
PHYSICAL REVIEW E 89, 023210 (2014)

Rational W-shaped solitons on a continuous-wave background in the Sasa-Satsuma equation
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We investigate the solution in rational form for the Sasa-Satsuma equation on a continuous background which
describes a nonlinear fiber system with higher-order effects including the third-order dispersion, Kerr dispersion,
and stimulated inelastic scattering. The W-shaped soliton in the system is obtained analytically. It is found that
the height of hump for the soliton increases with decreasing the background frequency in certain parameter
regime. The maximum height of the soliton can be three times the background’s height and the corresponding
profile is identical with the one for the well-known eye-shaped rogue wave with maximum peak. The numerical
simulations indicate that the W-shaped soliton is stable with small perturbations. Particularly, we show that the
W-shaped soliton corresponds to a stable supercontinuum pulse by performing exact spectrum analysis.
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I. INTRODUCTION

Recently, Kuanetsov-Ma solitons, Akhmediev breathers,
and Peregrine rogue waves (rw) have been observed in non-
linear fiber [1–3], which provides a good platform to study the
dynamics of nonlinear localized waves on a continuous-wave
(cw) background conveniently. These experimental studies
showed that the simplified nonlinear Schrödinger (NLS)
equation can well describe the dynamics of localized waves,
which only contains the group velocity dispersion (GVD)
and its counterpart, namely, self-phase modulation (SPM).
However, for ultrashort pulses whose duration is shorter
than 100 fs, which is tempting and desirable to improve the
capacity of high-bit-rate transmission systems, the nonlinear
susceptibility will produce higher-order nonlinear effects like
the Kerr dispersion (i.e., self-steepening) and the stimulated
Raman scattering (SRS) except for SPM. Apart from GVD, the
ultrashort pulses will also suffer from the third-order disper-
sion (TOD). These are the most general terms that have to be
taken into account when extending the applicability of the NLS
equation [4,5]. With these effects, the corresponding integrable
equation was derived as the Sasa-Satsuma (S-S) equation [6].

The investigations on the S-S equation indicated that the
nonlinear waves in nonlinear fiber with the high-order effects
are much more diverse than the ones in a simplified NLS
equation [6–11]. Very recently, it was found that the high-order
effects could make the rw twisted and the rational solution of
the S-S equation had distinctive properties in contrast to that of
the well-known NLS equation [12,13]. The linearized stability
analysis for the S-S equation in Ref. [7] suggested that there are
both modulational instability and stability regimes for low per-
turbation frequencies on the cw background. The rational solu-
tions obtained in Refs. [12,13] are all in the modulational insta-
bility regime. Then we expect that the soliton solution could ex-
ist on the cw background in the modulational stability regime.

In this paper, we study the analytical rational solution on
cw background in the S-S equation through the Darboux
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transformation method. In contrast to the rational solutions
in the simplified NLS equation, which have been used to
describe rw phenomena photographically [14–17], we present
an exact rational solution in explicit form which corresponds
to the W-shaped soliton. Furthermore, we discuss the stability
properties of the rational W-shaped soliton and the numerical
stimulations show that the soliton is stable. We perform the
spectrum analysis on the W-shaped soliton, Peregrine rw, and
the rw with two humps obtained in Refs. [12,13]. The spectrum
comparison suggests that the W-shaped soliton corresponds to
a stable supercontinuum pulse in the frequency domain.

II. S-S EQUATION AND W-SHAPED SOLITON
ON CW BACKGROUND

According to the original work of Sasa and Satsuma [6],
the evolution equation for the optical fields in a nonlinear fiber
with the high-order effects mentioned above can be written as

iEz + 1
2Ett + |E|2E + iε(Ettt + 6|E|2Et + 3E|E|2t ) = 0,

(1)

where E is the amplitude of the slowly varying envelope of
the optical field; t and z are the retarded time and propagation
distance, respectively. Here the real parameter ε is introduced
to describe the integrable perturbations in the NLS equation.
The units are dimensionless after performing proper scalar
transformation. When ε = 0, Eq. (1) reduces to the standard
NLS equation which only has the terms describing the lowest-
order dispersion and SPM. The soliton solutions of Eq. (1)
have been presented on the zero background in Refs. [18–20].
Now we study the rational solutions on a cw background, i.e.,

E0(t,z) = c exp [iω0t + iK(z)], (2)

with

K(z) = − ω1

12ε
z + εω3

1z − 6εω1c
2z − z

108ε2
,

where ω1 = ω0 − 1
6ε

. The parameter c denotes the background
amplitude. ω0 is the frequency of the optical background
field. By performing the Darboux transformation [21] from
the above seed solution, one can derive the kinds of localized
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FIG. 1. (Color online) The profiles of the rational solution
|E(t,z)| at z = 0 with ω1 = 0 (red solid line), ω1 = 0.3 (green dashed
line), and ω1 = 0.5 (blue dotted line). It is seen that the height of the
hump is inversely proportional to the background frequency in the
regime 0 � ω1 � c

2 . The parameters are c = 1 and ε = 0.1.

waves solution. Notably, we find a new type rational solution
on continuous background with some conditions on the
background’s amplitude and frequency, i.e., 0 � ω1 � c

2 . The
explicit form of the rational solution is given in the Appendix.

It should be emphasized that the rational solution obtained
here does not correspond to the rw in the simplified NLS
equation [1,22–24]. The reason is that our solution shares
common dynamical properties with a soliton which maintains
its profile during the evolution. In Fig. 1 we show the profiles
of the rational solution which looks like a “W”, including
one hump and two valleys. The similar W-shaped soliton
in nonrational form has been obtained in the S-S equation
[8] and in other equations which can be derived from the
two-dimensional Euler equation by using the approximation
procedure [25]. From Fig. 1, we see that the height of the
W-shaped soliton’s hump and the depth of the valleys strongly

depend on the cw background’s frequency ω0. The hump’s
height increases as ω1 decreases in the regime 0 � ω1 � c

2 .
The minimum height of the hump can be two times that of
the background when ω1 = c

2 and the maximum height can
be three times that of the background when ω1 = 0. These
properties can maintain with arbitrary nonzero parameter c.

It is noted that our rational W-shaped soliton is different
from the W-shaped soliton obtained in Ref. [8] (e.g., both the
heights of humps and the depths of valleys are different). For
the S-S equation, the linearized stability analysis in Ref. [7]
suggested that there are both modulational instability and
stability regimes for low perturbation frequencies on a cw
background. This result is quite different from that for the sim-
plified NLS equation where there is only an instability regime
with low perturbation frequencies on the cw background. In
general, the rational solution can be written as a signal part
plus the cw background part. If the signal can be understood
as the perturbation in the modulation instability regime, then
it will be amplified exponentially and oscillating, which can
induce rw dynamics [1,2]. If the signal can be understood as
the perturbation in the modulation stability regime, it will not
be amplified exponentially and thus it is stable. Based on these
results, we can qualitatively know that the rational solutions
reported in Ref. [12,13] are in the modulational instability
regime since the solutions’ dynamics corresponds to the rw
behavior. However, the rational solution obtained here should
be in the modulational stability regime [7]. We verify this
statement by performing numerical simulations in Sec. IV.

III. TWO EXPLICIT CASES FOR THE RATIONAL
W-SHAPED SOLITON SOLUTION

In fact, the generalized rational W-shaped soliton solution
is very complicated in the regime 0 � ω1 � c

2 . To demonstrate
the main properties of the W-shaped soliton more clearly, in
this section we only discuss the properties of the W-shaped
soliton in two limit cases corresponding to the situations that
the height of the hump takes maximum and minimum values,
respectively.

Case 1. When ω1 = 0 and c = 1, the generalized rational
solution can reduce to

E(t,z) =
[

2

4T 2 − 2T (48zε + √
2 − 4) + 576z2ε2 + 24(

√
2 − 4)zε − 2

√
2 + 5

− 1

]
exp

[
i

6ε

(
t − z

18ε

)]
, (3)

where T = t − z
12ε

. In this case, the height of the hump of the soliton can be maximum. In Fig. 2(a), we plot the analytical
solution in (t,z) plane. It is seen that the whole structure with two valleys and one hump well maintain during all propagation
distance. The fact implies that the solution behaves like a soliton solution although it takes the rational solution form. This
behavior is quite different from the rational solution for the same model presented in Refs. [12,13]. The profile of the soliton in
this case is similar to the W-shaped soliton presented in Ref. [8]. However, we find that the middle hump is much higher than the
background and its |E|2 value is nine times the background’s height, which is distinctive from the soliton in Ref. [8]. Moreover,
it is shown that the minimum of the hump density is nearly zero (see the red solid line in Fig. 1) and the profile of our soliton
is identical with the well-known fundamental rw solution for the highest peak case in the simplified NLS equation [1,22–24].

Case 2. When ω1 = c
2 and c = 1, the exact rational solution can be simplified as

E(t,z) =
{

i
√

3 − 1

2
+ 2[−99(

√
3 + i)εz + 12(

√
3 + i)T + (−3 + √

3 + 2
√

3i)(8 − 8i)]

−3267ε2z2 + 8T [99εz + 4(
√

3 − 6)] − 264(
√

3 − 6)εz − 48T 2 + 32(2
√

3 − 7)

}

× exp

[
i

6ε

(
t − z

18ε

)
+ 1

8
i(4T − 23zε)

]
. (4)
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FIG. 2. (Color online) (a) The evolution of the rational solution
|E(t,z)| given in Eq. (3) with ε = 0.1. (b) The corresponding
numerical results for the evolution process from E(t,0) with a small
perturbation set as 0.02 sin(0.05t).

In this case, it is found that the evolution of the rational solution
is similar to the situation in case 1, as shown in Fig. 2(a).
However, the profile of the soliton is different from that in
case 1, which can be seen from Fig. 1 (see the blue dotted
line and red solid line). To demonstrate the difference between
the two limit cases clearly, we calculate the the quantity |E|2
in case 2 for the hump |E|2 = 4 while for the valleys |E|2 =
5
8 . These properties indicate that the structure characters are
independent of the perturbation parameter ε. For both two
cases, the traveling trajectories of the solitons are straight lines
in the temporal-spatial distribution plane. The trajectory is
determined by the relation ∂t

∂z
= 99ε2+1

12ε
. This implies that the

parameter ε determines the traveling trajectory of the soliton,
which suggests that these higher-order effects can modify the
propagating speed of the solitons in the S-S model. This result
holds for all W-shaped solitons obtained above.

IV. STABILITY AND SPECTRUM ANALYSIS FOR THE
W-SHAPED SOLITON

The stability is much important to the solution in a nonlinear
equation, now we discuss this issue for the W-shaped soliton.
For simplicity, we fix the parameters c and ω1. Under this
condition, we directly perform a numerical evolution from
the initial pulse E(t,0) with some small perturbations by
adopting the split-step Fourier method. As an example, we
study the stability properties of the steepest W-shaped soliton
corresponding to the rational solution in case 1. The numerical
results are plotted in Fig. 2(b). For comparison, we also show
the analytical results in Fig. 2(a). It is found that the numerical
evolution results with the small perturbation 0.02 sin 0.05t are
consistent with the analytical ones. Moreover, we compare
the profiles at different propagation distances in Fig. 3. It is
shown that the profiles of the exact and numerical solutions are
very consistent except for some slight deviations. These results

FIG. 3. (Color online) The profiles of the W-shaped soliton in
case 1 at z = 0,1,2,3. The solid lines denote the analytical solutions
while the dashed lines correspond to the numerical results.

suggest that our soliton solution is stable. To further check this
point, we make wide simulations by scanning a considerable
portion of the parameters space. In the simulations we set
the small perturbation as 0.02 sin(�t) and then vary the
modulation frequency � and change the parameter ε. Finally,
we estimate the deviations for both the maximum [see
Fig. 4(a)] and the minimum [see Fig. 4(b)] values of |E|
between the analytical and numerical results. From Fig. 4, we
find that the maximum deviations after propagating three units
is much smaller than the initial perturbation in a wide range of
the parameter plane (�,ε). All simulation results indicate that

FIG. 4. (Color online) (a) The differences between the numerical
and analytical results for the maximum values of |E| in the
parameter plane (ε,�) at z = 3. (b) The corresponding differences
for the minimum values of |E|. The numerical results are obtained
by evolving E(t,0) [given by Eq. (3)] with a small perturbation
0.02 sin �t .
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FIG. 5. (Color online) (a) The spectrum evolution [i.e.,√|F (ω,z)|] of the rational solution in case 1 with ω1 = 0. The
parameters are c = 1 and ε = 0.1. (b) The spectrum evolution [i.e.,√|F1(ω,z)|] of a Peregrine rw. (c) The spectrum evolution [i.e.,√|Fp(ω,z)|] of the rw pair of S-S model (corresponding to the rws
in Fig. 2 in Ref. [13]).

the W-shaped soliton is stable under small perturbations and
low modulation frequencies.

The studies on modulational instability induced supercon-
tinuum generation indicated that the rw excitation is related
with supercontinuum generation in an optical fiber [2,26,27].
Therefore, it is meaningful to compare the spectrum of the
W-shaped soliton and the Peregrine rw. We can analyze the
spectrum evolution F (ω,z) = 1√

2π

∫ +∞
−∞ E(t,z) exp [−iωt] dt

of the W-shaped soliton exactly though Fourier transformation.
The background is infinity and thus its integral is δ(ω − ω0)
(here the background frequency is ω0 = 1

6ε
), then we can

eliminate the δ function and obtain the spectrum of the
W-shaped soliton. For an example, the spectrum expression
of the W-shaped soliton in Case 1 can be calculated as

|F (ω,z)|2 = 16π exp

(
−|ω′|√

2

)
, (5)

where ω′ = ω − ω0. The spectrum evolution for the W-shaped
soliton is illustrated in Fig. 5(a). Similarly, we can analyze
the spectrum of the W-shaped soliton with other values
of ω0 exactly. We find that all spectrum evolutions are
stable triangular spectrum. For comparison, we also give the
spectrum of the Peregrine rw as [28]

|F1(ω,z)|2 = 2π exp(−|ω|
√

1 + 4z2). (6)

The corresponding spectrum evolution is shown in Fig. 5(b).
It is seen that the spectrum for the Peregrine rw is widely
broadened near z = 0, which could be seen as a supercontin-
uum generation [26]. Notice that the profiles of the spectrum
distribution of the W-shaped soliton and the rw at z = 0
are very similar and their temporal intensity distributions are
identical at this position. This partly indicates that the W-
shaped soliton corresponds to the supercontinuum generation.
Moreover, the spectrum of the W-shaped soliton with other
values of ω1 also has triangular characters.

In particular, we further analyze the spectrum evolution
of the rw solution in the S-S model [12,13], where the rw
solution demonstrates two humps around one location and two

eye-shaped rws can be observed. As an example, we choose
the ones given in Eqs. (32)–(35) in Ref. [13] to discuss the
spectrum characters. Here we replace the variables x and t with
t and z, respectively. The explicit expressions of the spectrum
Fp(ω,z) can be written as follows: For ω′ > 0, we have

Fp(ω,z) =
√

2πi[G(t2,z) + iH (t2,z)] exp [iω′t2]

(t2 − t1)(t2 − t3)(t2 − t4)

+
√

2πi[G(t4,z) + iH (t4,z)] exp [iω′t4]

(t4 − t1)(t4 − t2)(t4 − t3)
, (7)

while for ω′ < 0 we have

Fp(ω,z) =
√

2πi[G(t1,z) + iH (t1,z)] exp [iω′t1]

(t1 − t2)(t1 − t3)(t1 − t4)

+
√

2πi[G(t3,z) + iH (t3,z)] exp [iω′t3]

(t3 − t1)(t3 − t2)(t3 − t4)
, (8)

where ω′ = ω − k
2ε

(− k
2ε

is the background frequency). t2
and t4 are the roots of D(t,z) = 0 on the upper half plane
of complex, and t1 and t3 are the roots on the lower half plane.
The explicit expressions for the functions G(t,z), H (t,z), and
D(t,z) are given by Eqs. (33)–(35) in Ref. [13], respectively.
The spectral extension is around the center k

2ε
frequency.

The spectrum is not continuous at ω′ = 0, since there is
a third power of t in the expression of H (t,z) which is
lower by one power than the highest power of t in D(t,z).
In Fig. 5(c), we only demonstrate the spectrum in the case
of k = 0.25, ε = 0.5, and c = 1, which corresponds to the
spectrum evolution of the RW in Fig. 2 in Ref. [13]. Obviously,
an interference pattern during the twisting process is observed,
which shows quite a difference compared with the spectrum
for the W-shaped soliton.

V. DISCUSSION AND CONCLUSION

We have presented an exact rational solution of the S-S
equation, which can be used to describe the W-shaped soliton
in a nonlinear fiber with higher-order effects such as higher-
order dispersion, Kerr dispersion, and stimulated inelastic
scattering. Interestingly, we have found that the height of
the hump of the W-shaped soliton strongly depends on the
frequency of the background field. In the regime 0 � ω1 � c

2 ,
the hump’s height is found to be inversely proportional to
the background frequency. The spectrum analysis suggests
that the W-shaped soliton corresponds to a supercontinuum
pulse, which may lead to extensively applications in frequency
metrology, ultrafast science, imaging, flow cytometry, com-
munications, and other areas [29–32]. Particularly, we have
compared the spectrum of the W-shaped soliton, Peregrine
rw, and the rw pair solution in the S-S model. For the Pere-
grine rw, the modulational instability induced supercontinuum
generation has been demonstrated in Refs. [2,26,27] and the
supercontinuum is unstable since the modulational instability
mechanism. For the rw pair in Refs. [12,13], the spectrum
is also unstable and there is an interference pattern emerging
during the twisting process. However, our W-shaped soliton
corresponding to the supercontinuum is stable, which has
been checked by the numerical simulations with some small
perturbations.
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APPENDIX: THE EXPLICIT FORM OF THE
RATIONAL SOLUTION

For 0 < ω1 � c
2 , the rational solution is

E(t,z) = c

[
1 − H (t,z)

G(t,z)

]
exp [iω0t + iK(z)], (A1)

where H (t,z) and G(t,z) are

H = 12b(2b + m − 3iω1)2
(
16b2zε + 4bmzε − 2m2zε − 3T − 9ω2

1zε − 3
)[

32b3zε + 24b2zε(m + 2iω1)

− 6b
( − 2imω1zε + T + 3ω2

1zε + 1
) − 2m3zε − 6im2ω1zε − 3m

(
T + 3ω2

1zε + 1
) − 9i

(
T ω1 + 3ω3

1zε + ω1 + i
)]

,

G = 4096z2ε2b8 + 10240mz2ε2b7 + 256zε
(
72zεc2 − 6T + 37m2zε + 54ω2

1zε − 6
)
b6 + 128mzε

(
216zεc2 − 27T

+26m2zε + 135ω2
1zε − 27

)
b5 + 16

[ − 20z2ε2m4 + 108ω2
1z

2ε2m2 − 180zεm2 + 9T 2 + 81ω4
1z

2ε2 − 378ω2
1zε

+216c2zε
(
3zεm2 + 6ω2

1zε − 2
) − 18T

(
24zεc2 + 10m2zε + 21ω2

1zε − 1
) + 9

]
b4 − 32

{
16z2ε2m5 + 6zε

(
12zεc2

+5T + 27ω2
1zε + 5

)
m3 − 9

[−45z2ε2ω4
1 − 24zεω2

1 + T 2 − 6c2zε
(
3zεω2

1 + 5
) + T

( − 30zεc2 − 24ω2
1zε + 2

) + 1
]
m

−324c2zε
}
b3 − 8

{
10z2ε2m6 + 216ω2

1z
2ε2m4 − 27

[−45z2ε2ω4
1 − 6zεω2

1 + T 2 + T
(
2 − 6ω2

1zε
) + 1

]
m2

−27c2
[ − 8z2ε2m4 − 12zε

(
6zεω2

1 + 1
)
m2 + 36zεm + 3T 2 − 189ω4

1z
2ε2 − 54ω2

1zε − 6T
(
2zεm2 + 9ω2

1zε − 1
) + 3

]
−81ω2

1

[ − 27z2ε2ω4
1 − 6zεω2

1 + T 2 + T
(
2 − 6ω2

1zε
) + 1

]}
b2 + 8

{
27

[
2zε

( − 3zεω2
1 + T + 1

)
m3

+3
( − 9z2ε2ω4

1 + T 2 + 2T + 1
)
m − 9

(
3zεω2

1 + T + 1
)]

c2 + m
(
m2 + 9ω2

1

) [
9T 2 + 9

(
zεm2 + 3ω2

1zε + 2
)
T

+(zεm2 + 3)
(
2zεm2 + 9ω2

1zε + 3
)]}

b + (
m2 + 9ω2

1

)2(
2zεm2 + 3T + 9ω2

1zε + 3
)2

+18c2 {
4z2ε2m6 + 12zε

(
6zεω2

1 + T + 1
)
m4 − 36zεm3 + 9

[
45z2ε2ω4

1 + 18zεω2
1 + T 2 + 2T

(
9zεω2

1 + 1
) + 1

]
m2

−54
(
3zεω2

1 + T + 1
)
m + 81

[
9z2ε2ω6

1 + 6(T + 1)zεω4
1 + (T + 1)2ω2

1 + 1
]}

,

with T = t − z
12ε

, ω1 = ω0 − 1
6ε

, m =
√

4b2 − 6c2 − 3ω2
1, and b =

√
[c4 −

√
c2(c2 − 4ω2

1)3]/ω2
1 + 10c2 − 2ω2

1/2
√

2.

For ω1 = 0, the rational solution is

E(t,z) = −c[576c6z2ε2 − 96c4(T + 1)zε + 24
√

2c3zε + 4c2(T + 1)2 − 2
√

2c(T + 1) − 1]

576c6z2ε2 − 96c4(T + 1)zε + 24
√

2c3zε + 4c2(T + 1)2 − 2
√

2c(T + 1) + 1
exp

[
i

t

6ε
− i

z

108ε2

]
. (A2)
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