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Riemann-Hilbert approach and N-soliton formula
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The coupled derivative Schrödinger equation is studied in the framework of the
Riemann-Hilbert problem and a compact N-soliton solution formula is found. Taking
advantage of this result, some properties for single soliton solution and asymptotic
analysis of N-soliton solution are explored. As a by-product, a coupled Fokas-Lenells
equation together its N-soliton solution is presented. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4732464]

I. INTRODUCTION

The integrable systems are differential or difference equations with rich mathematical structures
and wide physics and engineering applications. In particular, they often have multi-soliton solutions.
Among many integrable systems, the nonlinear Schrödinger (NLS) equation has been recognized
as a ubiquitous mathematical model, which may be adopted to describe the evolution of a slowly
varying wave packet in a nonlinear wave system. It plays an important role in nonlinear optics,3 water
waves,4 and plasma physics. However, in some physical situations, two or more wave packets of
different carrier frequencies appear simultaneously. This type of wave interactions could be modeled
by the coupled NLS equations.3

Another integrable system of NLS type, the derivative nonlinear Schrödinger (DNLS) equation9

iqt = qxx + 2iσ

3
(q2q∗)x , σ = ±1 (1)

has also attracted considerable attention. This system emerges as a model for Alfvén wave propaga-
tion along the magnetic field.16 The inverse scattering transformation was applied to this equation and
the soliton solution was constructed by Kaup and Newell.9 Many researches have been conducted
for it and then lots of results have been achieved.8, 10, 18 The associated two-component extension of
DNLS equation, namely, the coupled derivative nonlinear Schrödinger (cDNLS) equation proposed
by Dodd and Morris,15 reads as

iq1,t = [q1,x + 2i

3
q1(|q1|2 + σ |q2|2)]x , (2a)

iq2,t = [q2,x + 2i

3
q2(|q1|2 + σ |q2|2)]x , (2b)

which is relevant in the theory of polarized Alfvén waves and the propagation of the ultra-short
pulse. The system of equations (2) was studied within the framework of inverse scattering transfor-
mation. More recently, Hirota’s direct method was developed and in particular two-soliton solutions
were constructed for this system.22 Its N-soliton solutions were constructed by means of Darboux
transformation very recently.14 We observe that the N-soliton solutions constructed are the ratios of
3N × 3N determinants, which may not be convenient to practical purpose.

Finally, we should point out the integrable properties for N-component derivative Schrödinger
equations had been studied by Hisakado and Wadati,6, 7 they constructed the gauge transformation
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between N-component derivative Schrödinger equations and N-component Schrödinger equations.
Tsuchida and Wadati19, 20 considered the gauge transformation between different kinds of matrix
derivative-type Schrödinger equations. In our work, we construct the Riemann-Hilbert problem
for two-component derivative Schrödinger equations directly, rather than depend with the gauge
transformation.

The aim of this paper is to construct a compact representation for the N-soliton solutions of the
cDNLS system and present an asymptotic analysis for these solutions. To this end, we will take the
well-known Riemann-Hilbert approach,1, 2 which relays on the Riemann-Hilbert problem rather than
the Gel’fand-Levitan-Marchenko equation. This approach enables us to find simple formula for the
cDNLS equation. As a by-product, we obtain a coupled Fokas-Lenells system and its multi-soliton
solutions. We remark that, for the single-component Fokas-Lenells equation, Lenells13 found its
N-soliton solutions via dressing method. However, it is not clear how to generalize his results to the
coupled Fokas-Lenells system.

The paper is organized as follows. In Sec. II, we derive the cDNLS hierarchy from a third-order
spectral problem. The inverse scattering method is applied to this third-order spectral problem and
corresponding Riemann-Hilbert problem is formulated in Sec. III. Section IV intends to find simple
and compact N-soliton formula. Then this formula is employed to study the asymptotic behavior
of the N soliton interactions. In Sec. V, we derive a coupled Fokas-Lenells system and give its
N-solition solution formula. Finally, Sec. VI contains some remarks.

II. cDNLS HIERARCHY

In this section, we will derive the cDNLS hierarchy which may lead to a coupled Fokas-Lenells
system in Sec. V. To have a clear picture, we consider first the derivation of the DNLS hierarchy
which has the following spectral problem:

φx = Uφ, U =
(

−iαζ 2 iζq

iζr iζ 2

)
, (3a)

φt = V φ, V =
(

A B

C D

)
, (3b)

where α is a real number, ζ is the spectral parameter, q = q(x, t) and r = r(x, t) are field variables,
A, B, C, and D are the quantities depending on field variables and their derivatives and ζ .

The corresponding zero-curvature equation or the compatibility condition of (3)

Ut − Vx + [U, V ] = 0 (4)

implies

− Ax + iζqC − iζ Br = 0, (5a)

− Dx − iζqC + iζ Br = 0, (5b)

iζqt − Bx − i(α + 1)ζ 2 B + iζq D − iζ Aq = 0, (5c)

iζrt − Cx + i(α + 1)ζ 2C + iζr A − iζ Dr = 0. (5d)

Using Eqs. (5a) and (5b), Eqs. (5c) and (5d) may be rewritten as

iζ

(
qt

rt

)
−

(
Bx

Cx

)
+ ζ 2L

(
B

C

)
+ iζ (D0 − A0)

(
q

−r

)
= 0, (6)
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where D0 and A0 are integration constants, and

L = −i(α + 1)σ3 − 2σ3

(
q

r

)
∂−1

(
r, q

)
σ3, σ3 = diag{1,−1}.

To obtain the evolution equations, we expand(
B

C

)
=

N∑
n=1

(
bi

ci

)
ζ 2i−1 (7)

and let A0 = −αD0 = − αβ

1+α
ζ 2N with β a constant. It follows from (6) and (7) that

L

(
bN

cN

)
+ iβ

(
q

−r

)
= 0, (8a)

−
(

bi

ci

)
x

+ L

(
bi−1

ci−1

)
= 0, (8b)

i

(
qt

rt

)
−

(
b1

c1

)
x

= 0. (8c)

With the help of (8a) and (8b), we find that (8c) may be reformulated as

i

(
qt

rt

)
= β

1 + α
(∂x L−1)N−1

(
qx

rx

)
, (9)

where

L−1 = iσ3

1 + α
− 2

(1 + α)2

(
q

r

)
∂−1

(
r, q

)
.

The first nontrivial flow in the hierarchy (9) is

i

(
qt

rt

)
=

(
qx + 2i

3 q2r

−rx + 2i
3 qr2

)
x

, (10)

where we took α = 2, β = − (1 + α)2i. The reduction r = σq* for (10) yields the DNLS equation
(2a). The explicit forms for U and V in the present case are

U = iζ 2σ0 + iζ Q, σ0 =
(

−2 0

0 1

)
, Q =

(
0 q

r 0

)
, (11a)

V = −3iζ 4σ0 + V2, V2 = −3iζ 3 Q + iζ 2 Q2 + ζ (σ3 Qx + 2i

3
Q3). (11b)

Now we move to the multi-component extension of the DNLS equation. To this end, we merely
modify above matrices U and V with

σ0 =
(

−2 01×N

0N×1 I

)
, σ3 =

(
1 01×N

0N×1 −I

)
, Q =

(
0 qT

r 0N×N

)
, (12)

where q = (q1, q2, . . . , qN )T , r = (r1, r2, . . . , rN )T , I ≡ IN × N is the N × N identity matrix, 01 × N

1 × N zero matrix, 0N × 1 N × 1 zero matrix, and 0N × N N × N zero matrix. By a direct calculation,
the compatibility condition (4) leads to interesting nonlinear evolution equations. Letting A be a
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non-degenerate Hermite matrix and considering the reduction r = AT q∗, one finds the following
N-component system:

qt = [qx + 2i

3
qq† Aq]x . (13)

The two-component DNLS or coupled DNLS system considered in Ref. 15 is the first nontrivial
case – the case N = 2, which will be our main concern in the rest part of the paper. For convenience,
we list down the explicit spectral problem here

�x = Uψ, U = iζ 2σ0 + iζ Q, (14a)

�t = V �, V = −3iζ 4σ0 + V2, V2 = −3iζ 3 Q + iζ 2 Q2 + ζ (σ3 Qx + 2i

3
Q3), (14b)

where

σ0 =

⎛⎜⎝−2 0 0

0 1 0

0 0 1

⎞⎟⎠, σ3 =

⎛⎜⎝ 1 0 0

0 −1 0

0 0 −1

⎞⎟⎠, Q =

⎛⎜⎝ 0 q1 q2

r1 0 0

r2 0 0

⎞⎟⎠.

and r1, r2 fulfill the following reductions:

r1 = q∗
1 , r2 = σq∗

2 , σ = ±1. (15)

III. INVERSE SCATTERING FOR cDNLS

In this section, we consider the scattering and inverse scattering problems for (2) and work out
the associated Riemann-Hilbert formulation. These results will lay the ground for the construction
of the N-soliton solutions of cDNLS system.

A. Analytical solution for spectral problem

Assume that the functions q1, q2, r1, r2 decay to zero sufficiently fast as x → ± ∞. It will
be convenient for us to write the spectral equation (14) in terms of the matrix J = �E−1

1 , where
E1 = exp [i(ζ 2x − 3ζ 4t)σ 0] is a solution of spectral equation at x → ± ∞. Hence, the spectral
problem (14) we shall deal with is written as

Jx = iζ 2[σ0, J ] + iζ Q J, (16a)

Jt = −3iζ 4[σ0, J ] + V2 J. (16b)

The Jost solutions J± of the spectral equation (16a) obey the asymptotic condition J± → I as
x → ± ∞. They solve the following integral equations:

J± = I + iζ
∫ x

±∞
exp[iζ 2σ0(x − y)]Q J± exp[−iζ 2σ0(x − y)]dy. (17)

These integral equations of Volterra type allow us to prove the existence and uniqueness of the Jost
solutions through standard process. Partitioning J± into columns, namely, J± = (J [1]

± , J [2]
± , J [3]

± ),
then the column vectors J [1]

− , J [2]
+ , and J [3]

+ are continuous for ζ ∈ C+ ∪ R ∪ iR and analytic for
ζ ∈ C+; J [1]

+ , J [2]
− , and J [3]

− are continuous for ζ ∈ C− ∪ R ∪ iR and analytical for ζ ∈ C−, where

C+ =
{
ζ | arg ζ ∈ (0,

π

2
) ∪ (π,

3π

2
)

}
, C− =

{
ζ | arg ζ ∈ (

π

2
, π ) ∪ (

3π

2
, 2π )

}
.
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Since both J+ E and J− E are solutions of spectral problem (14), they must be linearly related by a
matrix S(ζ ) – the so-called scattering matrix. That is,

J−E = J+E S(ζ ), ζ ∈ R ∪ iR, (18)

where E = exp (iζ 2xσ 0) and S(ζ ) = (sij)3 × 3.
It follows from Abel’s formula and tr(Q) = 0 that the determinants of J± are independent of x,

so the evaluations of det(J± ) at x = ± ∞ show that

detJ± = 1.

Furthermore, from (18) we obtain det(S) = 1. Evaluation of S(ζ ) as x → + ∞ gives

S(ζ ) = lim
x→+∞ E−1 J−E = I + iζ

∫ +∞

−∞
E−1(Q J−)(x)Edx, ζ ∈ R ∪ iR. (19)

Thanks to the analytic property of J− , s11 allows analytic extension to C+, s22, s23, s32, and s33 can
be analytically extended to C−.

In order to construct the Riemann-Hilbert problem, we define the matrix function

�+ = (J [1]
− , J [2]

+ , J [3]
+ ),

which is analytic in ζ ∈ C+. Taking account of (18), we have

�+ = J+E S+E−1 = J+E

⎛⎜⎝ s11 0 0

s21 1 0

s31 0 1

⎞⎟⎠E−1,

therefore det(�+) = s11. To find the boundary condition of �+ as ζ → ∞, we consider the following
asymptotic expansion:

�+ = �
(0)
+ + 1

ζ
�

(1)
+ + 1

ζ 2
�

(2)
+ + O(

1

ζ 3
). (20)

Substituting (20) into (16) and equating terms with like powers of ζ , we find

[σ1,�
(0)
+ ] = 0, [σ1,�

(1)
+ ] = −Q�

(0)
+ , [σ1,�

(2)
+ ] = �

(0)
+,x − iQ�

(1)
+ ,

which lead to

�
(0)
+,x = − i

3
σ3 Q2�

(0)
+ . (21)

This means �+ → �
(0)
+ as ζ → ∞ and �

(0)
+ satisfies Eq. (21). Furthermore, we have det(�(0)

+ )
= exp(iη) by the boundary condition and (21), where η = − 1

3

∫ +∞
−∞ (q1r1 + q2r2)dx .

To obtain the analytic counterpart of �+ in C−, we consider the adjoint equation of spectral
equation (16a),

Kx = iζ 2[σ0, K ] − iζ K Q. (22)

It is easy to see that J−1
± solve above adjoint equation (22) and satisfy the boundary condition

J−1
± → I as x → ± ∞. Let (J−1

± )[k] be the kth row of the matrices J−1
± , then

J± =

⎛⎜⎝ (J−1
± )[1]

(J−1
± )[2]

(J−1
± )[3]

⎞⎟⎠.

Employing the same techniques as above, we can show that

�−1
− =

⎛⎜⎝ (J−1
− )[1]

(J−1
+ )[2]

(J−1
+ )[3]

⎞⎟⎠
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are analytic for ζ ∈ C−. Also

J−1
− = E RE−1 J−1

+ ,

where R = S− 1 ≡ (rij)3 × 3. Therefore, we have

�−1
− = E

⎛⎜⎝ r11 r12 r13

0 1 0

0 0 1

⎞⎟⎠E−1 J−1
+ ,

and det �−1
− = r11. Assuming �− → �

(0)
− as ζ → ∞ and expanding �− , we find that �

(0)
− also

solves Eq. (21). Furthermore both �
(0)
+ and �

(0)
− enjoy the same boundary condition as x → ± ∞,

thus we have �
(0)
+ = �

(0)
− ≡ �0.

Hence we find two matrix functions �+ and �− which are analytic inC+ and C−, respectively.
They satisfy

�−1
− �+ = G = E

⎛⎜⎝ 1 r12 r13

s21 1 0

s31 0 1

⎞⎟⎠E−1, ζ ∈ R ∪ iR. (23)

with boundary condition

�± → �0 as ζ → ∞. (24)

In the rest of the subsection, we consider the involution property such that the interesting
reductions may be taken account of. The Hermitian of the spectral equation (16) reads as

(J †
±)x = iζ 2[σ0, J †

±] − iζ J †
± Q† (25)

which yields

(B−1 J †
± B)x = iζ 2[σ0, B−1 J †

± B] − iζ B−1 J †
± B Q, B = diag{1, 1, σ }, (26)

where Q† = BQB− 1 is used. Recalling that J−1
± fulfill the adjoint equation (22) and the boundary

conditions, we have the following involution relation:

J †
± = B J−1

± B−1,

which in turn gives

�
†
+(ζ ∗) = B�−1

− (ζ )B−1. (27)

In view of the relation J− E = J+ ES, we have the involution property of the scattering matrix

S†(ζ ∗) = BS−1(ζ )B−1. (28)

The similar analysis shows that the Jost solutions satisfy another symmetry relation

J±(−ζ ) = σ3 J±(ζ )σ3.

It follows that

�±(−ζ ) = σ3�±(ζ )σ3, (29)

and

S(−ζ ) = σ3S(ζ )σ3. (30)

Next, we study the property of s11, which plays an important role in later analysis. From (28),
we obtain the relations

(r12(ζ ), r13(ζ )) = (s∗
21(ζ ∗), s∗

31(ζ ∗))A, r11(ζ ) = s∗
11(ζ ∗), (31)(

r21(ζ )

r31(ζ )

)
= A−1

(
s∗

12(ζ ∗)

s∗
13(ζ ∗)

)
, A =

(
1 0

0 σ

)
, (32)
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and (30) gives us

s1i (−ζ ) = −s1i (ζ ), si1(−ζ ) = −si1(ζ ), i = 2, 3, (33)

s j j (ζ ) = s j j (−ζ ), s23(ζ ) = s23(−ζ ), j = 1, 2, 3, (34)

s32(ζ ) = s32(−ζ ). (35)

Suppose that ζ1 ∈ C+ is a zero of s11, then by means of (33), − ζ 1 is a zero as well. The relation
(31) indicates that r11 has two zeros, namely ±ζ ∗

1 . Since s11 is an even function of ζ , we may assume
s11 = s11(λ) with λ = ζ 2. In general case, we take s11 as

s11 = exp(iη)h(λ)
N∏

k=1

ζ 2 − ζ 2
k

ζ 2 − ζ ∗2
k

. (36)

The relation RS = I yields r11(ζ )s11(ζ ) + r12(ζ )s21(ζ ) + r13(ζ )s31(ζ ) = 1 and substituting (31)
into it, we have s∗

11(ζ ∗)s11(ζ ) + s∗
21(ζ ∗)s21(ζ ) + σ s∗

31(ζ ∗)s31(ζ ) = 1. Therefore, for ζ ∈ R, we get

|s11|2 + |s21|2 + σ |s31|2 = 1, (37)

and for ζ ∈ iR, we achieve

|s11|2 − |s21|2 − σ |s31|2 = 1. (38)

According to the Cauchy theorem, the factor h(λ) in (36) for Im(λ) > 0 is represented as

h(λ) = exp

[
1

2π i

∫ 0

−∞

ln (1 + |s21|2 + σ |s31|2)

ξ − λ
dξ + 1

2π i

∫ ∞

0

ln (1 − |s21|2 − σ |s31|2)

ξ − λ
dξ

]
,

while for Im(λ) = 0, we have h(λ) = limε→0+ h(λ + iε).

B. Solutions for Riemann-Hilbert problem

In this subsection, we first consider the regular Riemann-Hilbert problem, i.e., det(�+) = s11

�= 0 and det(�−1
− ) = r11 �= 0 in their analytic domain. For convenience, we introduce �± = �−1

0 �±
and rewrite the Riemann-Hilbert problem and the boundary condition as

�−1
− �+ = G, ζ ∈ R ∪ iR, (39)

and

�± → I as ζ → ∞. (40)

By Plemelj formula, the formal solution of this problem reads as (cf. Ref. 1, p. 590, Eq. (7.5.25))

�− = I + 1

2π i

∫
�

�−(ξ )Ĝ(ξ )

ξ − ζ
dξ, ζ ∈ C−,

where Ĝ = G − I and � = [0, ∞) ∪ (i∞, 0] ∪ [0, − ∞) ∪ ( − i∞, 0].
In what follows, we shall prove that the solution of regular Riemann-Hilbert problem (39)

(det �± �= 0) and the canonical normalization condition (40) is unique. The argument is standard and
goes as follows. Suppose that � ± and �̃± are two sets of solutions of (39), then �−1

− �+ = �̃−1
− �̃+,

thus

�+�̃−1
+ = �−�̃−1

− , ζ ∈ R ∪ iR. (41)

Since �+�̃−1
+ is analytic in C+ and �−�̃−1

− is analytic in C−, and on the curve R ∪ iR, they
are equal to each other, we can define a matrix function in the whole plane by virtue of analytic
continuation. Due to the boundary condition (40), this analytic function approaches the unit matrix
I as ζ → ∞. Thus, we obtain

�+�̃−1
+ = �−�̃−1

− = I
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in the whole plane by Liouville’s theorem. Therefore, �± = �̃±, which shows the solution for
Riemann-Hilbert problem (39) is unique.

Now we move to the Riemann-Hilbert problem with simple zeros. From above section we know
that det �+ = s11 and det �−1

− = r11. Since s11 is analytical in C+ and the symmetry relation (34),
we can suppose that zeros of s11 are {±ζ j ∈ C+, 1 ≤ j ≤ N }. It follows that symmetry relation
(31) implies {±ζ ∗

j ∈ C−, 1 ≤ j ≤ N } are the zeros of r11. In this case, both ker(�+ ( ± ζ k)) and
ker

(
�+(±ζ ∗

k )
)

are one-dimensional and spanned by single column vector |vk〉 and single row vector
〈vk |, respectively, thus

�+(ζk)|vk〉 = 0, 〈vk |B�−1
− (ζk) = 0, 1 ≤ k ≤ N (42)

taking account of the symmetry relations (27)–(29).
Next we construct a matrix function �(x, t; ζ ) which could cancel all the zeros of �± . Suppose

det �+(ζ ) ∼ (ζ − ζ j ) near the point ζ j, we have det �+(ζ ) ∼ (ζ + ζ j ) near the point − ζ j and
det �−1

− (ζ ) ∼ (ζ ± ζ ∗
j ) near the point ±ζ ∗

j by the involution relations (27) and (29), respectively.
Let Tj be a matrix whose determinant is

det Tj = ζ 2 − ζ 2
j

ζ 2 − ζ ∗2
j

, (43)

then det �+T −1
j �= 0 at points ± ζ j and det Tj�

−1
− �= 0 at points ±ζ ∗

j . Introducing

� = TN TN−1 · · · T1

and the analytic solutions may be represented as

�± = φ±�, (44)

Therefore, �(x, t; ζ ) accumulates all zero of the Riemann-Hilbert problem, and then we obtain the
regular Riemann-Hilbert problem

φ−1
− (ζ )φ+(ζ ) = �(x, t ; ζ )EG E−1�−1(x, t ; ζ ), (45)

and the boundary condition

φ± → �0, ζ → ∞. (46)

From the above properties (42), (43), (27), and (29), we could readily obtain the explicit form
for the matrix Tj (cf. Ref. 13)

Tj = I + C j

ζ − ζ ∗
j

− σ3C jσ3

ζ + ζ ∗
j

, T −1
j = I + B−1C†

j B

ζ − ζ j
− σ3 B−1C†

j Bσ3

ζ + ζ j
, (47)

where C j = |z j 〉〈w j |B and

|z j 〉 =

⎛⎜⎝α j 0 0

0 −α∗
j 0

0 0 −α∗
j

⎞⎟⎠|w j 〉, |w j 〉 = Tj−1(ζ j ) · · · T1(ζ j )|v j 〉, 〈w j | = |w j 〉†,

α j = ζ 2
j − ζ ∗2

j

ζ j (〈w j |Bσ3|w j 〉 − 〈w j |B|w j 〉) − ζ ∗
j (〈w j |Bσ3|w j 〉 + 〈w j |B|w j 〉) .

C. The inverse problem

We now need to represent the relevant field variables q1 and q2 in terms of spectral functions.
In the case for nonlinear Schrödinger equation, the inverse problem is solved by expansion of the
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related the analytic function as ζ → + ∞.5 However, for the equations of the derivative Schrödinger
type, it is more convenient to work in the following way. From (17) we have

J±(ζ = 0) = I.

Also we have �± (ζ = 0) = I. Expanding �+ (ζ ) as ζ → 0

�+(ζ ) = I + �
(1)
+ ζ + �

(2)
+ ζ 2 + o(ζ 2), (48)

and substituting (48) into (16), we obtain

Q = −i�(1)
+,x , (49)

which is the formula we are looking for.

D. Scattering data evolution

From the solutions of the Riemann-Hilbert problem (52), we see that the scattering data needed
to solve this Riemann-Hilbert problem and reconstruct the potential are

{s21, s31, ζ ∈ R ∪ iR; ±ζk,±ζ ∗
k , |vk〉, 〈vk |}.

Noticing that J− satisfies the temporal part of spectral equation

J−,t = −3iζ 4[σ0, J−] + V2 J−, (50)

we have (
E−1

1 J−E1
)

t = E−1
1 V2 J−E1, E1 = exp[i(ζ 2x − 3ζ 4t)σ0]. (51)

Assuming that q1, q2 have sufficient decay at infinity, we have V2 → 0 as x → ± ∞. Evaluating of
(51) at x → + ∞ leads to (exp [3iζ 4tσ 0]S exp [ − 3iζ 4tσ 0])t = 0. Therefore, we obtain

s11,t = s22,t = s23,t = 0, s32,t = s33,t = 0,

s12(t ; ζ ) = s12(0; ζ ) exp(9iζ 4t), s21(t ; ζ ) = s21(0; ζ ) exp(−9iζ 4t),

s13(t ; ζ ) = s13(0; ζ ) exp(9iζ 4t), s31(t ; ζ ) = s31(0; ζ ) exp(−9iζ 4t).

Furthermore, the Riemann-Hilbert problem becomes

�−1
− �+ = G = E1

⎛⎜⎝ 1 r12 r13

s21 1 0

s31 0 1

⎞⎟⎠E−1
1 , ζ ∈ R ∪ iR, (52)

with the boundary condition

�± → �0 as ζ → ∞. (53)

Thus, the analytic matrices �± solve the temporal part of spectral problem (50).
To get the explicit formulae for vector |v j 〉, we differentiate the equation �+(ζ j )|v j 〉 = 0 in x

and t and find

|v j 〉x = iζ 2
j σ0|v j 〉 + α(x)|v j 〉, (54a)

|v j 〉t = −3iζ 4
j σ0|v j 〉 + β(t)|v j 〉, (54b)

where α(x) and β(t) are arbitrary function. Thus, we have

|v j 〉 = exp[i(ζ 2
j x − 3ζ 4

j t)σ0]|vk0〉 exp[(
∫ x

x0

α(y)dy +
∫ t

t0

β(y)dy)],

where |vk0〉 is a constant vector. A proper choice of α(x) and β(t) may make the calculation of the
soltion solutions simpler as we will show later. By now, we complete the inverse scattering transform
for cDNLS equation.
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IV. SOLITON SOLUTIONS

With above analysis, we are now ready to construct a more compact formula of the N-soliton
solutions for the cDNLS system (2). It is well known that the soliton solutions correspond to the
vanishing of scattering coefficients, i.e., s21 = s31 = 0. Thus, we intend to solve the corresponding
Riemann-Hilbert problem (45) and (46): φ ± = �0.

We notice that (20) and (44) imply �0 = φ + . On the other hand, (48) yields

�0 = (
�|ζ=0

)−1
. (55)

Thus, we have the following expansion:

�+(x, t ; ζ ) = (
�|ζ=0

)−1 (
�|ζ=0 + �1(x, t)ζ + o(ζ )

)
, (56)

which gives �
(1)
+ = (�|ζ=0)−1�1(x, t).

In the following, we will manage to find the explicit expression (�|ζ = 0)− 1�1(x, t). To this end,
we observe that it possesses an alternative representation, namely,

(�|ζ=0)−1� = [�|ζ=0]−1(TN TN−1 · · · T1)

= ([T̃N |ζ=0]−1T̃N )([T̃N−1|ζ=0]−1T̃N−1) · · · ([T̃1|ζ=0]−1T̃1),

and

�−1(�|ζ=0) = (T −1
1 T −1

2 · · · T −1
N )[�|ζ=0]

= (T̃ −1
1 T̃1|ζ=0)(T̃ −1

2 T̃2|ζ=0) · · · (T̃ −1
N T̃N |ζ=0),

where

T̃ j = I + C̃ j

ζ − ζ ∗
j

− σ3C̃ jσ3

ζ + ζ ∗
j

, T̃ −1
j = I + B−1C̃†

j B

ζ − ζ j
− σ3 B−1C̃†

j Bσ3

ζ + ζ j
, C̃ j = |z j 〉〈w j |B

and

|z j 〉 =

⎛⎜⎝ α̃ j 0 0

0 −α̃∗
j 0

0 0 −α̃∗
j

⎞⎟⎠|w j 〉,

|w j 〉 = [
([T̃ j−1|ζ=0]−1T̃ j−1)|ζ=ζ j · · · ([T̃1|ζ=0]−1T̃1)|ζ=ζ j

] |v j 〉, 〈w j | = |w j 〉†,

α̃ j = ζ 2
j − ζ ∗2

j

ζ j (〈w j |Bσ3|w j 〉 − 〈w j |B|w j 〉) − ζ ∗
j (〈w j |Bσ3|w j 〉 + 〈w j |B|w j 〉) .

The validity of above equations could be readily obtained by comparing the residue at ζ = ± ζ i (or
ζ = ±ζ ∗

i , i = 1, 2, . . . , N) and the boundary value at ζ → ∞.
Introducing η = 1

ζ
, ηi = 1

ζi
, we arrive at

(�|ζ=0)−1� = T̂N (η)T̂N−1(η) · · · T̂1(η), (57)

and

�−1(�|ζ=0) = T̂1(η)−1T̂2(η)−1 · · · T̂N (η)−1, (58)

where

T̂ j = I + Ĉ j

η − η∗
j

− σ3Ĉ jσ3

η + η∗
j

, T̂ −1
j = I + B−1Ĉ†

j B

η − η j
− σ3 B−1Ĉ†

j Bσ3

η + η j
, Ĉ j = |z j 〉〈w j |B
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and

|z j 〉 =

⎛⎜⎝ α̂ j 0 0

0 −α̂∗
j 0

0 0 −α̂∗
j

⎞⎟⎠|w j 〉,

|w j 〉 = [
T̂ j−1(η)|η=η j · · · T̂1(η)|η=η j

] |v j 〉, 〈w j | = |w j 〉†,

α̂ j = η2
j − η∗2

j

η j (〈w j |Bσ3|w j 〉 − 〈w j |B|w j 〉) − η∗
j (〈w j |Bσ3|w j 〉 + 〈w j |B|w j 〉) .

Direct calculation shows that

(T̃i |ζ=0)−1T̃i = T̂i , T̃ −1
i T̃i |ζ=0 = T̂ −1

i .

From above discussion, we may take the following more convenient forms for (�|ζ = 0)− 1� and
its inverse, i.e.,

(�|ζ=0)−1� = I −
N∑

j=1

[
D j

η − η∗
j

− σ3 D jσ3

η + η∗
j

]
,

and

�−1(�|ζ=0) = I −
N∑

j=1

[
B−1 D†

j B

η − η j
− σ3 B−1 D†

j Bσ3

η + η j

]
,

where Di = |xi〉〈yi|. These equations enable us to have

�
(1)
+ =

N∑
j=1

(σ3 D jσ3 − D j ),

from it, taking the relevant matrix entries (1, 2) and (1, 3) yields

q1 = i
N∑

j=1

[(
D j − σ3 D jσ3

)
12

]
x
, (59)

q2 = i
N∑

j=1

[(
D j − σ3 D jσ3

)
13

]
x
. (60)

To determine the matrices Dj, we consider (�|ζ = 0)− 1�(ζ )�(ζ )− 1(�|ζ = 0) = I and its Taylor
expansion at η = ηl, then we obtain⎡⎣I −

N∑
j=1

(
|x j 〉〈y j |B
ηl − η∗

j

− σ3|x j 〉〈y j |Bσ3

ηl + η∗
j

)⎤⎦ |yl〉 = 0, l = 1, 2, . . . N .

This system and the conditions (42) indicates that we could assume |yl〉 = |vl〉. Then |xj〉’s obey

|yl〉1 =
N∑

j=1

|x j 〉1(Ml j ), (61)

where |yl〉1 and |xj〉1 are the first components for the vectors |yl〉 and |xj〉, respectively, and

Ml j = η∗
j (〈y j |B|yl〉 + 〈y j |Bσ3|yl〉) + ηl(〈y j |B|yl〉 − 〈y j |Bσ3|yl〉)

η2
l − η∗2

j

.
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Solving (61), we obtain ⎛⎜⎜⎜⎜⎜⎝
|x1〉1

|x2〉1

...

|xN 〉1

⎞⎟⎟⎟⎟⎟⎠ = (Ml j )
−1

⎛⎜⎜⎜⎜⎜⎝
|y1〉1

|y2〉1

...

|yN 〉1

⎞⎟⎟⎟⎟⎟⎠,

and substituting above expressions for |yj〉 and |xj〉 into (59) and (60) gives

q1 = −2i

(
M1

M

)
x

, q2 = −2iσ

(
M2

M

)
x

, (62)

where M = |(Mlj)N × N| and

M1 =

∣∣∣∣∣∣∣∣∣∣∣

M11 · · · M1N |y1〉1

...
. . .

...
...

MN1 · · · MN N |yN 〉1

〈y1|2 · · · 〈yN |2 0

∣∣∣∣∣∣∣∣∣∣∣
, M2 =

∣∣∣∣∣∣∣∣∣∣∣

M11 · · · M1N |y1〉1

...
. . .

...
...

MN1 · · · MN N |yN 〉1

〈y1|3 · · · 〈yN |3 0

∣∣∣∣∣∣∣∣∣∣∣
,

where 〈yi|2 and 〈yi|3 are the second and third components of 〈yi| and 〈yi|, respectively.
To obtain the explicit formulae for N-soliton solutions, we may take

|yl〉 =

⎛⎜⎝ exp[γl + iβl]

al

bl

⎞⎟⎠,

where

γ j = 6m j (x − 6v j t), β j = −3v j x + 9(v2
j − 4m2

j )t,

m j = ζ j Rζ j I , v j = ζ 2
j R − ζ 2

j I

al and bl are arbitrary complex numbers, and the subscripts R and I of ζ j mean taking its real and
imaginary parts, respectively. Then the general N-soliton solution of system (2) can be represented
as

q1 = −i

(
M̂1

M̂

)
x

, q2 = −iσ

(
M̂2

M̂

)
x

, (63)

where

M̂1 =

∣∣∣∣∣∣∣∣∣∣∣

M̂11 · · · M̂1N exp(γ1 + iβ1)

...
. . .

...
...

M̂N1 · · · M̂N N exp(γN + iβN )

a∗
1 · · · a∗

N 0

∣∣∣∣∣∣∣∣∣∣∣
, M̂2 =

∣∣∣∣∣∣∣∣∣∣∣

M̂11 · · · M̂1N exp(γ1 + iβ1)

...
. . .

...
...

M̂N1 · · · M̂N N exp(γN + iβN )

b∗
1 · · · b∗

N 0

∣∣∣∣∣∣∣∣∣∣∣
,

and M̂ = ∣∣(M̂l j )N×N

∣∣ with

M̂l j = ζ ∗
j ζl[ζl eγ j +γl+i(βl−β j ) + ζ ∗

l (a∗
j al + σb∗

j bl )]

ζ ∗2
j − ζ 2

l

.

Comparing with the soliton solution formulae obtained here and those constructed by Darboux
transformation in Ref. 14, it is clear that Eq. (63) are much simpler.

In what follows, we will investigate the properties of the single soliton and N-soliton solutions
in more details.
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A. Single-soliton solutions

To obtain the single soliton solution, we set N = 1 in formula (63). The solution so obtained by
the Riemann-Hilbert method, which is consistent with Darboux transformation,14 reads as(

q1

q2

)
= i

ζ ∗2
1 − ζ 2

1

|ζ1|2
[

1

ζ1eγ1−iβ1 + ζ ∗
1 (|a1|2 + σ |b1|2)e−γ1−iβ1

]
x

(
a∗

1

σb∗
1

)
, (64)

or (
q1

q2

)
= 6ζ1Rζ1I

δ1

√
|ζ1|2 cosh2(γ1 − ln δ1) − ζ 2

1I

(
|a1|eiφ1

σ |b1|eiψ1

)
, (65)

where δ1 =
√

|a1|2 + σ |b1|2 and

φ1 = − i

2
ln

[
a∗

1 (ζ1δ
2
1e−γ1 + ζ ∗

1 eγ1 )3

a1(ζ ∗
1 δ2

1e−γ1 + ζ1eγ1 )3

]
+ β1 + 3

2
π,

ψ1 = − i

2
ln

[
b∗

1(ζ1δ
2
1e−γ1 + ζ ∗

1 eγ1 )3

b1(ζ ∗
1 δ2

1e−γ1 + ζ1eγ1 )3

]
+ β1 + 3

2
π.

Thus, the velocity for the single soliton is v1 = 6[ζ 2
1R − ζ 2

1I ], and its center both for |q1|2 and |q2|2
locates on the line

x − 6v1t − ln δ1

12m1
= 0.

The amplitudes associated with |q1|2 and |q2|2 are given by

A(q1) = 36|a1|2ζ 2
1I

|a1|2 + σ |b1|2 , A(q2) = 36|b1|2ζ 2
1I

|a1|2 + σ |b1|2 ,

respectively. We remark that this soliton solution has two interesting properties which distinguish it
from the standard NLS soliton. First, the soliton has nonzero phase difference at its limits. Indeed,

ζ ∗
1 eγ1 + ζ1(|a1|2 + σ |b1|2)e−γ1

[ζ1eγ1 + ζ ∗
1 (|a1|2 + σ |b1|2)e−γ1 ]2

→

⎧⎪⎨⎪⎩
ζ ∗

1

ζ 2
1

e−γ1 , γ1 → +∞
ζ1

ζ ∗2
1

eγ1 , γ1 → −∞
it follows that

arg(q1(γ1 → −∞)) − arg(q1(γ1 → +∞)) = 6 arg(ζ1) �= 0,

arg(q2(γ1 → −∞)) − arg(q2(γ1 → +∞)) = 6 arg(ζ1) �= 0.

Second, the important invariant of the cDNLS equation, namely, number of particles
∫ +∞
−∞ (|q1|2

+ |q2|2)dx , has the upper limit∫ +∞

−∞
(|q1|2 + |q2|2)dx = 6 arg(ζ1)

|a1|2 + |b1|2
|a1|2 + σ |b1|2 < 3π

|a1|2 + |b1|2
|a1|2 + σ |b1|2 .

These properties of the cDNLS soliton resemble those of the dark NLS soliton, which also has
nonzero phase difference and relation between the optical energy and the phase difference.17

B. Interactions between N solitons

Now we move onto the analysis of the N soliton solutions interactions and discuss the variations
of their positions and amplitudes. We will follow the method of Faddeev and Takhtajan.5 Assuming
v1 < v2 < · · · < vN and keeping x − vk t = const, we now study, as t → − ∞ and t → + ∞, the
asymptotic behavior of the kth soliton, the soliton of velocity vk .
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We first consider the case t → − ∞. The analysis relays on (57), i.e.,

�+ = T̂k T̂N · · · T̂k+1T̂k−1 · · · T̂1. (66)

For |yl〉 (1 < l < N), we assume

fori ≤ k : |yi 〉 =

⎛⎜⎝ exp(γi + iβi )

ai

bi

⎞⎟⎠, and for j > k : |y j 〉 =

⎛⎜⎝ 1

a j exp(−γ j − iβ j )

b j exp(−γ j − iβ j )

⎞⎟⎠, (67)

which provide

for i < k : |yi 〉− ≡ lim
t→−∞ |yi 〉 =

⎛⎜⎝ 0

ai

bi

⎞⎟⎠, and for j > k : |y j 〉− ≡ lim
t→−∞ |y j 〉 =

⎛⎜⎝ 1

0

0

⎞⎟⎠. (68)

With the help of above |yi〉− , we arrive at

T̂i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I + η∗2
i −η2

i

η2−η∗2
i

(
0 01×2

02×1 P̂i

)
, if i < k

I + η∗2
i −η2

i

η2−η∗2
i

⎛⎜⎝ 1 0 0

0 0 0

0 0 0

⎞⎟⎠, if i > k

where

P̂i = |wi 〉〈wi |A
〈wi |A|wi 〉 , |wi 〉 =

(
I + η∗2

i−1 − η2
i−1

η2
i − η∗2

i−1

P̂i−1

)
· · ·

(
I + η∗2

1 − η2
1

η2
i − η∗2

1

P̂1

)
|yi 〉,

A =
(

1 0

0 σ

)
, |yi 〉 =

(
ai

bi

)
, |w1〉 = |y1〉, 〈wi | = |wi 〉†.

For i = k we have

T̂k = I + Ĉk

η − η∗
k

− σ3Ĉkσ3

η + η∗
k

, Ĉk = |zk〉〈wk |B,

where

|zk〉 =

⎛⎜⎝ α̂k 0 0

0 −α̂k
∗ 0

0 0 −α̂k
∗

⎞⎟⎠|wk〉, |wk〉 = (
T̂N T̂N−1 · · · T̂k+1T̂k−1 · · · T̂1

) |η=ηk |yk〉,

α̂k = η2
k − η∗2

k

ηk(〈wk |Bσ3|wk〉 − 〈wk |B|wk〉) − η∗
k (〈wk |Bσ3|wk〉 + 〈wk |B|wk〉) .

Thus using (66) and taking the limit we are lead to(
q1,k(t → −∞)

q2,k(t → −∞)

)
= 6ζk Rζk I

δk,−
√

|ζk |2 cosh2(γk − ln δk,−) − ζ 2
k I

(
|âk |eiφk,−

|b̂k |eiψk,−

)
, (69)
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where δk,− =
√

|âk |2 + σ |b̂k |2,

φk,− = − i

2
ln

[
âk

∗(ζkδ
2
k,−e−γk + ζ ∗

k eγk )3

âk(ζ ∗
k δ2

k,−e−γk + ζkeγk )3

]
+ βk + 3

2
π,

ψk,− = − i

2
ln

[
b̂k

∗
(ζkδ

2
k,−e−γk + ζ ∗

k eγk )3

b̂k(ζ ∗
k δ2

k,−e−γk + ζkeγk )3

]
+ βk + 3

2
π,

and (
âk

b̂k

)
= η2

k − η∗2
N

η2
k − η2

N

· · · η2
k − η∗2

k+1

η2
k − η2

k+1

(
I + η∗2

k−1 − η2
k−1

η2
k − η∗2

k−1

P̂k−1

)
· · ·

(
I + η∗2

1 − η2
1

η2
k − η∗2

1

P̂1

) (
ak

bk

)
.

Therefore, the relevant data for the kth soliton follow. Its velocity is vk = 6[ζk R − ζk I ], the centers
both for |q1, k(t → − ∞)|2 and |q2, k(t → − ∞)|2 locate on the line

x − 6vk t − ln δk,−
12mk

= 0,

and the amplitudes related to |q1(t → − ∞)|2 and |q2(t → − ∞)|2 are given by

A(q1,k(t → −∞)) = 36|âk |2ζ 2
k I

|âk |2 + σ |b̂k |2
, A(q2,k(t → −∞)) = 36|b̂k |2ζ 2

k I

|âk |2 + σ |b̂k |2
,

respectively.
Next we turn to the case t → + ∞ and take

fori < k : |yi 〉 =

⎛⎜⎝ 1

ai exp(−γi − iβi )

bi exp(−γi − iβi )

⎞⎟⎠, and for j ≥ k : |y j 〉 =

⎛⎜⎝ exp(γ j + iβ j )

a j

b j

⎞⎟⎠, (70)

so that

fori < k : |yi 〉+ ≡ lim
t→−∞ |yi 〉 =

⎛⎜⎝ 1

0

0

⎞⎟⎠, and for j ≥ k : |y j 〉+ ≡ lim
t→−∞ |y j 〉 =

⎛⎜⎝ 0

a j

b j

⎞⎟⎠. (71)

Above formulas may be employed to find the limit of �+ represented by

�+ = T̃k T̃N · · · T̃k+1T̃k−1 · · · T̃1, (72)

Indeed, T̃i ’s are given by

T̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
I + η∗2

i −η2
i

η2−η∗2
i

⎛⎜⎝ 1 0 0

0 0 0

0 0 0

⎞⎟⎠, if i < k

I + η∗2
i −η2

i

η2−η∗2
i

(
0 01×2

02×1 P̃i

)
, if i > k

where

P̃j = |w j 〉〈w j |A
〈w j |A|w j 〉 , 〈w j | = |w j 〉†, |y j 〉 =

(
a j

b j

)
,

|w j 〉 =
(

I + η∗2
j−1 − η2

j−1

η2
j − η∗2

j−1

P̃j−1

)
· · ·

(
I + η∗2

k+1 − η2
k+1

η2
j − η∗2

k+1

P̃k+1

)
|y j 〉.
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Finally, |yk〉 reads as

T̃k = I + C̃k

η − η∗
k

− σ3C̃kσ3

η + η∗
k

, C̃k = |zk〉〈wk |B,

|zk〉 =

⎛⎜⎝ α̃k 0 0

0 −α̃k
∗ 0

0 0 −α̃k
∗

⎞⎟⎠|wk〉, |wk〉 = (
T̃N T̃N−1 · · · T̃k+1T̃k−1 · · · T̃1

) |η=ηk |yk〉,

α̃k = η2
k − η∗2

k

ηk(〈wk |Bσ3|wk〉 − 〈wk |B|wk〉) − η∗
k (〈wk |Bσ3|wk〉 + 〈wk |B|wk〉) .

Therefore, by means of (72) we obtain(
q1,k(t → +∞)

q2,k(t → +∞)

)
= 6ζk Rζk I

δk,+
√

|ζk |2 cosh2(γk − ln δk,+) − ζ 2
k I

(
|ãk |eiφk,+

|b̃k |eiψk,+

)
, (73)

where δk,+ =
√

|ãk |2 + σ |b̃k |2,

φk,+ = − i

2
ln

[
ãk

∗(ζkδ
2
k,+e−γk + ζ ∗

k eγk )3

ãk(ζ ∗
k δ2

k,+e−γk + ζkeγk )3

]
+ βk + 3

2
π,

ψk,+ = − i

2
ln

[
b̃k

∗
(ζkδ

2
k,+e−γk + ζ ∗

k eγk )3

b̃k(ζ ∗
k δ2

k,+e−γk + ζkeγk )3

]
+ βk + 3

2
π,

and(
ãk

b̃k

)
= η2

k − η∗2
k−1

η2
k − η2

k−1

· · · η2
k − η∗2

1

η2
k − η2

1

(
I + η∗2

N − η2
N

η2
k − η∗2

N

P̃N

)
· · ·

(
I + η∗2

k+1 − η2
k+1

η2
k − η∗2

k+1

P̃k+1

) (
ak

bk

)
.

Equation (73) allows us to read off the relevant data for the kth soliton at this limit. Explicitly, its
velocity is vk = 6[ζk R − ζk I ], the centers of |q1, k(t → + ∞)|2 and |q2, k(t → + ∞)|2 are along the
line

x − 6vk t − ln δk,+
12mk

= 0,

and the amplitudes for both |q1(t → + ∞)|2 and |q2(t → + ∞)|2 are given by

A(q1,k(t → +∞)) = 36|ãk |2ζk I

|ãk |2 + σ |b̃k |2
, A(q2,k(t → +∞)) = 36|b̃k |2ζk I

|ãk |2 + σ |b̃k |2
,

respectively.
Therefore, the position variation of the kth soliton (either for q1 or q2) is

�xk = 1

12ζk Rζk I
ln

∣∣∣∣ |âk |2 + σ |b̂k |2
|ãk |2 + σ |b̃k |2

∣∣∣∣,
and the amplitude of |q1|2 changes from

36|âk |2ζk I

|âk |2 + σ |b̂k |2
to

36|ãk |2ζk I

|ãk |2 + σ |b̃k |2
,

and for |q2|2 it changes from

36|b̂k |2ζk I

|âk |2 + σ |b̂k |2
to

36|b̃k |2ζk I

|ãk |2 + σ |b̃k |2
.
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As a final remark, it is pointed out that, since the DNLS system is a reduction of the cDNLS
system, we may obtain the asymptotic behavior for the former. In fact, assuming bk = 0 (k = 1, 2,
. . . , N), we have from (69)

q1,k(t → −∞) = 6ζk Rζk I eiφk,−

δk,−
√

|ζk |2 cosh2(γk − ln δk,−) − ζ 2
k I

, (74)

where δk,− = |âk |,

φk,− = − i

2
ln

[
âk

∗(ζkδ
2
k,−e−γk + ζ ∗

k eγk )3

âk(ζ ∗
k δ2

k,−e−γk + ζkeγk )3

]
+ βk + 3

2
π,

âk = η2
k − η∗2

N

η2
k − η2

N

· · · η2
k − η∗2

k+1

η2
k − η2

k+1

η2
k − η2

k−1

η2
k − η∗2

k−1

· · · η2
k − η2

1

η2
k − η∗2

1

ak .

And from (73) we get

q1,k(t → +∞) = 6ζk Rζk I eiφk,+

δk,+
√

|ζk |2 cosh2(γk − ln δk,+) − ζ 2
k I

, (75)

where δk,+ = |ãk |,

φk,+ = − i

2
ln

[
âk

∗(ζkδ
2
k,+e−γk + ζ ∗

k eγk )3

âk(ζ ∗
k δ2

k,+e−γk + ζkeγk )3

]
+ βk + 3

2
π,

ãk = η2
k − η2

N

η2
k − η∗2

N

· · · η2
k − η2

k+1

η2
k − η∗2

k+1

η2
k − η∗2

k−1

η2
k − η2

k−1

· · · η2
k − η∗2

1

η2
k − η2

1

ak .

The position variation of kth soliton is simply written as

�xk = 1

6ζk Rζk I

⎡⎣ N∑
j=k+1

ln

∣∣∣∣∣ (ζ 2
k − ζ ∗2

j )ζ 2
j

(ζ 2
k − ζ 2

j )ζ ∗2
j

∣∣∣∣∣ −
k−1∑
j=1

ln

∣∣∣∣∣ (ζ 2
k − ζ ∗2

j )ζ 2
j

(ζ 2
k − ζ 2

j )ζ ∗2
j

∣∣∣∣∣
⎤⎦ .

In particular, when N = 2 and v1 = v2, namely, two-soliton solution case with specific velocities,
the width for two-soliton changes periodically with the time, as for the nonlinear Schrödinger
equation,5 this solution is called a “breather.” The temporal period of this breather is π/[18|m2

1
− m2

2|].

V. COUPLED FOKAS-LENELLS EQUATIONS AND N-SOLITON SOLUTION

The purpose of this section is to derive a coupled Fokas-Lenells equation and give its simple
N-soliton solutions. In fact, the Fokas-Lenells equation itself is related by a gauge transformation to
the first negative member of the integrable hierarchy of the derivative NLS equation.11 The initial-
boundary value problem for the Fokas-Lenells equation on the half-line was studied by Lenells and
Fokas in Ref. 12. A simple N-bright-soliton solution was given by Lenells13 and the N-dark soliton
solution was obtained by means of Bäcklund transformation.21 We first consider the negative flow
for the Kaup-Newell hierarchy and recall the derivation of the Fokas-Lenells equation. Thus, instead
of (7) we do the following expanding:(

B

C

)
=

N∑
i=1

(
bi

ci

)
ζ 1−2i , (76)

and A0 = − αD0 = − ζ − 2Nβi, then we obtain the hierarchy from (6)

i

(
q

r

)
t

+ β(1 + α)(L∂−1
x )N σ3

(
q

r

)
= 0. (77)
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Introducing potentials (
q

r

)
=

(
ux

vx

)
and taking N = 1, α = 2 and β = 1

3 , we arrive at the first negative flow

uxt = 3u − 2iuvux , (78a)

vxt = 3v + 2iuvvx , (78b)

which, under the reduction v = u∗, is nothing but the Fokas-Lenells equation21

uxt − 3u + 2i|u|2ux = 0. (79)

Remark: In Refs. 11–13, the Fokas-Lenells equation was given as

ψξτ + ψ − ψξξ − 2iψξ − i|ψ |2ψξ = 0, (80)

which, by the following gauge and coordinate transformations

u(x, t) =
√

2

2
ψ(ξ, τ )e−2iτ , x = 1

3
(ξ + τ ), t = −τ

may be converted into (79).
The Lax pair for this system (78) are

�x = U�, U = iζ 2σ0 + iζU1x , (81a)

�t = V �, V = − 1

3ζ 2
iσ0 + 1

ζ
σ3U1 − iσ3U 2

1 , (81b)

where

U1 =
(

0 u

v 0

)
.

As in the case of the N-component DNLS discussed in Sec. I, we modify the relevant matrices and
introduce

σ0 =
(

−2 01×N

0N×1 IN×N

)
, U1 =

(
0 vT

u 0N×N

)
,

where u = (u1, u2, . . . , uN )T and v = (v1, v2, . . . , vN )T , then the N-component Fokas-Lenells equa-
tions are resulted from the compatibility condition (81). With the further reduction relation v = AT u∗,
we obtain

uxt − 3u + i(ux u† Au + uu† Aux ) = 0. (82)

For simplicity, we merely consider the simplest non-trivial case, the coupled Fokas-Lenells system.
The matrices U and V in the spectral problem are given explicitly by

U = iζ 2σ0 + iζU1,x , (83a)

V = − 1

3ζ 2
iσ0 + 1

ζ
σ3U1 − iσ3U 2

1 , (83b)

where

U1 =

⎛⎜⎝ 0 u1 u2

v1 0 0

v2 0 0

⎞⎟⎠.
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The corresponding coupled Fokas-Lenells equation under the reduction v1 = u∗
1, v2 = σu∗

2 reads as

u1,xt = 3u1 − i(2|u1|2u1,x + σu∗
2u1u2,x + σ |u2|2u1,x ), (84a)

u2,xt = 3u2 − i(2σ |u2|2u2,x + u∗
1u2u1,x + |u1|2u2,x ). (84b)

Since the coupled Fokas-Lenells system shares the same spatial part of the spectral problem
with the cDNLS system, we can easily find the former’s N-soliton solution, which is given by

u1 = −i
M̃1

M̃
, u2 = −iσ

M̃2

M̃
, (85)

where

M̃1 =

∣∣∣∣∣∣∣∣∣∣∣

M̃11 · · · M̃1N exp(γ1 + iβ1)

...
...

...
...

M̃N1 · · · M̃N N exp(γN + iβN )

a∗
1 · · · a∗

N 0

∣∣∣∣∣∣∣∣∣∣∣
, M̃2 =

∣∣∣∣∣∣∣∣∣∣∣

M̃11 · · · M̃1N exp(γ1 + iβ1)

...
...

...
...

M̃N1 · · · M̃N N exp(γN + iβN )

b∗
1 · · · b∗

N 0

∣∣∣∣∣∣∣∣∣∣∣
,

and M̃ = ∣∣(M̃l j )N×N

∣∣ with

M̃l j = ζ ∗
j ζl[ζ 2

l eγ j +γl+i(βl−β j ) + ζ ∗2
l (a∗

j al + b∗
j bl )]

ζ ∗2
j − ζ 2

l

,

γ j = 6m j (x + v j t), β j = −3n j (x − v j t), v−1
j = 3[Re2(ζ j ) + Im2(ζ j )],

m j = Re(ζ j )Im(ζ j ), n j = −3[Re2(ζ j ) − Im2(ζ j )].

VI. DISCUSSIONS

The inverse scattering method has been applied to the cDNLS system and by studying the
associated Riemann-Hilbert problem, we have successfully constructed a simple representation for
the N-soliton solutions for this system. It is remarked that we merely considered the simple zeros
for s11 of the scattering matrix. The more general case – the case of multiple zeros would lead to
more general solutions and may be studied in the future.

For cDNLS system, we were considering the solutions with vanishing boundary conditions. A
modification of our analysis may supply certain solutions corresponding non-vanishing boundary
conditions. What we need to do is to seek the Jost solutions of the spectral problem (14) with q1 and
q2 as plane wave solutions.
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