
PHYSICAL REVIEW E 93, 032215 (2016)

W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation
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We study rational solutions of continuous wave backgrounds with the critical frequencies of the Sasa-Satsuma
equation, which can be used to describe the evolution of the optical field in a nonlinear fiber with some
high-order effects. We find a striking dynamical process that two W-shaped solitons are generated from a
weak modulation signal on the continuous wave backgrounds. This provides a possible way to obtain stable
high-intensity pulses from a low-intensity continuous wave background. The process involves both modulational
instability and modulational stability regimes, in contrast to the rogue waves and W-shaped solitons reported
before which involve modulational instability and stability, respectively. Furthermore, we present a phase diagram
on a modulational instability spectrum plane for the fundamental nonlinear localized waves obtained already in
the Sasa-Satsuma equation. The interactions between different types of nonlinear localized waves are discussed
based on the phase diagram.
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I. INTRODUCTION

Recently, rational solutions of the nonlinear Schrödinger
equation (NLSE) have been paid much attention, since they
can be used to describe rogue wave (RW) dynamics in many
different physical systems [1–7]. Among these different
systems, optical fiber plays an important role in experimental
observations for its well-developed intensity and phase
modulation techniques. The experimental studies in nonlinear
fiber showed that the simplified NLSE could describe the
dynamics of localized waves well, which contains only the
group velocity dispersion (GVD) and self-phase modulation
(SPM). But for ultrashort pulses whose durations are shorter
than 100 fs, which is tempting and desirable to improve the
capacity of high-bit-rate transmission systems, the nonlinear
susceptibility will produce higher-order nonlinear effects like
the Kerr dispersion (i.e., self-steepening) and the delayed
nonlinear response except for SPM, and even the third-order
dispersion (TOD). These are the most general terms that have
to be taken into account when extending the applicability of the
NLSE [8,9]. With these effects, the corresponding integrable
equation was derived as the Sasa-Satsuma (S-S) equation [10].

The linearized stability analysis for the S-S equation
in Ref. [11] suggested that there were both modulational
instability (MI) and modulational stability (MS) regimes
for low perturbation frequencies on the continuous wave
background (CWB). In the MI regime, rational solutions
were obtained in [12] and [13], which corresponded to RW
excitation. It was demonstrated that the high-order effects
could make the RW twisted, and the rational solution of the
S-S equation had distinctive properties in contrast to those
of the well-known NLSE. In the MS regime, we presented
rational solutions which corresponded to W-shaped soliton
(WS) excitation [14]. It was shown that the profile of the WS
depended on the background frequency. The results suggested
that not all rational solutions of the nonlinear partial equation
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corresponded to RW dynamics. Furthermore, it should be
noted that there are two critical background frequencies on the
boundary of MI and MS regimes for resonant perturbations
(see Fig. 3 for details). We expect that there are some new
dynamics on CWBs with these critical frequencies.

In this paper, we study the rational solution of the S-S model
on CWBs with the critical frequencies. We report a striking
dynamical process where two WSs are generated from a weak
modulation signal on the CWBs. The striking process involves
both MI and MS regimes, in contrast to the RWs and WS
reported before which involve MI and MS, respectively. The
dynamics process is proven numerically to be robust against
white noise. Furthermore, we present a phase diagram on the
MI spectrum plane for the fundamental nonlinear excitations
obtained already in the S-S equation, mainly including RW
with two peaks, Akhmediev breather (AB), Kuznetsov-Ma
breather (K-M), WS, W-shaped soliton train (WST), antidark
soliton (AD), and stable periodic waves. Based on the phase
diagram, we discuss the interactions between different types of
nonlinear localized waves through deriving an exact nonlinear
superposition solution.

Our presentation of the above features will be structured
as follows. In Sec. II, we describe the theoretical model and
present the dynamical process for which two WSs are gen-
erated from a weak modulation. The underlying mechanism
is discussed and the corresponding spectrum evolution is also
presented. Furthermore, we test the robustness of the process
numerically. In Sec. III, we present a phase diagram on the
MI spectrum plane for the fundamental nonlinear excitations
already obtained in the S-S equation. The interactions between
different types of nonlinear localized waves are investigated
based on an exact nonlinear superposition solution. Finally, we
summarize the results and present our conclusions in Sec. IV.

II. TWO W-SHAPED SOLITONS GENERATED FROM A
WEAK MODULATION ON CWB

For ultrashort pulses whose durations are shorter than
100 fs, the optical field [i.e., E(t,z)] in a nonlinear fiber
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(a) (b)

FIG. 1. (a) The evolution of |ψ |2 [given by Eq. (3)] corresponding to the process that one weak modulation signal evolves into two
W-shaped solitons. (b) Cut plots of the localized wave at η = −25 and η = 185. It is seen that two W-shaped solitons are generated from a
weak modulation. The parameters are a = γ1 = γ2 = 1.

with some certain high-order effects can be described by the
following S-S model [8–10,15]:

iEz + 1
2Ett + |E|2E

+ iε[Ettt + 3(|E|2E)t + 3|E|2Et ] = 0, (1)

where ε is an arbitrary real parameter to scale the integrable
perturbations of the NLSE and it can be used to change
the strength of the high-order effects conveniently. The last
three high-order terms correspond to the TOD, self-steepening,
and delayed nonlinear response, respectively [8,15–17]. The
Raman effect TRE|E|2t (TR is a real constant) is not considered
in the model, since the term can be much smaller than the Kerr
dispersion effect, and it makes the pulse energy nonconser-
vation (this usually makes the model nonintegrable). When
ε = 0, the S-S equation reduces to the standard NLSE, which
has only the terms describing the second-order dispersion and
self-phase modulation. It should be clear that the S-S equation
is not a general equation that describes nonlinear propagation
in optical fibers when high-order terms are present. The
relation among these high-order effects should be very specific
in order for the equation governing the propagation to become
the S-S model, and therefore the optical fiber where the S-S
model applies is very special. But studies on the S-S model
can still present us some important implications regarding
nonlinear localized waves in fiber with these high-order effects
[12,13,18,19]. The investigations of the S-S equation indicated
that the nonlinear waves in nonlinear fiber with the high-order
effects are much more diverse than those in the simplified
NLSE [15,17,20–22]. Here, we revisit a rational solution of
the S-S model.

For convenience, to observe the following dynamical
process, let ψ(χ,η) = E(t,z) exp [− i

6ε
(t − z

18ε
)] [23], where

η = − 3
2a3εz and χ = a[t − ( 1

12ε
+ 33

4 a2ε)z]. Then Eq. (1) can
be rewritten as a complex derivative modified Korteweg–de

Vries equation:

ψη = −11

2
ψχ + 2

3
ψχχχ + 2

a2
(|ψ |2ψ)χ + 2

a2
|ψ |2ψχ. (2)

The coordinates transformation only lead to a trivial phase
multiplication between the solutions of Eqs. (2) and (1),
and the identical dynamics are kept well. Subsequently, we
discuss the nonlinear dynamics of Eq. (2) instead of Eq. (1)
without losing generality. Since Galilean transformation is
broken for the S-S equation, it is essential to investigate
the dynamics of a localized wave on a CWB ψ0(χ,η) =
a exp [iω0χ − i( 3

2ω0 + 2
3ω3

0)η] with arbitrary ω0. RWs with
two peaks [12,13] and rational W-shaped solitons [14] were
reported on the CWB with different background frequency
regimes. Surprisingly, in the case of ω0 = ± 1

2 (the critical
background field frequencies will be shown below), we find
a dynamical process that one weak modulation signal on the
CWB can evolve into two stable nonlinear waves as shown
in Fig. 1. This dynamical process is very different from the
dynamics of nonlinear waves for the same model reported in
Refs. [12–14]. From Fig. 1, we see that the propagating signal
at the locations before η = −2 stays weak while it evolves to
a large localized wave near η = −1.5. In particular, this large
localized wave splits into two quasistabilized nonlinear waves
after η = −1.5. It is found that the higher peak of the two waves
decreases with increasing the propagation distance η while
the lower peak increases. However, after a certain distance,
their changing rates will tend to zero, namely, the nonlinear
localized waves tend to solitons whose shapes are kept well.
Their profiles can be observed clearly with the help of making
cut plots at a certain location η [see Fig. 1(b)]. The weak
modulation form at η = −25 is shown by the blue dashed line
in Fig. 1(b). We emphasize that there is only one modulation
signal for the two generated solitons. The profile for soliton
shows a nice W-shaped configuration, which is similar to those
reported in Ref. [14]. As an example, we show the profile at
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η = 185 by a red solid line in Fig. 1(b). This process suggests
one way to excite quasistabilized WSs is through adding a
weak modulation on the CWB, which has significant and
potential values in the field of soliton applications.

The above dynamical process can be described by the
following analytical solution on the CWBs with frequencies
ω0 = ± 1

2 , which can be obtained by adopting the Darboux
transformation method:

ψ(χ,η) = a

[
1 + H

M

]
exp

[
i

(
±χ

2
∓ 5

6
η

)]
, (3)

with

H = H1(χ,
√

3η) + (2i
√

3 − 12iχ − 12iγ2 − 6)γ1

+ [18iχ2 − (18i
√

3 + 18)χ − 12
√

3iη + 6
√

3 + 6i]γ2

+ (12iχ − 8i
√

3 − 12)γ 2
2 ,

M = M1(χ,
√

3η) + 12γ 2
1 + (12χ2 − 16

√
3χ + 20)γ 2

2

+ [(16
√

3 − 24χ )γ2 + 24
√

3η − 12χ2

+ 16
√

3χ − 8]γ1 + [12χ3 − 24
√

3χ2

+ (48 − 24
√

3η)χ + 48η − 8
√

3]γ2,

where

H1(χ,η) = 6iχ3 − (9i
√

3 + 9)χ2 + (6
√

3 + 6i − 12iη)χ

+ (2i
√

3 − 6)η + 2i
√

3 − 6,

M1(χ,η) = 3χ4 − 8
√

3χ3 + (24 − 12η)χ2

+ (16
√

3η − 8
√

3)χ + 4 − 8η + 12η2,

where γ1 and γ2 are two real constants. This solution is
distinctive from the solutions presented previously in [8,12–
14,15,17]. The RW solutions and W-shaped solitons obtained
before cannot be reduced to the solution here, since the
background frequency must be in some certain regimes for
the RW or WS solutions [12–14]. The CWB background
frequencies are distinctive from the previous results, and the
dynamical process is also distinctive from the previously
reported processes. The reasons are discussed in the following
paragraph for understanding the dynamical process. When
a = γ1 = γ2 = 1, the dynamics of solution (3) corresponds to
that in Fig. 1. For a �= 1 and other values of γ1,2, this solution
demonstrates the identical dynamical process except for
some trivial shifts on the temporal-spatial plane. Performing
asymptotic analysis on the exact solution, we find that the
two WSs have identical profiles with η → ∞. Their hump
intensities and valley intensities tend to be 4 and 5

8 times the
CWB intensity value, respectively. This analysis indicates that
the two W-shaped localized waves indeed evolve into solitons.

As shown in Ref. [14], the spectrum of WS corresponded
to one stable broad spectrum pulse. This means that the two
WSs correspond to two broad spectrum pulses, which can be
proved by making a Fourier transformation on two asymptotic
soliton forms of the exact solution. Since there are two WSs
generated from a weak modulation signal, one expects two
stable triangular spectrum and interference fringes to emerge.
The spectrum evolution of the dynamical process can be
obtained exactly through the Fourier transformation F (ω,η) =

FIG. 2. The corresponding spectrum evolution
√|F (ω,η)| of the

process illustrated in Fig. 1. It is seen that there is an interference
pattern on the spectral distribution. The parameter ω′ = ω − ω0.

1√
2π

∫ +∞
−∞ ψ(χ,η) exp [−iωχ ]dt . The background’s transfor-

mation part is integrated to be δ(ω − ω0) (here the background
frequency ω0 = 1

2 ), and therefore we can eliminate the δ func-
tion by taking the transformation on the varying part. We show
the evolution of spectrum

√|F (ω,η)| in Fig. 2. It is seen that
the expected interference pattern on the spectral distribution
indeed exists. Specifically, there is a sharp discontinuity for the
spectrum and the spectrum is also asymmetric. This is similar
to those of RW with double peaks presented in [14,19].

Now we try to understand the above process for which
two WSs are excited from a weak perturbation. We perform
the linear stability analysis (LSA) on the CWB ψ0(χ,η)
by adding the Fourier modes with small amplitudes [11],
i.e., f+ exp [iω′(χ − Kη)] + f ∗

− exp [−iω′(χ − K∗η)]. The
MI gain spectrum Im[K] is shown on background frequency
ω0 and perturbation frequency ω′ space [Fig. 3(a)]. There are
two distinctive regimes for perturbations on the continuous
background, namely, the MI and MS regimes. The critical
points for background frequency are ω0 = ± 1

2 , as shown in
Fig. 3(b). For |ω0| � 1

2 , it exists as a MS regime for which
the perturbations with arbitrary frequencies are all stable on
the CWB. In this regime, stable rational W-shaped soliton
solutions were obtained in Ref. [14]. For |ω0| > 1

2 , there is a MI
regime in which the perturbations with frequencies belonging
to [ω0 −

√
4 − ω−2

0 ,ω0 +
√

4 − ω−2
0 ] are all unstable. The

maximum gain of MI in the form Im[K] emerges on the
“resonant” line for which the perturbation frequency is equal
to the CWB’s. The resonant line in the MI regime usually
corresponds to RW excitation. In this regime, RW solutions
which possess double humps were given in Refs. [13] and
[12]. Notably, the above process for which two WSs grows
from a weak perturbation is quite different from the RW and
WS dynamics [12–14]. We can qualitatively know that the first
stage of the process is in the MI regime, for which the weak
modulation signal grows to a strong localized wave with one
high hump and two deep valleys, and then it splits. The second
stage of the process should evolve in the MS regime, which
makes the split localized waves tend to be stable and evolve
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(a)

(b)

FIG. 3. (a) The MI gain Im[K] distribution on background
frequency ω0 and perturbation frequency ω′ plane. The crossing
points of the purple dotted lines and the red dashed line are the critical
points between MI and MS for resonant perturbation frequency. (b)
The cut plot of MI gain on ω′ = 0. It is clearly shown that the critical
points are at ±1/2.

into two WSs. The dynamical process is found on the CWB
with the critical frequencies ω0 = ± 1

2 , which are located on the
boundary between the MS and MI regimes. This indicates that
MI and MS can coexist on the critical background frequencies
given by the linear stability analysis. The MI analysis of Eq. (1)
shows that the MS regime for low-frequency perturbations
does not exist when neglecting the high-order effects, mainly
including the TOD, self-steepening, and delayed nonlinear
response. This implies that these high-order effects play
important roles in the dynamical process.

To see the feasibility of process for WSs generation, we
numerically evolve Eq. (2) from an exact initial signal at
certain locations for which the signals are weak by adopting the
split-step Fourier method. To demonstrate the growing process
and splitting process clearly, we show the numerical results
for |ψ |2 from η = −3 to η = 3 in Fig. 4(a), compared with
the analytical solution [see Fig. 4(b)]. Figure 5 demonstrates

FIG. 4. (a) The numerical simulation for the dynamics of
|ψ(χ,η)|2 evolved from an initial data given by the exact solution
at η = −3. (b) The corresponding evolution given by the exact
analytical result. It is shown that they agree well with each other,
which indicates that the exact signal evolution can survive even with
numerical deviations.

the profile comparisons at different locations between the
numerical results and the exact results. It is shown that the
simulation results agree well with the analytical results, even
with numerical deviations. Furthermore, we test the stability
of the generated W-shaped solitons with adding white noise
0.01 Random(χ ) (χ ∈ [−1,1]). As an example, we show
the deviations between the numerical result with and without
the noise in Fig. 6. The numerical evolutions are from the
initial conditions that ψ1(χ,−3) = ψ(χ,−3) and ψ2(χ,−3) =
ψ(χ,−3)(1 + 0.01 Random[χ ]), respectively. We can see that
the derivations are less than 0.04 in Fig. 6, which agrees with
the order of noises. Therefore, the process is stable against
noise. This suggests that the exact process might be realized
in experiments.

FIG. 5. The profiles of the nonlinear waves at different distances.
The solid curves denote the analytical solutions while the dashed or
dotted curves correspond to the numerical results. It is seen that the
numerical results agree well with the exact analytical results.

032215-4



W-SHAPED SOLITONS GENERATED FROM A WEAK . . . PHYSICAL REVIEW E 93, 032215 (2016)

FIG. 6. The deviations between |ψ1|2 and |ψ2|2. The numerical
evolutions are from the initial conditions that ψ1(χ,−3) = ψ(χ,−3)
and ψ2(χ,−3) = ψ(χ,−3)(1 + 0.01 Random[χ ]). It is shown that
the deviations are lower than 0.04.

III. A PHASE DIAGRAM ON MODULATIONAL
INSTABILITY SPECTRUM FOR LOCALIZED WAVES IN

SASA-SATSUMA EQUATION

Until now, many different fundamental localized waves
have been found on CWBs in the S-S equation, mainly
including RW with two peaks [12,13], AB, K-M, WS [14],
WST, AD, and stable periodic waves [24]. Moreover, high-
order nonlinear excitations have also been studied in [25].
The dynamics of these localized waves demonstrated that the
high-order effects indeed bring some new dynamics in the
nonlinear fibers. Recently, we gave an interesting diagram on
the MI gain plane for types of fundamental localized waves
for the standard NLSE [26] through defining and calculating
the dominant frequency and propagation constant of each
localized wave. In a similar way, based on Fourier analysis
of the exact solutions of RW, AB, K-M, WS, WST, AD, and
periodic waves, we can locate these different fundamental
nonlinear excitations on the MI plane [Fig. 3(a)], shown in
Fig. 7. It should be pointed out that the system admits a stable
continuous wave phase in all MS regimes shown in Fig. 3(a).
We do not show it in Fig. 7, since there are some nontrivial
nonlinear excitations in the MS regimes.

We can see that the RW still comes from the resonance
perturbation in MI regimes [26]. AB and K-M dynamics are
similar to those of NLSE. We locate RW and K-M on the red
dashed line, and the AB is still in the regime between the red
dashed line and the purple dotted lines. These are similar to the
RW, AB, and K-M for the NLSE case [26]. But there is a MS
band with a finite width between the two MI regimes for the
S-S model, which brings some new nonlinear excitations for
the model. The boundary lines for MI and MS can be calculated

as ω′ = ±
√

4ω2
0−1

ω0
(see the purple dotted lines). We proved that

WS existed on the black solid line in Fig. 7 [14]. Moreover, AD
can be also located on the resonant line. The WST is located in
the MS regime marked by horizontal short-dotted lines, which
are located at the regimes between the resonant line and the

FIG. 7. The phase diagram for nonlinear waves on modulational
instability gain spectrum plane. AB, RW, and K-M denote Akhmediev
breather, Peregrine rogue wave, and Kuznetsov-Ma breather respec-
tively. WS, WST, AD, and periodic wave denote W-shaped soliton,
W-shaped soliton train, antidark soliton, and stable periodic waves,
respectively. These nonlinear waves of the S-S equation are all placed
clearly on the MI plane. It should be noted that RW and K-M cannot
be distinctive from each other on the plane, but their differences can
be clarified by dominant propagation constants of them. WS and AD
can be distinctive from each other by the temporal or spectral profile.
The boundary lines are all obtained explicitly (see related paragraph).

boundary line between the MI and MS regimes. The periodic
wave is located in the MS regime marked by vertical short-
dashed lines. The two boundary lines for the periodic wave
can be given as ω′ = ±2ω0 (see the inclined gray solid lines).
There is a crossing regime for the WST and periodic wave
(see Fig. 7). We can see that WS, AD, WST, and the periodic
wave are all located at the MS regime, and their dynamics
indeed do not show any evolution instability. Additionally, the
periodic wave can admit very high modulation frequencies in
the MS regime. This has never been obtained in a standard
NLS systems [26]. The above results for two WSs growing
from a weak modulation are found on the critical crossing
points of the black solid line and the red dashed line in Fig. 7.

From Fig. 7, it is naturally expected that nonlinear interac-
tions of different types of localized waves can be investigated,
since there are many different fundamental excitation patterns
on a continuous wave background with a certain frequency
ω0. For ω0 ∈ [−0.5,0.5], we can investigate the interactions
between any two of WS, AD, WST, and a periodic wave.
For |ω0| > 0.5, one can investigate interactions between any
two of RW, AB, K-M, and a periodic wave. But it is not
possible to observe the interaction between WS and RW or
AB, since WS is not admitted on the background with the
frequency |ω0| > 0.5. Therefore, the corresponding relations
between MI and these fundamental nonlinear excitations in
Fig. 7 can be used to make a judgment on which types of
nonlinear localized waves can coexist and interact with each
other. The nonlinear superposition of them can be obtained
exactly through the Darboux transformation method [27,28].
We present an exact solution in the Appendix, which can
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FIG. 8. (a) The interaction between a W-shaped soliton and
antidark soliton. Parameters ω0 = 1

4 , k1 = 1
13 (5 + 12i), l1 = 1

5 (3 +
4i), d1 = e1 = 0, e3 = d3 = −d2 = −e2 = 1. (b) The interaction be-
tween a W-shaped soliton and a periodic wave. Parameters ω0 =
1
4 , k1 = 1

13 (12 + 5i), l1 = 1
5 (3 + 4i), d1 = e1 = 0, e3 = d3 = d2 =

−e2 = 1.

describe nonlinear superposition of these nonlinear waves.
Based on the solution, we can observe the interaction of
different types of localized waves through choosing different
parameters. For example, we show two cases in Fig. 8
which correspond to the interaction between WS and AD
[Fig. 8(a)] or a periodic wave [Fig. 8(b)]. These results have
not been found in NLSE described systems. The interaction
between them can be inelastic or elastic [24,25]. Their explicit
interaction properties are out of the scope of this paper. We
will discuss these interaction properties in the future.

Additionally, K-M can admit strong perturbation on a
CWB. The linear MI analysis fails to predict the stability of
perturbations with different propagation constants, especially
for strong perturbations. This is because the analysis just
provides implications on the stability of weak perturbations
with different frequencies. New tools still need to be devel-
oped to analyze the stability of perturbations with different
propagation constants [29]. For example, it was shown that
WS or AD could coexist and interplay with a breather [24].
The breather is in the MS regime on the above MI gain plane.
It seems that there is a contradiction with the MI analysis.
However, the mechanism for this type of breather is distinctive
from those for AB and RW, and this type breather cannot be
reduced to RW anyway. We suggest that the breathing behavior
along the evolution direction comes from the interference
effect between CWB and the perturbation and is induced
by their propagation constant difference. This is supported
by the analysis of the dominant propagation constant of the
breather solution. Moreover, the MI analysis can be used just
to understand the amplifying process of weak perturbations
for nonlinear localized waves, but it cannot explain their whole
dynamical process. It is still needed to develop some new ways
to understand the whole dynamical process of fundamental RW
and even high-order processes [30,31].

IV. CONCLUSION AND DISCUSSION

In summary, we present a striking dynamical process for
which two WSs are generated from a weak modulation signal
on CWBs with critical frequencies ω0 = ± 1

2 . The numerical
simulations indicate that the dynamical process is robust
against weak noises or perturbations. The underlying mecha-
nisms of the process are discussed qualitatively based on MI
analysis. The process involves MI to MS autonomously. This
indicates that MI and MS can coexist on the critical background
frequency given by LSA. The striking dynamical process
suggests that there could also be some new dynamics on the
critical frequencies between the MI and MS regimes for other
nonlinear systems [32–34]. Notably, the critical frequencies
located on the boundary between the MS and MI regimes are
obtained by LSA. The analysis predicts that there is no MI on
the critical frequencies, but we demonstrate that both MI and
MS play key roles in the dynamical process. This means that
LSA does not stand precisely on the boundary lines between
the MI and MS regimes. The explicit underlying mechanism
for the dynamical process still needs new analysis techniques.

Actually, many recent experiments for nonlinear localized
waves, including K-M, AB, and Peregrine RW in nonlinear
fibers [3,35,36], have provided a good platform to investigate
the complicated dynamics of nonlinear localized waves on
a CWB. Those experimental works suggest that the exact
analytical solutions for the simplified NLSE could describe
the evolution of optical fields well even with nonideal initial
conditions. The ideal initial conditions are important to study
the NLSE with high-order effects, and the present work
provides the initial conditions for generating WSs from certain
weak modulations in experiments. This has been checked
numerically even for the initial conditions with little noise. In
particular, our theoretical results can be used to qualitatively
understand a recent experiment in a nonlinear fiber with
TOD and self-steepening effects [37]. In the experiment, one
Peregrine RW split into two lower-amplitude localized solitons
and the pulse splitting process was explained by high-order
MI based on a high-order AB solution of the simplified NLSE
[38]. Here, we provide another perspective for understanding
the pulse splitting process and predicting the quasistability of
the splitting pulses with certain high-order effects.

Finally, we present a phase diagram on the MI spectrum
plane for the fundamental nonlinear localized waves obtained
in the S-S equation, which is in sharp contrast to that for
standard NLSE [26]. This is because these high-order effects
cause the MI plane for S-S to be quite different from that for
NLSE. (There is a MS band with a finite width between MI
regimes for S-S, which is absent for the NLSE.) Furthermore,
we discuss interactions between different types of nonlinear
waves based on the phase diagram. The results will further
enrich our understanding of nonlinear excitation dynamics in
S-S model systems.
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APPENDIX

Through performing the Darboux transformation twice
[27–29], an exact nonlinear superposition solution of the S-S
equation can be presented as

ψ[2] =
[
H11H22 − H12H21

F11F22 − F12F21

]
eiω0[χ−( 2

3 ω2
0+ 3

2 )η],

where

F11 =
3,3∑

i,j=1

didj eX∗
i +Xj

μj − μ∗
i

, F12 =
3,3∑

i,j=1

diej eX∗
i +Yj

νj − μ∗
i

,

F21 =
3,3∑

i,j=1

eidj eY ∗
i +Xj

μj − ν∗
i

, F22 =
3,3∑

i,j=1

eiej eY ∗
i +Yj

νj − ν∗
i

,

and

H11 =
3,3∑

i,j=1

didj (μ∗
i + ω0)eX∗

i +Xj

(μj − μ∗
i )(μj + ω0)

,

H12 =
3,3∑

i,j=1

diej (μ∗
i + ω0)eX∗

i +Yj

(νj − μ∗
i )(νj + ω0)

,

H21 =
3,3∑

i,j=1

eidj (ν∗
i + ω0)eY ∗

i +Xj

(μj − ν∗
i )(μj + ω0)

,

H22 =
3,3∑

i,j=1

eiej (ν∗
i + ω0)eY ∗

i +Yj

(νj − ν∗
i )(νj + ω0)

.

di,ei ∈ R. The expressions of Xi are

Xi = iμi

[
χ − (

2
3 (ω2

0 + 2λ1μi) + 17
6

)
η
]
,

where λ1 = ω0(k1−1)
2(k1+1) + (k2

1−1)
4ω0k1

,μ1 = ω0(k1−1)
k1+1 ,μ2 =

k2
1−1+√

�1

4ω0k1
, μ3 = k2

1−1−√
�1

4ω0k1
,�1 = (4ω2

0k1 + k2
1 − 1)2 +

16ω2
0k1(k1 + 1) (|k1| = 1,k1 �= ±1).

The expressions of Yi are

Yi = iνi

[
χ − (

2
3

(
ω2

0 + 2λ2νi

) + 17
6

)
η
]
,

where λ2 = ω0(k2−1)
2(k2+1) + (k2

2−1)
4ω0k2

, ν1 = ω0(k2−1)
k2+1 , ν2 =

k2
2−1+√

�2

4ω0k2
, ν3 = k2

2−1−√
�2

4ω0k2
, �2 = (4ω2

0k2 + k2
2 − 1)2 +

16ω2
0k2(k2 + 1) ( |k2| = 1,k2 �= ±1). This solution describes

interaction between different types of nonlinear waves
which can coexist on the same background field. The
correspondence relations between MI and the fundamental
nonlinear excitations in Fig. 7 can be used to make a judgment
regarding which types of nonlinear localized waves can
coexist and interact with each other.
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