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MAPKAPK2, a potential dynamic network biomarker of α-
synuclein prior to its aggregation in PD patients
Zhenggang Zhong1, Jiabao Li1, Jiayuan Zhong2, Yilin Huang1, Jiaqi Hu1, Piao Zhang3, Baowen Zhang1, Yabin Jin4, Wei Luo4✉,
Rui Liu 2✉, Yuhu Zhang 3✉ and Fei Ling1✉

One of the important pathological features of Parkinson’s disease (PD) is the pathological aggregation of α-synuclein (α-Syn) in the
substantia nigra. Preventing the aggregation of α-Syn has become a potential strategy for treating PD. However, the molecular
mechanism of α-Syn aggregation is unclear. In this study, using the dynamic network biomarker (DNB) method, we first identified
the critical time point when α-Syn undergoes pathological aggregation based on a SH-SY5Y cell model and found that DNB genes
encode transcription factors that regulated target genes that were differentially expressed. Interestingly, we found that these DNB
genes and their neighbouring genes were significantly enriched in the cellular senescence pathway and thus proposed that the
DNB genes HSF1 and MAPKAPK2 regulate the expression of the neighbouring gene SERPINE1. Notably, in Gene Expression Omnibus
(GEO) data obtained from substantia nigra, prefrontal cortex and peripheral blood samples, the expression level of MAPKAPK2 was
significantly higher in PD patients than in healthy people, suggesting that MAPKAPK2 has potential as an early diagnostic biomarker
of diseases related to pathological aggregation of α-Syn, such as PD. These findings provide new insights into the mechanisms
underlying the pathological aggregation of α-Syn.
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INTRODUCTION
Parkinson’s disease is the second most common neurodegenera-
tive disease after Alzheimer’s disease and is characterized by a
high prevalence and disability rate. The clinical symptoms of
Parkinson’s disease include motor symptoms such as gait
disorders and nonmotor symptoms such as cognitive disorders1,2.
Therefore, PD patients have difficulty living independently, which
places a heavy burden on patients and their families. PD is usually
accompanied by neurodegenerative pathological changes before
clinical symptoms appear3. The early diagnosis and clinical
management of PD is difficult, as the majority of neurons in a
patient’s brain die sequentially before clinical features become
apparent. The important pathological features of PD are the
progressive loss of dopaminergic neurons in the substantia nigra
and pathological aggregation of α-synuclein, which is the main
component of Lewy bodies4. Although the aetiology of PD is not
well understood, the pathological aggregation of α-Syn is known
to be an important step in the pathogenesis of PD.
α-Syn is encoded by SNCA in presynaptic terminals and plays a

role in regulating neurotransmitter release, synaptic function and
plasticity5. Recent research has suggested that physiological α-Syn
is a helical tetramer that resists aggregation. In this stage, α-Syn
does not induce neurotoxicity6. Excessive accumulation of α-Syn,
such as that caused by stimulation with inducing drugs such as
rotenone or MPTP, can lead to pathological α-Syn aggregation7,8.
Under pathological conditions, α-Syn is converted from a tetramer
to a monomer, and monomeric α-Syn readily aggregates and
transforms into misfolded β-sheet oligomers, which is indicative of
pathological aggregation5. Pathologically aggregated α-Syn is
usually phosphorylated at serine 1299. Pathologically aggregated
α-Syn induces neurotoxicity and inhibits ubiquitin‒proteasome

system activity and blocks the autophagic lysosomal pathway, two
important mechanisms for the repair or removal of abnormal
proteins in cells10,11. Once pathological aggregation of α-Syn is
formed, the ubiquitin-proteasome system and the autophagic
lysosomal pathway are inhibited, leading to difficulties in clearing
the abnormal protein, which in turn leads to difficulties in
degrading the pathological aggregation of α-Syn. Pathological
oligomeric α-Syn accumulated in large quantities forms α-Syn
fibrils and Lewy bodies, which induce neurotoxicity, similar to
α-Syn oligomers, leading to mitochondrial abnormalities, abnor-
mal endoplasmic reticulum–Golgi trafficking and inhibition of the
autophagy–lysosomal pathway, causing the death of dopaminer-
gic neurons and manifesting as Parkinson’s disease5. Pathological
aggregation of α-Syn is therefore an important step in the
pathogenesis of PD. Prevention of pathological aggregation of
α-Syn has become a potential strategy for the mitigation and
prevention of PD12,13. Levin et al. found that the oligomeric
modulator anle138b inhibited α-Syn oligomer formation in vitro,
and anle138b treatment slowed the progression of PD in an A30P
α-Syn transgenic mouse model14. Therefore, to provide clues for
PD intervention and diagnosis, we searched for key genes
affecting the pathological aggregation of α-Syn and biomarkers
for the early diagnosis of diseases associated with the pathological
aggregation of α-Syn.
The DNB method is an approach used for mathematically

modelling gene expression networks on the basis of a temporally
expressed sequence that can identify biomarkers for the early
detection of the prepathological α-Syn aggregation15,16. In PD
patients, the formation of pathologically aggregated α-Syn impairs
the function of the ubiquitin‒proteasome system and the
autophagy–lysosomal pathway, resulting in a reduced rate of
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pathologically aggregated α-Syn degradation10,11. Several studies
have suggested that pathological α-Syn aggregates propagate
between cells, thereby further promoting α-Syn aggregation in
other neurons in a ‘prion-like’ manner17–20. These aforementioned
studies illustrated that the transition from a normal to a
pathologically aggregated state of α-Syn is a drastic change that
is difficult to reverse. To quantify this process, we applied the DNB
method to predict the critical point before pathological aggrega-
tion of α-Syn. The DNB method is based on the theory that disease
progresses through three states, namely, the normal state, the
predisease state and the disease state. The predisease state is an
unstable critical state in which the normal state is changing into
the disease state. At this time, gene expression levels and gene
network structures change dramatically. DNB genes are at the core
of these gene networks. The DNB method has been used in
studies in several fields for research into, for example, colorectal
cancer metastasis, the epithelial–mesenchymal transformation
and breast cancer21–23. Compared to traditional molecular
biomarkers that are used to detect disease states on the basis of
their differential molecular levels measured at a single time point,
the DNB method integrates temporal information, and this case
was chosen for its superiority in identifying the critical time before
prepathological aggregation of the α-Syn state (the tipping point
just before the dramatic transition from the physiological tetramer
state to the pathological state of α-Syn aggregation). The DNB
method revealed the key genes with changed expression before
pathological aggregation of α-Syn and biomarkers useful for early
diagnosis of diseases associated with the pathological aggrega-
tion of α-Syn, contributing to the study of the mechanisms
underlying the pathological aggregation of α-Syn.
In this study, to identify the key genes affecting the pathological

aggregation of α-Syn, we constructed a cell model of α-Syn
pathological aggregation and used the DNB method to predict
the critical time point immediately before α-Syn undergoes
pathological aggregation. Combining multiple biochemical analy-
sis methods based on dynamic changes in key gene expression
levels, regulatory networks and functional enrichment of DNB
genes, we investigated the effect of DNB gene expression on the
pathological aggregation of α-Syn. Combining our experimental
results with clinical data, we found that the MAPKAPK2 gene in
peripheral blood is a potential biomarker for early diagnosis of PD
because its expressed was changed immediately before patholo-
gical aggregation of α-Syn. Finally, we found that the DNB genes
HSF1 and MAPKAPK2 regulate the expression of their neighbouring
gene SERPINE1; all three of these genes were thus identified as
possible key genes with changed expression before pathological
aggregation of α-Syn, and we propose a molecular mechanism
that possibly explains this outcome.

RESULTS
Construction of a cell model of pathological α-Syn
aggregation
To investigate the pathological aggregation of α-Syn, we
constructed a cell model of pathological aggregation of α-Syn
using MPP+ induction while setting up a control group for
comparison. To verify that the α-Syn pathological aggregation cell
model had been successfully constructed, immunofluorescence
staining of cells 0 h, 4 h, 8 h and 12 h after induction was
performed using both a 5G4 antibody and an anti-p-α-Syn
antibody (Fig. 1a).
In immunofluorescence experiments with the 5G4 antibody, the

relative mean immunofluorescence intensities 4 h and 8 h after
induction were not significantly different from those 0 h after
induction, while the relative mean immunofluorescence intensity
12 h after induction was significantly higher than that 0 h after
induction (Fig. 1b). The relative mean immunofluorescence

intensities at each time point in the control group were not
significantly different. Comparisons performed at the same time
points revealed that only the difference found at 12 h in the
induction group and 12 h in the control group was significant
(Supplementary Fig. 2a, b). Similar results were observed in the
experiments with the p-α-syn antibody (Fig. 1c, Supplementary
Fig. 2c, d). We therefore concluded that the cell model of
pathological aggregation of α-Syn had been successfully con-
structed, and the appearance of pathological aggregation of α-Syn
was observed 12 h after induction.

DNB genes are transcription factors that regulate expression
of target genes that were differentially expressed
To determine the critical time points before pathological
aggregation of α-Syn, we collected samples 0 h, 4 h, 8 h and
12 h after induction and performed transcriptome sequencing.
The four time points were chosen to cover the entire process from
the cellular transition between the normal state to the patholo-
gical α-Syn aggregation state.
The transcriptome expression profile at a certain time point

reflects the state of the sample in that instant. To characterize the
specific state at each time point during the progressive
pathological aggregation of α-Syn, we identified 6150 DEGs via
multiple comparisons with FDR adjustment (p < 0.05, Supplemen-
tary Table 1). After hierarchical clustering of the DEGs, we found
that the samples at each time point were clustered into one class,
implying good repeatability of parallel sample clustering (Fig. 2a).
In addition, the samples assessed at 0 h, 8 h, and 12 h are first
clustered into one class, and the samples assessed at 4 h clustered
into only one class. On the other hand, hierarchical clustering led
to the clustering of all differentially expressed genes into 5
clusters. For Cluster 2 and Cluster 3, the expression levels at 0 h,
8 h, and 12 h were similar, with genes all highly expressed relative
to their expression assessed at 4 h. For Cluster 5, compared with
the expression level at 0 h, which was the control level, the
expression level at 4 h was significantly higher, and the expression
level at 8 h and 12 h was only slightly higher. These findings
indicated that the expression profile at 4 h was quite different
from that at the other three time points. We performed a KEGG
pathway enrichment analysis with the genes in these three
clusters and found that the genes in Cluster 2 and Cluster 3 were
enriched in pathways such as the neuroactive ligand‒receptor
interaction pathway and cell adhesion molecule pathway (Sup-
plementary Fig. 3a). The genes in Cluster 5 were enriched in
pathways such as the basic transcription factor pathway and
nucleocytoplasmic transport pathway (Supplementary Fig. 3b).
These findings indicated that compared with those in the cells
assessed 0 h, 8 h and 12 h after induction, more transcription
factors entered the nucleus to regulate transcription 4 h after
induction. Four hours after induction, cell adhesion ability and
neural activity were inhibited, which deviated from the normal
state of nerve cells to a certain extent, suggesting that a critical
transition may take place 4 h after induction.
We then used the DNB method and identified 4 h after

induction as the critical time point before pathological aggrega-
tion of α-Syn, with a strong signal indicating the critical state
before pathological aggregation of α-Syn composed of a
significant change in single-sample landscape entropy (SLE) 4 h
after induction. (Fig. 2b). Moreover, we identified the correspond-
ing DNB members, which were composed of 453 genes. DNB
genes are core genes in some gene networks, and their expression
fluctuates dramatically at critical time points. A soft clustering
analysis showed that the majority of the identified DNB genes
were expressed at the highest or lowest levels compared to that of
all the other time points 4 h after induction (Supplementary Fig. 4).
This finding indicated that the expression levels of most DNB
genes had markedly changed at the critical time point before
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pathological aggregation, which corroborated the conclusion that
4 h after induction was the critical time point before pathological
aggregation of α-Syn. In Supplementary Fig. 4, the DNB genes of
DNB-cluster 1 and DNB-cluster 2 were expressed at the highest
levels at 4 h after induction, compared with other time points. And
the DNB genes of DNB-cluster 4 were expressed at the lowest
levels at 4 h after induction. We performed a KEGG pathway
enrichment analysis with the DNB genes in these three DNB-
clusters and found that the genes in DNB-cluster 1 and DNB-
cluster 2 were enriched in pathways such as the nucleocytoplas-
mic transport pathway (Supplementary Fig. 5a). This finding
indicated the frequent material transport between the nucleus
and cytoplasm at 4 h after induction, which echoed the results in
Supplementary Fig. 3b. The genes in DNB-cluster 4 were enriched
in pathways such as the biosynthesis of amino acids pathway and
metabolism pathways of various amino acids (Supplementary
Fig. 5b). These findings indicated that the amino acid biosynthesis
and metabolism of cells were inhibited 4 h after induction, and the
cells were not in normal growth state, suggesting that a critical
transition may occur 4 h after induction.

To investigate the regulatory role played by DNB genes, we
used the STRING database and retrieved 2418 genes that
neighboured DNB genes (Supplementary Table 2). A PPI analysis
revealed that the 100 most highly ranked genes in the topological
analysis were located at the core of the PPI network, suggesting
that they may exhibit a relatively important biological function in
the pathological aggregation of α-Syn (Supplementary Fig. 6). To
investigate how DNB genes regulate neighbouring genes in
depth, we identified 28 differentially expressed DNB genes that
had been identified with transcription factor function and 75
differentially expressed downstream neighbouring genes. We
then mapped DNB-related transcription factor regulatory net-
works, which revealed that DNB genes, which encoded transcrip-
tion factors (TFs), regulated neighbouring genes that were
differentially expressed before and after induction and that DNB
gene products also interacted with each other (Fig. 2c). Interest-
ingly, we also found that certain DNB genes were expressed at low
levels at 0 h and highly expressed at 4 h; in contrast, other genes
were highly expressed at 0 h and expressed at low levels at 4 h,
and their expression levels underwent a reversal between 0 h and

Fig. 1 Construction of a cell model of pathological α-Syn aggregation. a Overview of the experimental design in this study. b, c Results of
immunofluorescence staining for the 5G4 antibody (b) and anti-p-α-Syn antibody (c) in the induction group. Blue fluorescence represents 4′,6-
diamidino-2-phenylindole (DAPI)-stained nuclei, green fluorescence represents pathological aggregation of α-syn, and red fluorescence
represents p-α-Syn. The average immunofluorescence intensities of these two antibodies were normalized using the average
immunofluorescence intensities of DAPI. Immunofluorescence experiments showed that the α-Syn pathological aggregation cell model
was successfully constructed, while α-Syn pathological aggregation appeared 12 h after induction. n= 4. ns: no significant difference.
*p < 0.05. **p < 0.01. The data are expressed as the means ± SEMs. Figure 1a was partly generated by adapting Servier Medical Art pictures
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Fig. 2 Detection of the critical time point before pathological aggregation of α-Syn and analysis of DNB genes. a Heatmap showing DEG
gene expression profiles. Hierarchical clustering showed that the gene expression profile 4 h after induction differed from that at other time
points. b DNB analysis showed that the single-sample network entropy peaked 4 h after induction. c Regulatory networks revealed that DNB-
related transcription factors regulated neighbouring gene expression. The diamonds represent DNB-related transcription factors located
upstream of the regulatory network. Rectangles represent neighbouring genes located downstream of the regulatory network. The shades of
colour indicate high and low gene rankings. d DNB genes regulate the differential expression of neighbouring genes. We selected DEGs in
Clusters 4, 5 and 7 in the soft clustering analysis of neighbouring genes, as well as their corresponding DNB genes, and drew a network graph
of the changes in the expression levels of these genes. Triangles and diamonds indicate DNB genes with and without transcription factor
function located in the centre of the network. Rectangles represent neighbouring genes located at the periphery of the network. The shades
of colour indicate high and low gene ranking.
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4 h. However, the expression levels of the neighbouring genes
regulated by these DNB transcription factor genes underwent a
reversal in expression between 0 h and 12 h (Fig. 2d, Supplemen-
tary Fig. 7). In conclusion, we found that the critical time point
before the pathological aggregation of α-Syn was 4 h after
induction and that DNB genes with transcription factor function
regulated the differential expression of their target genes before
and after induction, thus establishing a connection between DNB
genes and DEGs.

DNB genes and neighbouring genes were enriched in the
cellular senescence pathway
After studying the expression levels and regulatory networks of
the DNB genes and their neighbouring genes, we focused on the
pathways through which these genes influenced the pathological
aggregation of α-Syn. A KEGG pathway enrichment analysis
revealed that these genes were significantly enriched in pathways
such as the Parkinson’s disease pathway, pathways of
neurodegeneration-multiple diseases and the cellular senescence
pathway (Supplementary Fig. 8). We annotated the DNB genes
and the differentially expressed neighbouring genes involved in
these pathways and found that, in part of the cellular senescence
pathway, a DNB gene was located upstream adjacent to a
neighbouring gene; therefore, we selected this pathway for in-
depth study (Fig. 3).
At the critical time point before the aggregation of α-Syn, the

expression of the DNB gene MAPKAPK2 in the cellular senescence
pathway was upregulated, which increased the expression level of
the downstream differentially expressed neighbouring gene
SERPINE1 via regulation of the expression of the zinc finger
protein ZFP36L1. Eight hours after induction, that is, after the
critical time point, the expression levels of MAPKAPK2 and
SERPINE1 decreased but were still higher than those at 0 h. The
product of the SERPINE1 gene is plasminogen activator inhibitor-1
(PAI-1), one of the components of the senescence-associated
secretory phenotype (SASP), whose upregulation leads to the
activation of paracrine senescence, promoting cellular senescence
and impairing autophagy–lysosomal activity24,25. The substrate of
PAI-1, plasminogen activator, regulates the production of plasmin,
which degrades both normal α-Syn and pathological α-Syn26.
Thus, at the critical time point before the pathological aggregation
of α-Syn, upregulation of the DNB gene MAPKAPK2 caused
upregulation of the differentially expressed neighbouring gene
SERPINE1, which promoted pathological aggregation of α-Syn by
affecting the cellular senescence pathway, impeding plasmin
production and impairing autophagy‒lysosome pathway activity.

MAPKAPK2 is significantly highly expressed in the brain tissue
and peripheral blood of PD patients
To identify potential key genes leading to pathological aggrega-
tion of α-Syn, we comprehensively ranked DNB genes based on
five priority criteria (see the screening protocol for DNB core genes
in the Materials and methods section) and chose to identify eight
genes, including CCND1, CRK and HSF1, as DNB core genes (Fig. 4a,
Supplementary Table 3). Among these genes, we found that the
SERPINE1 gene neighboured the DNB core gene HSF1 (Supple-
mentary Fig. 9). Using the JASPAR database, we found that the
transcription factor HSF1 binds three sites upstream of SERPINE1
(Supplementary Table 4). Furthermore, it has been previously
shown that in vascular endothelial cells, HSF1 positively regulated
PAI-1 expression levels27,28. Therefore, HSF1 potentially regulates
the expression level of SERPINE1. Considering the results of the
aforementioned pathway studies, we suggest that HSF1 and
SERPINE1, as well as MAPKAPK2, may play important roles in the
pathological aggregation of α-Syn.
To identify the relationship between these three genes and

pathological aggregation, we found that all three HSF1, SERPINE1,

and MAPKAPK2 genes were expressed at significantly higher levels
in both the prepathological aggregation state and the patholo-
gical aggregation state than in the normal state. This result was
corroborated by qPCR experiments with these genes. Therefore,
these three genes may be potential biomarkers before the
pathological aggregation of α-Syn.
To identify the relevance of these three genes to α-Syn

pathological aggregation-related diseases, we collected PD-
related GEO data and measured the expression levels of these
three genes (Supplementary Table 6). The results showed that the
expression levels of all three genes in were significantly higher in
the substantia nigra in PD patients than in HCs (Fig. 4e). In the
prefrontal cortex, only the expression levels of HSF1 and
MAPKAPK2 were significantly higher in PD patients than in HCs
(Fig. 4f). The analysis of PD-peripheral blood dataset integrating
four GSE datasets showed that in peripheral blood, only the
expression level of MAPKAPK2 was significantly higher in PD
patients than in HCs (Fig. 4d, Supplementary Figs. 10 and 11). The
independent analysis of four peripheral blood datasets showed
that only in GSE99039 dataset, the expression level of MAPKAPK2
was significantly higher in PD patients than in HCs (Supplemen-
tary Fig. 12).
Similarly, we performed analyses of DLB and multiple stem

atrophy (MSA), two neurodegenerative diseases associated with
the pathological aggregation of α-Syn, and found that in DLB-
related data obtained from the prefrontal cortex, the expression
level of MAPKAPK2 was significantly higher in DLB patients than in
HCs, while the expression levels of the other two genes did not
differ significantly between DLB patients and HCs; in MSA-related
data obtained from cerebellar white matter, the expression levels
of the three genes also did not differ significantly between MSA
patients and HCs (Supplementary Fig. 13).
Hence, qPCR experiments and GEO clinical data corroborated

the correlation between the expression levels of the DNB core
gene HSF1 and the DNB gene MAPKAPK2 and the neighbouring
gene SERPINE1, indicating that these three genes may be potential
biomarkers indicating the pathological preaggregation of α-Syn
and that MAPKAPK2 in peripheral blood may serve as a potential
biomarker for early PD diagnosis, which may be rendered before
the pathological aggregation of α-Syn.

DISCUSSION
One of the important pathological features of Parkinson’s disease
is the aggregation of α-Syn, which is the main component of Lewy
bodies, in the substantia nigra. Pathologically aggregated α-Syn
induces neurotoxicity and can lead to the death of dopaminergic
neurons, leading to Parkinson’s disease. Therefore, prevention of
the pathological aggregation of α-Syn is critical. To explore
potential key genes affecting the pathological aggregation of α-
Syn and to identify potential biomarkers for the early diagnosis of
α-Syn pathological aggregation-related diseases, we used MPP+

for induction, constructed a cell model of pathological aggrega-
tion of α-Syn, applied DNB analysis based to a gene expression
network model, and identified 453 DNB genes and 4 h post-
induction as the critical time point before pathological aggrega-
tion of α-Syn. Furthermore, we found that DNB genes enriched in
the cellular senescence pathway affected the pathological
aggregation of α-Syn. Finally, we identified HSF1 as a core DNB
gene and found that HSF1 and the DNB gene MAPKAPK2 may
regulate the neighbouring gene SERPINE1, with all three potential
biomarkers of the pathological preaggregation of α-Syn, and
combined with clinical data, we identified MAPKAPK2 in peripheral
blood as a potential biomarker for the early PD diagnosis based on
pathological pre-aggregation of α-Syn.
We used MPP+ to induce SH-SY5Y cells and construct a cell

model of pathological aggregation of α-Syn. MPP+ is commonly
used to induce Parkinson’s cell models. MPP+ acts on the

Z. Zhong et al.

5

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2023)    41 



Fig. 3 The DNB gene MAPKAPK2 regulates neighbouring gene SERPINE1 expression in the cellular senescence pathway. a Multiple DNB
genes and neighbouring genes were enriched in the cellular senescence pathway. Blue borders indicate DNB genes, and red borders indicate
differentially expressed neighbouring genes. The light blue dashed box represents a portion of the pathway studied in detail. b MAPKAPK2
regulated SERPINE1 expression and activated the cellular senescence pathway. Diamonds represent DNB genes, rectangles represent
differentially expressed neighbouring genes, and ovals represent other genes that are neither DNB genes nor neighbouring genes. The colour
indicates the expression level of a gene, and the green background indicates that the expression levels of genes that are not shown.
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mitochondrial respiratory chain enzyme complex I in dopaminer-
gic neurons, blocking respiratory chain electron transmission,
leading to disruption in energy metabolism and a series of
oxidative stress injuries, as well as impairing dopamine transporter
function. MPP+ causes a local increase in glutamate, which
indirectly leads to impaired mitochondrial function and acceler-
ates dopamine oxidative metabolism, increasing the production of
reactive products such as peroxides and causing oxidative
damage to dopamine neurons. Lin et al. treated human SH-SY5Y
cells with low doses of MPP+ and found a sustained increase in α-
Syn monomer levels from 0 h to 72 h after administration, which
indicated that induction of low doses of MPP+ led to the
development of pathological aggregation of α-Syn29. To verify
that the cell model for the pathological aggregation of α-Syn was
successfully constructed, we performed cellular immunofluores-
cence with two different antibodies, namely, the 5G4 antibody
and an anti-p-α-Syn antibody. The 5G4 antibody is a monoclonal
antibody that specifically binds to pathologically aggregated α-
Syn30. In 2019, Qiao et al. performed cellular immunofluorescence
experiments using the 5G4 antibody and demonstrated that
methamphetamine induction increased the aggregation of
pathological α-Syn in SH-SY5Y cells31. The anti-p-α-Syn antibody
specifically binds to α-Syn phosphorylated at serine 129. This

phosphorylation modification is found in PD patients but not
healthy people. Moreover, this phosphorylation modification has
frequently been found pathological α-Syn32–34. In 2021, Zhang
et al. performed immunofluorescence staining with sural nerve
samples obtained from PD patients and healthy individuals using
an anti-p-α-Syn antibody. Intense and bright anti-p-α-Syn anti-
body staining was observed in samples obtained from PD
patients, whereas no p-α-Syn antibody staining was observed in
samples obtained from healthy individuals35. Finally, according to
the immunofluorescence staining results obtained with these two
antibodies, we successfully constructed a cell model of α-Syn
pathological aggregation, and at the same time, we found the
appearance of α-Syn pathological aggregation 12 h after
induction.
Combining multiple bioinformatics analysis methods, we found

that the upregulated expression of the DNB gene MAPKAPK2
caused the upregulated expression of the differentially expressed
neighbouring gene SERPINE1, which blocked the production of
plasmin and impaired the activity of the autophagy–lysosomal
pathway by affecting the cellular senescence pathway. In addition,
we found that one of the genes neighbouring the DNB core gene
HSF1 was SERPINE1, and the transcription factor HSF1 was found to
bind three sites upstream of the SERPINE1 gene. Zhou et al. found

Fig. 4 Identification of DNB core genes and mRNA expression of HSF1, MAPKAPK2 and SERPINE1. a Screening of DNB core genes. TF,
transcription factor. PPI top100, the 100 genes with the highest topological analysis score in the PPI network. KEGG, the sum of the number of
DNB genes and their neighbouring genes involved in significant pathways shown after natural logarithm processing. DEG, differentially
expressed gene. DEGs in neighbouring genes, the number of differentially expressed genes in neighbouring genes after natural logarithm
processing. b, c Dynamic changes in the expression levels of HSF1, MAPKAPK2 and SERPINE1 as determined with sequencing data (b, n= 4) and
qPCR experiment (c, n= 6). d, e and f Expression levels of HSF1, MAPKAPK2 and SERPINE1 in PD patients and healthy controls in PD-related GEO
data obtained from peripheral blood (d), the substantia nigra (e) and the prefrontal cortex (f) sources. ns: no significant difference. *p < 0.05.
**p < 0.01. ***p < 0.001. ****p < 0.0001. The data are expressed as the means ± SEMs. PD: PD patients. HC: healthy controls.
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that HSF1 positively regulated the expression level of PAI-1 in
endothelial cells; hence, HSF1 theoretically can regulate the
expression of SERPINE127,28. In this study, MAPKAPK2 and HSF1
are DNB genes. DNB gene are at the core of the networks in which
the expression levels of members and the network structures
change dramatically under the predisease state, and can
distinguish between the normal state and the predisease state.
DNB genes are obtained from time sequence transcriptome data
analysis, which have dynamic characteristics. DEGs are static
results based on the comparison of two groups of gene expression
data, which can only distinguish between normal state and
disease state. In a word, DNB genes and DEGs are two different
concepts. Although MAPKAPK2 and HSF1 in this study are both
DNB genes and DEGs, some DNB genes are not DEGs, while
SERPINE1 gene is not a DNB gene. There may also be a regulatory
relationship between DNB genes and DEGs. For example, in this
study, the DNB gene HSF1 regulates the differential expression
gene SERPINE1.
The product of the MAPKAPK2 gene is MAPK-activated protein

kinase 2 (MK2). In 2008, Tobias et al.‘s in vitro culture experiments
showed that MAPKAPK2-deficient mouse dopaminergic neurons
were more resistant to neurotoxicity than wild-type neurons, and
they suggested that eliminating MK2 expression can prevent
neurodegeneration36. The product of the SERPINE1 gene is PAI-1,
one of the components of the SASP. Plasmin is a serine protease
derived from inactive plasminogen, which is activated by tissue
plasminogen activator (tPA) or urokinase plasminogen activator
(uPA). Plasmin plays a central role in fibrinolysis by dissolving
insoluble fibrin, rendering it into soluble fibrin degradation
products37. Plasmin activity is regulated by the activities of tPA
and uPA and by inhibitors of tPA and uPA, including PAI-1. In
2012, Park et al. conducted in vitro experiments and found that
plasmin degraded normal α-Syn and pathological α-Syn26. In
addition, some studies have shown that the plasma PAI-1 level in
PD patients was significantly higher than that in healthy people,
and the cognitive function of PD patients was negatively
correlated with plasma PAI-1 level38,39. In the cellular senescence
pathway, in the critical state before the pathological aggregation
of α-Syn, the upregulation of the DNB gene MAPKAPK2 led to
ZFP36L1 phosphorylation, inhibiting its activity. ZFP36L1 is
involved in posttranscriptional regulation. It binds to the ARE
(AU-rich element) sequence in the 3’-UTR of the target mRNA
through a tandem zinc finger structure, thereby promoting the
deadenylation and decapping of the target mRNA. This mRNA
modulation leads to the degradation of the polyadenylic acid tail
structure of the target mRNA, which in turn leads to the
degradation of the target mRNA and plays a role in posttranscrip-
tional regulation40. ZFP36L1 regulated the SASP by reducing the
mRNA expression of SASP components, thereby inhibiting cell
senescence. However, in the critical state, ZFP36L1 activity was
inhibited, and therefore, the expression of the neighbouring gene
SERPINE1 was upregulated, PAI-1 expression was upregulated,
plasminogen activator activity was decreased, the level of plasmin
was decreased, and α-Syn started to accumulate. Excessive
accumulation of α-Syn led to its pathological aggregation. In
addition, upregulation of PAI-1 expression triggered paracrine
senescence, which promoted cellular senescence and disrupted
autophagy‒lysosome activity, which is an important pathway by
which cells degrade toxic oligomeric α-Syn24,25. Meanwhile, we
found that multiple DNB genes (CCND1, E2F4) and differentially
expressed neighbouring genes (ATM, CDKN1A, CDK6, CCNE1) were
involved in the ATM/p53/p21/Rb pathway in the cellular
senescence pathway. The ATM/p53/p21/Rb pathway is associated
with cell cycle arrest, and we hypothesized that this pathway may
influence the pathological aggregation of α-Syn and be involved
in the development of aging-related diseases. This remains in-
depth experiments to further confirm.

The HSF1 gene encodes heat shock protein transcription factor
1 (HSF1). Normally, this transcription factor is regulated by an
inhibitory complex and remains in a latent state, and under stress,
HSF1 is transiently activated and triggers heat shock protein (HSP)
expression in response to various forms of physiological and
environmental stress. Xu et al. constructed a mutant model of SH-
SY5Y cells with the mutation of HSF1 to HSF1(+ ), which resulted
in enhanced expression of HSF1 in the absence of stress, and
found that the mutation increased the expression of HSP70 and
reduced total α-Syn levels and the toxicity induced by α-Syn in SH-
SY5Y cells41. Although upregulation of HSF1 expression was found
to reduce the toxicity induced α-Syn in this study, no studies
related to α-Syn pathological aggregation were conducted. Both
sequencing data and qPCR experimental validation showed that
the expression levels of HSF1, MAPKAPK2 and SERPINE1 were
significantly or extremely significantly upregulated at 4 h and 12 h,
the prepathological aggregation state and the pathological
aggregation state, respectively, with 0 h used as the control.
Notably, although the expression levels of HSF1 and MAPKAPK2
were significantly different between 0 h and 12 h, according to the
sequencing data, these two genes were not among the DEGs
identified in the differential expression analysis of performed
between 0 h and 12 h (Supplementary Table 1). This finding
suggests that traditional molecular biomarker methods for
distinguishing normal and disease states cannot identify these
two genes and that they can be identified only via the DNB
method. Sequencing data and qPCR experiments as well as
analysis of PD-related GEO data also demonstrated that the
expression levels of the DNB core gene HSF1 and the DNB gene
MAPKAPK2 correlated with the level of the neighbouring gene
SERPINE1 and that these three genes may be potential biomarkers
of the pathological pre-aggregation of α-Syn, while revealing that
MAPKAPK2 in peripheral blood may be a potential biomarker for
an early PD diagnosis rendered before the pathological aggrega-
tion of α-Syn. In the PD-peripheral blood dataset (with 305 PD
patients and 283 HCs), which integrated four datasets, and the
GSE99039 dataset (with 205 PD patients and 233 HCs), the
expression level of MAPKAPK2 was significantly higher in PD
patients than in HCs. However, in the other datasets, including
GSE6613, GSE72267 and the GSE100054 dataset, the expression
level of MAPKAPK2 did not differ significantly between PD patients
and HCs, which were probably caused by the small sample size of
these datasets (Fig. 4d and Supplementary Fig. 12). Finally, we
proposed a hypothetical molecular mechanism through which the
DNB genes HSF1 and MAPKAPK2 regulate the neighbouring gene
SERPINE1 at the transcriptional level and posttranscriptional level,
respectively, in the prepathological aggregation state; this
mechanism led to the upregulation of PAI-1 expression, causing
the accumulation and aggregation of α-Syn, which was not
degraded, and ultimately promoting pathological aggregation of
α-Syn (Fig. 5). Although experimental or theoretical support for
each step of the mechanism, the expression levels of these three
genes have not yet been altered to determine the effects of their
changed expression on α-Syn aggregation; therefore, the possible
molecular mechanism remains to be experimentally validated.
There are some limitations to this study. First, we used a cell

model for our studies, which, although human in origin, was
differed significantly from the course of PD pathology in humans.
Second, the analyses of the genes in this study was performed at
the theoretical level, and no subsequent causal experiments were
performed to support the conclusions obtained from these
analyses. Therefore, we will subsequently validate the findings in
a PD mouse model and collect time-series physical examination
cohort population data to verify the difference between
MAPKAPK2 expression in PD patients and HCs, and we will also
perform experiments involving gene editing to determine
whether the proposed molecular mechanisms is valid.
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In conclusion, by constructing a cell model of α-Syn patholo-
gical aggregation and using the DNB method, we detected that
4 h after induction is the critical time point before pathological
aggregation of α-Syn. The DNB gene promoted the pathological
aggregation of α-Syn through the cellular senescence pathway,
hindering the production of plasmin and inhibiting the activity of
the autophagy–lysosomal pathway. Importantly, we found that
the MAPKAPK2 expression level in peripheral blood is a potential
biomarker for early PD diagnosis, which can be rendered before
pathological aggregation of α-Syn. Finally, we proposed that the
DNB genes HSF1 and MAPKAPK2 regulated the expression of
the neighbouring gene SERPINE1, indicating that all three genes
are potential key genes that are involved in the transition to the
pathological aggregation of α-Syn.

METHODS
α-Syn pathological aggregation cell model
Human neuroblastoma cells (SH-SY5Y cells) were purchased from
Procell Life Science & Technology Co., Ltd. SH-SY5Y cells were
cultured in MEM/F12 (Gibco) containing 10% foetal bovine serum
and 1% penicillin/streptomycin, hereafter referred to marked as
SH-SY5Y medium. The cells were maintained at 37 °C in an
atmosphere of 5% carbon dioxide and 95% humidity. The
induction medium consisted of SH-SY5Y medium supplemented
with MPP+(D048, Sigma‒Aldrich) at a concentration of 5 μM. To
establish a α-Syn pathological aggregation cell model, we first
cultured SH-SY5Y cells on cell culture dishes or coverslips with SH-
SY5Y medium for 24 h. Next, we aspirated the original SH-SY5Y
medium, washed the cells with PBS, and added an equal volume
of induction medium to obtain the induced treatment group. The
control group was obtained in a similar way but the SH-SY5Y
medium was replaced with fresh SH-SY5Y medium, not induction
medium.

Immunostaining analysis
We first cultured SH-SY5Y cells with SH-SY5Y medium on
coverslips with a poly-D-lysine coating and then added induction
medium as described. The cells were fixed with 4% paraformal-
dehyde for 30 min at each induction time points (0 h, 4 h, 8 h, and
12 h, n= 4) and were then washed twice with PBS and blocked
with 3% BSA for 30 min at room temperature. To assess the
degree of pathological α-syn aggregation, we incubated the fixed
cells overnight at 4 °C with a 5G4 antibody (1:400, Merck) or an
anti-p-α-syn antibody (1:500, Abcam). The samples were then
washed with PBS and incubated at room temperature with
fluorescein isothiocyanate (FITC)-conjugated secondary antibody
(Jackson Immunology Laboratories, Inc.) or cyanidin 3 (CY3)-
conjugated secondary antibody (Jackson Immunology Labora-
tories, Inc.) for 50 min. Then, the samples were incubated for
10min at room temperature, protected from light and treated
with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI). Fluor-
escence images were acquired with a confocal microscope (Zeiss
Confocal LSM 710) after the coverslips were mounted. All images
were processed with Zeiss Zen software. The average immuno-
fluorescence intensity of the antibody in selected areas was
measured with ImageJ software.

RNA extraction and RNA sequencing
SH-SY5Y cells were treated with induction medium and collected
at the various time points after induction (0 h, 4 h, 8 h, 12 h). The
collected cells were immediately lysed with TRIzol (Beyotime), and
total RNA was prepared using an RNeasy Plus Mini Kit (Qiagen) per
the manufacturer’s instructions. A portion of the total RNA in the
cell samples was used for RNA-seq. The total RNA in each sample
was quantified and qualified with an Agilent 2100 Bioanalyzer
(Agilent Technologies) and NanoDrop spectrophotometer
(Thermo Fisher Scientific Inc.). RNA-seq libraries were prepared
with an R8.VAHTS mRNA-seq V3 Library Prep Kit for Illumina
(NR611-01, Vazyme) per the manufacturer’s instructions. High-

Fig. 5 Graphical abstract showing HSF1 and MAPKAPK2 regulating SERPINE1 expression and ultimately promoting the pathological
aggregation of α-Syn. In the prepathological aggregation state, the expression of the DNB genes HSF1 and MAPKAPK2 is upregulated,
upregulating neighbouring gene SERPINE1 at the transcriptional and posttranscriptional levels, respectively, resulting in high expression of its
product PAI-1, which inhibits plasminogen activator activity and thus reducing plasmin production, preventing α-Syn degradation, and
leading to the accumulation and aggregation of α-Syn. When the accumulation reaches a certain level, excess normal α-Syn accumulates,
leading to pathological aggregation; that is, α-Syn enters a state of pathological aggregation. The figure was partly generated by adapting
Servier Medical Art pictures provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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throughput sequencing was performed using an Illumina NovaSeq
6000 (Novo Gold Bioinformatics, Ltd.). The amount of data per
sample was 6 G in four parallel samples per time point. The
concentration of the other portion of the total RNA was measured
with a NanoDrop spectrophotometer and quickly reverse tran-
scribed into cDNA using HiScript II Q Select RT SuperMix in a qPCR
kit (R232-01, Vazyme). The cDNA was stored at −20 °C for
subsequent use in qPCR experiments. Six parallel experiments
were established per time point.

DEG identification
DESeq2 (version 1.30.1) was used to identify differentially
expressed genes (DEGs) between different stages. Genes in which
differences in expression were associated with a p.adj value <0.05
and a fold change > 0.3 were identified as DEGs42.

Clustering
We used hierarchical clustering to cluster the expression profiles
of DEGs at different time points and determine the general
expression of DEGs at each time point. We simultaneously used a
more noise-robust soft clustering method (R package: Mfuzz) to
cluster DNB gene expression profiles and first-order neighbouring
gene (hereafter referred to as neighbouring genes) expression
profiles according to time trends. The clustering hyperparameters
were set to 4 and 916.

KEGG pathway enrichment analysis
To gain insight into the biological functions of DEGs and DNB
genes in the cells and their regulatory relationships with other
genes, we used Kobas (version 3.0) and the KEGG Pathway
database to perform KEGG pathway enrichment analysis and
subsequent in-depth studies into DEGs and DNB genes and their
neighbouring genes. The KEGG pathways were identified on the
basis of a p.adj value < 0.05 indicating a significantly enriched
pathways in this study.

Theoretical basis of the DNB method
The DNB method can be used to characterized a cell state before
it undergoes a critical transition from the normal state into the
pathological state, which in this case is the state of α-Syn43. In the
critical transition state, network gene expression undergoes
dramatic fluctuations, and DNB biomolecules are at the core of
these networks. DNB biomolecules were recognized when the
following three statistical conditions were satisfied:

1. The SDin of the genes in the DNB group increased markedly,
where SDin represents the standard deviation or coefficient
of variation;

2. The PCCin of genes in the DNB group increased sharply,
where PCCin represents the Pearson’s correlation
coefficient; and

3. The PCCout declines rapidly, where PCCout represents the
Pearson’s correlation coefficient between any member in
the DNB group and any other non-DNB biomolecule;

The three statistical conditions re necessary conditions for
phase transition in biological systems. A quantitative analysis of
the variables in the networks that undergo dramatic fluctuations
may indicate early warning signals of critical transitions in the
system.

Single-sample landscape entropy (SLE) algorithm
The SLE is a specific algorithm based on DNB method theory44. It is
used to explore dynamic differences between normal and
predisease states and for identifying local network-based entropy,
producing an SLE score that characterizes the statistical

perturbations attributed by each treatment group sample to a
given set of control group samples. Specifically, the SLE requires
that a number of control group samples are first defined, and
then, the following steps are performed:
[step 1] Use the STRING database to map genes to protein‒

protein interaction (PPI) networks (or other template networks) to
form the global network NG.
[step 2] Extract each local network from the global network NG

such that each local network NX (X= 1, 2, 3,…, K) is centred on the
gene gx. Suppose that there are M first-order neighbouring genes
of gene gx in the gx-local network, that is, g1x, g2x, g3x, …, gMx. If
there are K genes in the global network NG, then there is a total of
K local networks.
[step 3] For each local network NX (X= 1, 2, 3,…, K) at time

point t, based on n control samples {s1(t), s2(t), …, sn(t)}, calculate
the local network entropy Hn(x, t); i.e.,

Hnðx; tÞ ¼ � 1
logM

XM

i¼1

pni ðtÞlogpni ðtÞ (1)

with

pni ðtÞ ¼
jPCCnðgxi ðtÞ; gxðtÞÞjPM
j¼1 jPCCnðgxj ðtÞ; gxðtÞÞj

(2)

where PCCnðgxi ðtÞ; gxðtÞÞ represents Pearson’s correlation coeffi-
cient for the central gene gx and a neighbouring gene gxi based on
n control samples. In Eq. (1), the superscript x indicates that the
local network is centred at gx, the subscript n denotes the number
of samples and the constant M represents the number of
neighbouring genes in the local network NX. In Eq. (2), The
symbols gx(t) and gxi ðtÞ represent the expression of genes gx and
gxi at time point t, respectively.
[step 4] The newly added sample scase(t), which is a treatment

group individual, is mixed with n control group samples. Based on
n+ 1 mixed samples {s1(t), s2(t),…, sn(t), scase(t)}, calculate the local
network entropy Hn+1(x,t); i.e.,

Hnþ1ðx; tÞ ¼ � 1
logM

XM

i¼1

pnþ1
i ðtÞlogpnþ1

i ðtÞ (3)

In Eq. (3), the definition of pnþ1
i is similar to that in Eq. (2), but in

Eq. (3) the correlation PCCnþ1ðgxi ðtÞ; gxðtÞÞ is based on n+ 1 mixed
samples.
[step 5] Calculate the differential entropy ΔHn(x, t) between Hn(x,

t) and Hn+1(x,t); i.e.,

ΔHn x; tð Þ ¼ ΔSDðx; tÞjHnþ1ðx; tÞ � Hnðx; tÞj (4)

with

ΔSDðx; tÞ ¼ jSDnþ1ðx; tÞ � SDnðx; tÞj (5)

where SDn(x, t) and SDn+1(x, t) are the standard deviations of the
expression of the centre gene gx based on n control samples {s1(t),
s2(t), …, sn(t)} and n+ 1 mixed samples {s1(t), s2(t), …, sn(t), scase(t)},
respectively. The differential entropy ΔHn(x, t) between Hn(x, t) and
Hn+1(x, t) represents differences caused by the newly added sample
scase(t) from the treatment group. In other words, the local entropy
Hn(x, t) based on n control samples {s1(t), s2(t), …, sn(t)},
Hn+1(x, t) is compared with that based on n+ 1 mixed samples
{s1(t), s2(t), …, sn(t), scase(t)}, which indicates the perturbation caused
by the addition of single sample scase(t) to local network NX. In
addition, to account for gene expression fluctuations, the differential
standard deviation ΔSD(x, t) is regarded as the weight coefficient.
[step 6] Calculate the weighted sum of ΔH(x) for all local

networks; i.e.,

ΔH tð Þ ¼ 1
K

XK

x¼1

ΔH x; tð Þ (6)
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where constant K is the number of all genes. In Eq. (6), ΔH(x)
indicates the overall effect caused by the addition of the
treatment group sample scase(t) and is therefore referred to as
the global SLE score, hereafter the SLE score, of the global network
NG. Similarly, ΔHn(x, t) in Eq. (4) is the local SLE score of the local
network NX, which is centred on gene gx.
When the system approaches the vicinity of the critical point,

the DNB biomolecules exhibit significant collective fluctuations. In
a local network with DNB biomolecules represented as nodes,
Pearson’s correlation coefficients PCCnþ1ðgxi ðtÞ; gxðtÞÞ becomes
more similar or are equalized when the system is in a critical state,
resulting in an increase in the local SLE score ΔH(x) in Eq. (4). In
addition, ΔSD(x, t) in Eq. (6) increases accordingly, which
contributes to the increase in the global SLE score ΔH(t).
Therefore, the SLE score can provide an early warning signal of
an impending critical state transition. When the global SLE score
ΔH(t) reaches a peak value at a certain time point, the time point is
considered to be indicative of the critical state (Supplementary
Fig. 1).

PPI network analysis
PPI network analysis was performed by importing the DNB gene
list into the STRING database (version 11.0). We used Cytoscape
software (version 3.7.1) to export the adjacency matrix for
visualization and applied the CytoHubba plugin to perform a
topological analysis, in which the node genes were ranked on the
basis of their properties in the network, and then, the 100 genes
with the highest rankings were visualized21.

Transcription factor annotation
AnimalTFDB (v3.0) is a database of 125,135 TFs and 80,060
transcription cofactors that are classified and annotated at the
genome-wide level for 97 species, with various functions, such as
transcription, and prediction of transcription factor-binding sites.
In this study, we used human the TF database (HumanTFDB), an
independent web interface, to annotate DNB genes to facilitate
the analysis of the network regulatory relationships involving DNB
genes45.

Confirmation of DNB core genes
The criteria we used to identify DNB core genes were: (1) TF
annotation of DNB genes, enabling selection of genes with a
transcription factor identity; (2) the 100 DNB mostly highly ranked
genes in the PPI analysis were selected; (3) KEGG functional
enrichment analysis of DNB genes and their neighbouring genes
in which each gene was given an attribute; then, the number of
genes enriched in a significant KEGG pathway was determined,
and DNB genes with the most DNB gene attributes and all their
neighbouring genes were selected; (4) differentially expressed
genes; and (5) DNB genes with a higher number of DEG-identity
genes among their neighbouring genes were selected.

Identification of transcription factor-binding sites
The UCSC database contains genome assembly and annotation
data for a large number of vertebrates and model organisms46. In
this study, SERPINE1 in the hg38 version of the human reference
genome was searched in the UCSC database. This gene was
located on the chr7:101,127,104-101,139,247 in the genome. The
sequence from the start site to 2000 bp upstream of this gene,
chr7:101,125,104-101,127,103, was searched and downloaded. The
JASPAR database is an open source database of transcription
factor-binding site information that is reported in the form of
position frequency matrices and TF flexibility models based on
recorded DNA-binding preference information for transcription
factors in six different groups of organisms, and this database can
be used to predict the binding regions of transcription factors to

sequences47. In this study, we searched the JASPAR database for
the transcription factor HSF1 and identified the binding site of this
transcription factor in the 2000 bp sequence upstream of
SERPINE1.

Quantitative PCR (qPCR)
The HSF1, MAPKAPK2 and SERPINE1 primer pairs are listed in
Supplementary Table 5. The β-actin gene was used as the
reference gene for qPCR analysis. Reagents for qPCR were
obtained from Takara Biotechnology (DRR096A; Dalian, China).
Relative expression was calculated using the following formula:
relative expression= 2−ΔΔCt; the relative expression was normal-
ized based on the expression level of the samples 0 h after
induction48.

The GEO database
We searched a blood microarray dataset in the GEO database
using the keywords “PD”, “blood”, and “Homo sapiens” and
ultimately selected the GSE6613, GSE72267, GSE99039 and
GSE100054 databases, which included information on 305 PD
patients and 283 healthy controls (HCs) in total. Detailed
information on the datasets is provided in Supplementary
Table 6. We downloaded the raw data and platform information
of these datasets and then annotated the probe ID after
preprocessing the raw data. The common genes were merged
into four expression matrices, and the batch effect among them
was removed. The raw data of these datasets were processed
through the affy package to read the.cel file and RMA algorithm
for background correction and data normalization. Then, we
normalized four gene expression matrices, and the interbatch
difference was removed using the remove batch effect function of
the limma package. The boxplots and two-dimensional PCA plots
before and after removing the batch effect are shown in the
Supplementary Figures. After normalization, the median expres-
sion values of the samples from the four datasets were at the
same level, and the PCA plot showed that the difference among
them was decreased, indicating that the merged expression
matrix was appropriate for use in further analysis.
We then collected two PD transcriptome datasets consisting of

brain sample data in the GEO database: the GSE20292 dataset
(with 11 PD patients and 18 HCs) and the GSE68719 (with 29 PD
patients and 44 HCs). The GSE20292 dataset samples, sequenced
using the Affymetrix Human Genome U133 Array platform, had
been obtained from the substantia nigra in the brain. The
GSE68719 dataset samples, sequenced using the Illumina HiSeq
2000 platform, were obtained postmortem from the prefrontal
cortex area (BA9). Furthermore, we collected two transcriptome
datasets with information on other α-Syn-associated diseases in
the GEO database: the GSE150696 dataset (with 12 dementia with
Lewy bodies (DLB) patients and 9 HCs) and the GSE199258 dataset
(with 19 multiple system atrophy patients and 19 HCs). The
GSE150696 dataset samples, sequenced using the Affymetrix
Human Transcriptome Array 2.0 platform, were obtained post-
mortem from the prefrontal cortex area (BA9). The GSE199258
dataset samples, sequenced using the Illumina HiSeq 2500
platform, were obtained from cerebellar white matter.

Statistical analysis
The number of parallel experiments is shown in the corresponding
figure note. The data are depicted as means ± SEMs and were
analysed using an unpaired Student’s t-test. A P-value <0.05 was
defined as statistically significant. All graphs and statistical
calculations were performed using GraphPad Prism (Version
8.3.0) and R (version 4.0.4).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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