, χ1,2,
and 
1,2,3 are written as

	1 = (b1 − b2)2

(b1 + b2)2
+|c1|2e2β1 +|c2|2e2β2 +|c1|2|c2|2e2(β1+2β2 ),

	2 = 
2
1

(b2 + b3)2	2
1

+ 4b2
1|c1|2
2

2

(b2 + b3)2	2
1

e2β1 + 4b2
2|c2|2
2

3

(b2 + b3)2	2
1

e2β2

+ |c3|2e2β3 ,
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1 = (b2 − b3)

[
(b1 − b2)2(b1 − b3)

(b1 + b2)2(b1 + b3)
− |c1|2e2β1

]

+ (b2 + b3)

[
b3 − b1

b3 + b1
+ |c1|2e2β1

]
|c2|2e2β2 ,


2 = (b1 − b2)(b2 − b3)

(b1 + b2)(b1 + b3)
− b2 + b3

b1 + b3
|c2|2e2β2 ,


3 = (b2
2 − b2

1)(b1 − b3)

(b1 + b2)2(b1 + b3)
− |c1|2e2β1 ,

χ1 =
[

b2
1 − b2

2

(b1 + b2)2
+ |c2|2e2β2

]
eβ1 ,

χ2 =
[

b2
2 − b2

1

(b1 + b2)2
+ |c1|2e2β1

]
eβ2 .
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