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Abstract

The dynamics of complex diseases are not always smooth; they are occasionally abrupt, i.e. there is a critical state transition or tipping
point at which the disease undergoes a sudden qualitative shift. There are generally a few significant differences in the critical state
in terms of gene expressions or other static measurements, which may lead to the failure of traditional differential expression-based
biomarkers to identify such a tipping point. In this study, we propose a computational method, the direct interaction network-based
divergence, to detect the critical state of complex diseases by exploiting the dynamic changes in multivariable distributions inferred
from observable samples and local biomolecular direct interaction networks. Such a method is model-free and applicable to both bulk
and single-cell expression data. Our approach was validated by successfully identifying the tipping point just before the occurrence
of a critical transition for both a simulated data set and seven real data sets, including those from The Cancer Genome Atlas and
two single-cell RNA-sequencing data sets of cell differentiation. Functional and pathway enrichment analyses also validated the
computational results from the perspectives of both molecules and networks.

Keywords: dynamic network biomarker, distribution divergence, tipping point, multivariable distributions, critical transition, direct

interaction network (DIN)

Introduction

Abundant clinical and experimental evidences show that
the progression of many complex diseases is not always
smooth, but sometimes with abrupt deterioration at a
tipping point [1-4]. For instance, some chronic diseases
exist for years or even decades before a catastrophic
deterioration such as metastasis or the sudden onset
of stroke that may occur within a short period of time
[1, 5, 6]. Besides, the irreversible critical transitions also
appear in a variety of biological processes such as cell
fate commitment [/, 8]. The identification of such tipping
point is not only crucial for a better understanding of
the underlying mechanisms during the disease progres-
sion but also provides the early warning signal of the
upcoming deterioration for diagnosis reference. There
are many outstanding studies being presented to investi-
gate the mechanisms of complex diseases from a micro-
scopic perspective [9-12]. Generally, the progression of
a complex disease is modelled as a non-linear dynamic

system, while a critical transition can be regarded as the
system state shift at a bifurcation point [2, 13]. With such
settings, the progression process of a complex disease
is roughly divided into three stages/states (Figure 1A): a
before-transition state, a pre-disease/critical state and
a disease/after-transition state. Specifically, for complex
diseases, the before-transition state is a stable and rela-
tively healthy stage with high resilience. The pre-disease
state is an unstable critical state with low resilience just
before the deterioration at a tipping point. The after-
transition state is another stable stage after the irre-
versible disease deterioration [14, 15]. Clearly, detecting
the pre-disease state may offer appropriate timing for
effective medical interventions that prevent or delay an
undesirable critical transition.

Based on the critical slowing down phenomenon [16],
the dynamic network biomarker (DNB) was recently pro-
posed to qualitatively describe the dynamics of a biolog-
ical system when it is in a critical state [14, 17]. Specif-
ically, when the system approaches a bifurcation point,
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Figure 1. The schematic of the DIND method for measuring the differential distribution and detecting the critical transition of complex diseases. (A)
The progression of a disease is roughly divided into three states: a before-transition state, a pre-disease/critical state and a disease/after-transition state.

Generally, there are significant differences between the before- and after-

transition states but few differences in terms of gene expression between the

before-transition and critical states. (B) Given a group of control samples from relatively healthy individuals and case samples derived at time point t,
a gene-gene DIN is constructed by excluding indirect interactions. Then, the DIN can be partitioned into a set of local networks. Thus, for each local

network centered at gene g;, the local DIND D! [Equation (6)] is utilized t

o quantify the difference between two distributions of the local DIN with two

sets of samples. (C) During the progression of a complex disease, the DIND index [Equation (7)]) is relatively high in the pre-disease state and relatively
low in the before-transition state. Such significant changes in DIND can indicate the critical state of a complex disease.

there is a dominating group of biomolecules, i.e. the DNB
group, which behaves dynamically in a strongly collective
manner and has a few generic properties that can be
used to characterize the dynamic changes in molecular

associations rather than their expression patterns. The
DNB offers the theoretical background for developing
the computational methods for identifying the critical
transition with early warning signals [2, 3, 18-20]. More
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details of the DNB concept can be found in Supplemen-
tary Section A (see Supplementary Data available online
at http://bib.oxfordjournals.org/).

In this study, we propose a computational approach,
direct interaction network-based divergence (DIND),
based on the combination of direct interaction network
(DIN) inference and the DNB concept, to characterize
the differential distribution of samples, thus detecting
the critical state in a robust manner during a complex
disease process (Figure 1). Specifically, based on a
network inference procedure by determining whether an
edge or a direct interaction relationship exists between
two biomolecules, a local network-based Kullback-
Leibler (KL) divergence is utilized to quantify the dynamic
difference between two multivariate distributions that
are estimated from the temporally adjacent or stage-wise
samples (Figure 1B). The proposed method provides an
effective computational tool that facilitates analysis in
two aspects. On the one hand, our method reconstructs a
set of stage-specific networks by eliminating all indirect
interactions among biomolecules and captures the
significant dynamic changes in gene associations during
the progression of a complex disease. On the other
hand, DIND provides an applicable way to quantitatively
detect the pre-disease state or a tipping point of
complex disease (Figure 1C). Furthermore, based on the
DIND score, one can identify a group of genes that
contributed the most to the differential distribution
as the signalling biomolecules for further functional
analysis and selection of potential drug targets. The
DIND method was applied to one numerical simulation
data set and seven real-world data sets, including those
with bulk sequencing and single-cell RNA sequencing
(scRNA-seq) data. We successfully identified the pre-
disease states for acute lung injury, colon adeno-
carcinoma (COAD), stomach adenocarcinoma (STAD),
thyroid carcinoma (THCA) and lung adenocarcinoma
(LUAD). In addition, signals involved in cell fate com-
mitment were detected at the single-cell level in cell
differentiation data sets, including those on human
embryonic stem cells (hESCs) to definitive endoderm
cells (DECs) and mouse embryonic fibroblasts (MEFs)
to neurons. All the results are consistent with original
clinical or experimental observations, supporting the
effectiveness and robustness of the proposed method.
The corresponding signalling genes were analyzed in
terms of their functions and potential roles in the critical
transitions.

Materials and methods
Theoretical background

An abrupt and catastrophic deterioration of a complex
disease is usually mathematically described as a state
shift or phase transition through a bifurcation at a
tipping point. Thus, the progression of a complex disease
is correspondingly divided into three states or stages
(Figure 1A) [14, 21]: a before-transition state in which a
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biological system is far away from the bifurcation and
thus with high stability and resilience, a critical state
in which the system is in the vicinity of the bifurcation
point, unstable and sensitive to external perturbations
and an after-transition state which is another stable
state when the system cross the bifurcation point.
According to the DNB theory [14], when a complex
system approaches the tipping point, a group of vari-
ables/biomolecules, i.e. the DNB group, arises with the
following critical behaviours:

¢ The correlation between each pair of members in the
DNB group rapidly increases;

e The correlation between a DNB member and any
other non-DNB molecule rapidly decreases;

e The variation of each member in the DNB group
drastically increases.

Clearly, it is the dynamic change in the molecular
association and fluctuation rather than differential gene
expression that makes a difference. The complete proof
of these properties was presented in our previous work
[14]. From the above description, there emerged a generic
property that there are differential multivariate distri-
butions of samples from the critical state. By exploiting
such differential distributions, it is possible to detect
the upcoming critical transition in a robust way. There-
fore, the dynamic multivariate distributions are to be
inferred from samples. To obtain the accurate distribu-
tions, we first constructed a set of DINs, so that dynami-
cally changed molecular interactions can be employed in
the distribution estimation. Then, the difference between
the estimated multivariate distributions can be mea-
sured by the KL divergence.

DIN construction

The interaction of two genes determined by the Pearson
correlation coefficient is widely used. However, there is
an overestimation of gene-gene direct interactions due
to common neighbours. In order to accurately depict
the biomolecular associative relationship, we construct a
gene-gene DIN by excluding indirect interactions. Given
a microarray data set with M genes and n samples, denote
X = [x1,%2,..., %) and Y = [y1,V2,...,¥n] as the expres-
sions of two genes gx and gy whose direct interaction is to
be determined and Z = [z4, 2y, ...,2x]" as the expressions
of a common neighbour gz of gx and gy, where the
symbol ‘"’ represents the transpose of a vector. We decide
whether there is a direct interaction between genes gx
and gy in the following two steps.

(1) Calculate two coefficient parameters, wy and wy, as
in Equation (1):

I 2 _ XL N
Wy = arg %n21:1(xi —wz) = ﬁ
=Ll (1)
_ . n } ) 2 _ Zi:lyl 1
Wy = arg mu}nZi:l(YI —wz)" =35 2
1= 1
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The detailed solution process is provided in Supple-
mentary Section H (see Supplementary Data available
online at http://bib.oxfordjournals.org/). Then, the resid-
uals ey ; and ey; are presented as follows:

€xi = Xj — WxZi
ey =Yi — WyZi

(2)

(2) Calculate the direct-interaction index p(X,Y|Z)
between genes gx and gy with a common neighbour
gz as follows:

n n n
M1 8x,i€y,i — 21 8X,i i1 °Y,i

/“21 18%.i (ZLleXl) /”zl 1%y, (z?=1eyvi)2.
3)

p (X, YI2) =

[[DmEquation3]]

Then, the average score p(X, Y|Za) across all possible
common neighbouring genes was used to build the gene-
gene DIN at each time point, that is, if | p(X, Y|Zap) |> B,
then there is a direct link between gx and gy, where g
is a data set-specific constant. Thus, a time-point/stage-
specific DIN with average score p(X,Y|Zay) as the edge
weight is constructed by excluding indirect associations
influenced by the common neighbouring genes. More
details of the DIN were presented in Supplementary
Section B (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Divergence evaluation

The KL divergence between two continuous random vari-
able distributions P and Q is defined as:

p(P|Q) / p()log (ZE ;)dx, )

where p and q denote the probability densities of P
and O, respectively. Generally, we assume that the
variables (the expression levels of genes) in a local
gene network (Figure 1B) conform to a multivariate
normal distribution; thus, the divergence between two
multivariate normal distributions A7 and N, with means
i1, ko and (non-singular) covariance matrices %, %, is
as follows:

D(N: | IND) = (tr (27" 21)

det p3
_ /2—1 _ 1 _

F(ry — 1) 2" (L —pp) +1n (det 21) d) , (5)
where d denotes the dimension of two multivariate nor-
mal distributions. In general, D(N: | [N2) # DWW, | [NV7).
Thus, a symmetric divergence is adopted in our method
and is defined as

D N1 | IN2) +D(N> | IN7)

DN, N2) = 5 . (6)

Algorithm for identifying the tipping point

Given a series of reference/control samples (samples
from a relatively healthy normal cohort which represents
the healthy or relatively healthy individuals) and a num-
ber of case samples, we identify the tipping point/critical
state in the following steps:

(1) Ateach time pointt (t=1,2,...), construct a DIN by
using the method proposed in Section 2.2.
(2) Localize the DIN, such that each local DIN con-
tains a centre gene g; and its 1st-order neighbours
t

{9}, 9%,..., giM"}, (i=1,2,...,M, Mis the total number
of genes and df = M! + 1 is the number of genes in
the gj-centered local network at time point t).

(3) Fit a multivariate normal distribution for each local
DIN. Specifically, for d' genes in a local network
centered at gene g;, two multivariate normal distri-
butions AF and N were obtained from the reference
and case samples at time point t (Figure 1B), that
is, the di-dimensional vectors u;{,u;i and df x d!
matrices Xf, 2} were obtained.

(4) Calculate the local DIND score D! between N, N

based on Equation (6). Then, the DIND score D'is
calculated as:

—t 1 M
D = ﬁziﬂpg )

where M is the number of top 5% genes with the largest
local DIND scores and D! denotes the corresponding local
DIND scores.

According to the DNB theory, DNB biomolecules
show significant collective behaviours with strong
fluctuations, when a complex system approaches the
critical transition [18]. The distributions of local networks
containing DNB biomolecules in the critical state
exhibit significant differences from those in the before-
transition state, which may lead to an abrupt increase in
the DIND score (Equation (7)).

Data processing and functional analysis

We eliminated the probes which did not include corre-
sponding NCBI Entrez gene symbols. The average value
for each gene mapped by multiple probes was recorded
as its expression. Then, gene expression was normalized
using Z-score.

The functional annotations were performed with
the NCBI Gene database (http://www.ncbi.nlm.nih.
gov/gene). The enrichment analyses were using web
service tools from the Gene Ontology Consortium (http://
geneontology.org) and client software from Ingenu-
ity Pathway Analysis (IPA, http://www.ingenuity.com/
products/ipa).

Results

To demonstrate the performance of DIND in identifying
the critical state, we applied it to a numerical simulation
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data set and seven real-world high-throughput omics
data sets, including those with bulk sequencing data
including acute lung injury (GSE2565), LUAD, STAD,
THCA and COAD from The Cancer Genome Atlas (TCGA)
database (http://cancergenome.nih.gov) and scRNA-seq
data (embryonic differentiation of hESCs to DECs (ID:
GSE75748) [22] and MEFs to neurons (ID: GSE67310)
[23] from the NCBI Gene Expression Omnibus database
http://www.ncbi.nlm.nih.gov/geo). For each application,
the local DIND score D; (for each local network) was
calculated and sorted. Then, the top 5% genes with the
largest DIND scores were taken as the DIND signalling
genes.

Performance on numerical simulation

As shown in Figure 2A, a theoretical network model is
used to illustrate how DIND detects the early warning
signal when a system approaches a tipping point.
Such a regulatory network with eight nodes is con-
structed by a set of stochastic differential equations
in Michaelis-Menten form Equation (S4), which is fre-
quently employed to study the biomolecular regulatory
activities such as transcription and translation processes
[24-26] and other multi-stable non-linear biological
processes [27,28]. A data set was generated for numerical
simulation from the network by Equation (S4), with
parameter qvarying from —0.1 to 0.1 and q = 0 as the
bifurcation point. Details of the network are shown
in Supplementary Section C (see Supplementary Data
available online at http://bib.oxfordjournals.org/).

We randomly set 50 initial values and applied DIND
to the numerical simulation with each initial value
independently. As shown in Figure 2B, when the network
system approaches the bifurcation point at ¢ = 0, the
DIND D score increases significantly, which indicates
the upcoming critical transition. The DIND scores and
their distributions shown in Figure 2B provide a global
view of how DIND changes in the whole process, during
which the system undergoes a stability reversal at
q = 0. As shown in the first two rows of Figure 2C,
dramatic changes of the distributions of the DIND
signalling nodes occur when the system approaches the
bifurcation point. The last row of Figure 2C shows the
almost invariant distribution of non-signalling nodes
which are insensitive to the approaching of critical
transition. To better illustrate the characteristics of
differentlocal D; scores at the tipping point, we visualized
a landscape of the evolution of the local scores D
in Supplementary Figure S2 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). It is
seen that some of the local D; scores (D1, Dy, D3, D4, Ds)
exhibit an abrupt increase before the tipping point
(@ = —0.005), that is, the expression levels of these
nodes fluctuate significantly, resulting in a distinct
multivariate distribution when the regulatory network
approaches the tipping point. Moreover, the effectiveness
of DIND under different noise situations is shown in Sup-
plementary Section K (see Supplementary Data available
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online at http://bib.oxfordjournals.org/). The details of
this dynamic system are provided in Supplementary
Section C (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Identifying cell fate commitment during
embryonic differentiation

Pluripotent stem cells play an important role in vitro/
biliary disease modelling and drug discovery [29-31], and
the study of differentiation of nonneural cells to func-
tional neurons has great promise in neurological disease
modelling [32]. To reveal the underlying mechanism of
cell differentiation which has a close relationship with a
series of diseases, we applied the DIND method to two
sets of cell differentiation scRNA-seq data sets: hESCs
to DECs and MEFs to neurons. Details of these cell dif-
ferentiation processes are provided in Supplementary
Section G (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

In both data sets, the DIND scores D were cal-
culated to quantify the criticality of the cell popu-
lation. The dynamic evolutions of the direct gene-
gene networks are shown in Supplementary Figures S11
and S12 (see Supplementary Data available online at
http://bib.oxfordjournals.org/). As shown in Figure 3A,
the DIND score from hESC-to-DEC process increases
significantly at 36 h, which is prior to the differentiation
induction into definitive endoderm (DE) at 72 h [22,
33]. As shown in Figure 3B, for MEF-to-neuron process,
the DIND score rises sharply from day 5 to day 20,
which provides an early warning signal of the upcoming
differentiation of mouse embryonic intermediate cells
into induced neuron cells at day 22 [29]. Dynamic
changes of the distributions of signalling genes for
hESC-to-DEC and MEF-to-neuron processes are shown in
Supplementary Figures S13 and S14 (see Supplementary
Data available online at http://bib.oxfordjournals.org/),
respectively. Besides, it is seen that the clustering
results of the cells clearly distinguish between stages
before and after the identified tipping points around
36 h for hESC-to-DEC and day 20 for MEF-to-neuron
(Figure 3C and D).

Figure 3E depicts the underlying mechanism revealed
by the functional analysis of the signalling genes for
the hESC-to-DEC data set. The upstream regulator
collagen type I alpha 2 chain (COL1A2) is a compo-
nent of the extracellular matrix and may drive cells
into a developmental critical transition during cell
differentiation. Specifically, this regulator play crucial
roles in the upregulation of integrin beta 1 (ITGB1),
which together with the upregulation of Erb-B2 receptor
tyrosine kinase 4 (ERBB4), GNG11 and protein phos-
phatase 2 regulatory subunit Bbeta (PPP2R2B) expression,
activates the phosphatidylinositol 3-kinase/protein
kinase B (PI3SK/AKT) pathway and then downregulates
the expression of the downstream cyclin D2 (CCND2)
gene and promotes cell proliferation and differentiation.
According to the literature [22], the detected tipping point
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remain almost unchanged.

may be a key time point of guiding the differentiation of
pluripotent stem cells to DE since there was a significant
overturn in the expression of related regulatory genes
between 24 and 72 h. Moreover, among the DIND
signalling genes, there are some non-differentially

expressed genes which are closely related to important
biological functions during the cell differentiation and
shown in Supplementary Table S2 (see Supplemen-
tary Data available online at http://bib.oxfordjournals.

org/).
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for hESC-to-DEC differentiation.

Identifying the critical state during cancer
progression

By using DIND, we identified the critical states for
four cancers COAD, THCA, STAD and LUAD based on
their TCGA data sets. The number of samples within
each stage in four tumour data sets is presented

in Supplementary Table S1 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). The
tumour-adjacent samples were used as the reference
samples, while the tumour samples were regarded as
the stage-wise case samples based on their clinical
information.
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Figure 4. Detection of the critical states for cancers metastasis. The DIND score for (A) COAD, (B) THCA and (C) STAD. Survival analysis before and after
the identified critical states for (D) COAD, (E) THCA and (F) STAD. Landscapes of the local DIND score for (G) COAD, (H) THCA and (I) STAD, which show

the dynamic changes of multivariate distributions in a global view.

The critical states for both COAD and THCA were
detected at Stage II (Figure 4A and B), and those for STAD
and LUAD were detected at Stage I1IB (Figures 4C and 5A);
the landscapes (Figures 4G-I and 5C), which show the
dynamic changes of local multivariate distributions in
a global view, also demonstrate the systematic abnor-
mality. Most mortality of cancer patients is metastasis:
the process of which tumor cells migrate from the
primary focus and colonize distant areas [34]. Thus, it is
important to detect the critical state/tipping point before
the occurrence of distant cancer metastasis or lymph
node metastasis, so that chemotherapy, radiotherapy and
other strategies can be carried out in a timely manner to
slow cancer progression or prevent serious deterioration
[35-38]. Therefore, the early warning signals provided by
DIND in the progression of tumour may contribute to
appropriate and timely clinical interventions.

Specifically, for the COAD data set, the abrupt increase
of the DIND score from Stages [ to II, illustrated in
Figure 4A, indicates that a critical deterioration event
would occur after Stage II. In fact, lymph node metastasis

and direct metastasis to another organ or structure
usually occur at Stage III [39]. The peak of the DIND
at Stage II for THCA data reveals the upcoming critical
transition, which is in accordance with the fact that crit-
ical deterioration, including extension into sternothyroid
muscle or parathyroid soft tissues and regional lymph
node metastasis, appears at Stage III [40, 41].

As shown in Figures 4D-F and 5B, the survival curves
before and after the critical stage are easily distinguish-
able with significant P-values P = 0.001, P = 0.005, P =
0.039 and P = 0.012 for COAD, THCA, STAD and LUAD
respectively, which show that the patients diagnosed
before the identified stages have a substantially better
prognosis than those after the identified stages, suggest-
ing that the detected early warning signals are able to
predict upcoming serious deterioration. More details of
the survival analysis of cancers are presented in Sup-
plementary Section E and Figure S6 (see Supplementary
Data available online at http://bib.oxfordjournals.orgy/).

In Figure 5D, we illustrated the evolution of DINs
constructed by signalling genes for LUAD data. It
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is found that there is a significant change in the
structure of DINs at Stage IIIB, indicating the criti-
cal transition later into distant metastasis at Stage
IV. All these results demonstrate that our proposed
method is capable of effectively detecting the early
warning signals of serious deterioration during cancer
progression to identify the critical stage, which can be
regarded as an important indicator for patient survival.
In Supplementary Figure S7 (see Supplementary Data
available online at http://bib.oxfordjournals.org/), the
details of dynamic changes in terms of distributions

containing signalling and non-signalling genes are
illustrated, reflecting the increase in DIND score.
The signalling genes collagen type IV alpha 2 chain
(COL4A2), collagen type IV alpha 4 chain (COL4A4) are
enriched in the PI3K-Akt signalling pathway related
to LUAD [41]. Dynamic changes of the distributions of
signalling genes for COAD, THCA and STAD were shown
in Supplementary Figures S8-S10 (see Supplementary
Data available online at http://bib.oxfordjournals.org/),
respectively. Moreover, the dynamic evolutions of DINs
constructed by signalling genes for the above three can-
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Figure 6. Functional analysis of common DIND signalling genes in different cancer cohorts. (A) Common DIND signalling genes among COAD, THCA,
STAD and LUAD. (B) Plenty of overlap appears not only in the identical signalling genes among the four cancers but also in their biological functions.
The outer ring represents different groups of cancer signalling genes, and the inner ring represents their identical genes and functions. The identical
genes are linked with each other are depicted in purple lines, and functions are linked are depicted in blue lines. (C) These common genes were found
enriched in cancer-related functional annotations. (D) Functional enrichment through Gene Ontology (GO) analysis showed that the common DIND
signalling genes are enriched in multiple cancer-related biological processes. (E) The activity of some biological processes changed from a high level to
a low level after reaching the critical state. (F) The specific DIND signalling genes are involved in multiple cancer-related pathways.
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cers were shown in Supplementary Figures S15-S17 (see
Supplementary Data available online at http://bib.oxford
journals.org/), respectively.

Functional analysis of the common DIND
signalling genes among four cancers

Functional analysis was carried out to the common DIND
signalling genes across the four cancers (Figure 6A).
There are not only rich intersections across the identities
of the signalling genes in different cancers but also close
relationships of their functions (Figure 6B). Based on the
functional enrichment analysis (IPA), these common
DIND signalling genes are enriched in the PI3K-Akt
signalling pathway [42], the Jak-STAT signalling pathway
[43] and other pathways related to cancer (Figure 6C).
Furthermore, these common genes play a crucial role in
the biological processes associated with the progression
of cancer from GO analysis (Figure 6D), such as the
interleukin-35-mediated signalling pathway [44], the
interleukin-6-mediated signalling pathway [45], the STAT
cascade [46] and cellular calcium ion homeostasis [47].
We also found that the expression of common genes was
associated with some biological processes, such as the
regulation of calcium ion transmembrane transporter
activity, calcium ion homeostasis, the interleukin-
27-mediated signalling pathway, the interleukin-35-
mediated signalling pathway and the STAT cascade,
which changed from high levels to low levels (Figure 6E).
Here, we focus on the role of those common signalling
genes in both cancer-related GO biological processes,
Kyoto Encyclopedia of Genes and Genomes pathways
(Figure 6E and F). For example, calcium/calmodulin
dependent protein kinase II delta (CAMK2D) has been
reported to play an important role in the regulation of
proliferation, differentiation, metastasis and survival of
various cancer cells [48]. The previous studies demon-
strated that activated signal transducer and activator
of transcription 1 (STAT1) exhibited pro-apoptotic and
anti-proliferative effects [49, 50]. In gastric cancer,
high signal transducer and activator of transcription 4
(STAT4) expression is vital for a good patient prognosis
[51]. low-density lipoprotein receptor-related protein
6 (LRP6) is a cancer-related gene whose expression
promotes cancer cell proliferation and tumorigenesis
by altering the subcellular distribution of B-catenin
[52]. Immunohistochemical analysis has demonstrated
that lysophosphatidic acid receptor 2 (LPAR2) plays a
significant role in the gastric cancer progression [53].
The pyruvate dehydrogenase lipoamide kinase isozyme
1 (PDK1) protein, a specific locus amplification of 3-
phosphoinositide-dependent protein kinase 1 (PDPK1),
has been shown to be correlated with poor survival in
breast cancer patients and has also been detected in lung
and prostate cancers [54, 55]. The interleukin 6 receptor
(IL6R) gene is also reported to play a critical role in the
progression of tumour cell growth and patient survival
and the tumour microenvironment [56]. These common
genes may be crucial keys in the study of the university
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of cancers and could potentially contribute to clinical
interventions.

For all data sets, DIND successfully detected the tip-
ping points or early warning signals before the critical
transition and irreversible disease states, which shows
the effectiveness of our method. For the lung injury data
set, the obvious change in the DIND score at the 3rd
time point (4 h) signalled the upcoming critical transi-
tion of lung injury, which agrees with the observation
in the original experiment [57]. The analysis results on
the lung injury data were provided in Supplementary
Section D (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Discussion

Early diagnosis offers patients the best chance of mitigat-
ing the risks associated with severe diseases. Therefore,
the detection of the early warning signal of the catas-
trophic deterioration is of great importance. However,
because generally there is little state change before the
critical transition, it is difficult to distinguish the pre-
disease samples based on the traditional biomarkers.
In this study, aiming at the identification of the criti-
cal states of complex diseases, the DIND method was
proposed to explore the dynamic changes in both the
biomolecular interaction and the multivariate distribu-
tion of gene groups during the disease progression and
thus signalling the abnormalities. With the support of
DIND, we identified the critical states of five complex
diseases and two biological processes of cell differenti-
ation. The analysis results agree well with the clinical or
experimental observations. Besides, further study on the
DIND signalling genes, which are a group of biomolecules
sensitive to the change of local network structure, shows
that some of these genes may play important roles in the
disease progression.

As a model-free computational method, DIND is appli-
cable in both bulk and single-cell genomics data. How-
ever, there is a limitation of DIND that it may have a poor
performance if there are too few samples to fit a proper
distribution. Furthermore, by combining with dynamics
prediction method [58], it may not only help to identify
the critical states based on omics data but also reveal
the dynamically differential information that provides us
with new insights of how the biological system behaves
in the vicinity of its tipping point.

Key Points

* We proposed a new model-free method, the direct inter-
action network-based divergence (DIND), to detect the
early warning signal of the critical transition during
disease progressions.

e DIND explores the dynamic changes in both the
biomolecular interaction and the multivariate distribu-
tion of gene groups during the disease progression and
thus signalling the abnormalities.
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o With the support of DIND, we identified the critical states
of five complex diseases and two biological processes of
cell differentiation, which agree well with the clinical or
experimental observations.

Supplementary data

Supplementary data are available online at https://
academic.oup.com/bib.
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