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a b s t r a c t 

Making time-series forecasting in a robust way is a difficult task only based on the observed data of a non- 

linear system. In this work, a neural network computing framework, the spatiotemporal information conver- 

sion machine (STICM), was developed to efficiently and accurately render a forecasting of a time series by 

employing a spatial-temporal information (STI) transformation. STICM combines the advantages of both the 

STI equation and the temporal convolutional network, which maps the high-dimensional/spatial data to the 

future temporal values of a target variable, thus naturally providing the forecasting of the target variable. 

From the observed variables, the STICM also infers the causal factors of the target variable in the sense of 

Granger causality, which are in turn selected as effective spatial information to improve the robustness of time- 

series forecasting. The STICM was successfully applied to both benchmark systems and real-world datasets, 

all of which show superior and robust performance in time-series forecasting, even when the data were per- 

turbed by noise. From both theoretical and computational viewpoints, the STICM has great potential in prac- 

tical applications in artificial intelligence (AI) or as a model-free method based only on the observed data, 

and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine 

learning. 
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. Introduction 

It is still difficult to render forecasting of a nonlinear dynamical

ystem based on time-series data due to its complicated nonlinear-

ty and insufficient information regarding future dynamics. Actually,

reat efforts have been devoted to solving this challenging problem

1–3] . A number of methods, including statistical regression ( e.g. , au-

oregressive integrated moving average (ARIMA) [4] , robust regression

5] ), exponential smoothing [ 6 , 7 ], and machine learning ( e.g. , long-

hort-term-memory (LSTM) network [ 8 , 9 ]), were utilized in forecast-

ng unknown states [10–13] . However, most of them cannot make

atisfactory predictions regarding short-term time series due to insuf-

cient information. To solve this problem, the auto-reservoir neural

etwork (ARNN) [14] ) was developed by using the semi-linearized

patial-temporal information (STI) transformation equation [ 14 , 15 ],

hich transforms high-dimensional information into temporal dynam-
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cs of any target variable, thus effectively extending the data size. How-

ver, this approach does not fully explore the nonlinearity of the STI

quation from the observed data, which is essential for accurately pre-

icting many complex systems. In addition, few existing approaches

ake spatial and temporal causal interactions of high-dimensional time-

eries data into consideration, which can compensate for insufficient

ata and provide reliable information to predict a complex dynamical

ystem. 

Under the condition that the steady state of a high-dimensional dy-

amical system is contained in a low-dimensional manifold, which is

ctually satisfied for most real-world systems, the STI transformation

quation has theoretically been derived from delay embedding the-

ry [16–18] . This equation can transform the spatial information of

igh-dimensional data into the temporal information of any target vari-

ble, thus equivalently expanding the sample size. Based on the STI

ransformation, the randomly distributed embedding (RDE) method was
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Fig. 1. High dimensional time series forecasting based on delay embedding scheme. (a) For a to-be-predicted/target variable 𝑦 selected from the high- 

dimensional observables { 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 } , a temporal vector 𝒀 𝑡 is constructed through a delay embedding scheme. The temporal vector 𝒀 𝑡 is corresponding to 

an observed spatiotemporal matrix [ 𝑿 

𝑡 − 𝑤 , 𝑿 

𝑡 − 𝑤 +1 , … , 𝑿 

𝑡 ] via a nonlinear function 𝐹 . (b) By inferring the causal relations and selecting the effective variables, the 

forecasting performance is considerably improved. Note that the mapping 𝐹 is from a matrix [ 𝑿 

𝑡 − 𝑤 , 𝑿 

𝑡 − 𝑤 +1 , … , 𝑿 

𝑡 ] to a vector 𝒀 𝑡 . 
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roposed to predict the one-step-ahead value from high-dimensional

ime-course data by separately constructing multiple STI maps (or

rimary STI equations) to form the distribution of the predicted

alues [15] . Our recent auto-reservoir computing framework ARNN

14] achieves multistep-ahead forecasting based on a semi-linearized

TI transformation; however, the nonlinear features and spatiotempo-

al causal relations of the observed high-dimensional variables have not

et been exploited, which restricts the forecasting performance in the

ense of robustness and accuracy. 

On the other hand, a temporal convolutional network (TCN)

19] was recently reported to outperform canonical recurrent neural

etworks (RNNs) [20–22] , such as the LSTM network [ 8 , 9 ], and the

ated recurrent units (GRU) [23] , across a diverse range of sequence

odelling tasks and datasets. Compared with RNNs, the TCN possesses

dvantages, including a longer effective memory length, a flexible re-

eptive field size, stable gradients, a low memory requirement for train-

ng, variable-length inputs, and parallelism [19] . Besides, the TCN em-

loys dilated convolution, which enables an exponentially large recep-

ive field, to handle long sequences. However, the traditional TCN does

ot fully reveal the causal relations among high-dimensional variables

nd cannot make accurate multistep-ahead forecasting without future

nformation/labels. 

In this study, we propose a novel framework, i.e. , spatiotemporal in-

ormation conversion machine (STICM), to achieve accurate and robust

ultistep-ahead forecasting with high-dimensional data, and explore

he underlying causal relations among high-dimensional variables. The

entral idea is to represent both primary and conjugate STI equations in

n autoencoder form ( Figs. 1 and 2 ) by exploiting the advantages of the

ausal convolution and STI nonlinear transformation. Computationally,

he STICM includes three basic processes: (1) the embedding scheme

o reconstruct the phase space ( Fig. 1 a). (2) the STICM to realize the

TI transformation ( Fig. 2 a, b). (3) effective/causal variable selection to

orecast more accurately and robustly ( Fig. 1 b). In particular, we adopt

oth the primary and the conjugate forms of the STI equations to en-

ode (through nonlinear function 𝐹 ) and decode (through the reverse
2 
unction 𝐹 −1 ) the temporal dynamics from the high-dimensional data

 Fig. 2 a and Eq. 7 ) Through the STI equations, the STICM transforms

he spatiotemporal information of high-dimensional data to the tempo-

al/dynamical future values of a target variable. Given the time-course

ata of high-dimensional variables, the STICM trains the encoder 𝐹 and

ecoder 𝐹 −1 by taking both spatial and temporal information into con-

ideration ( Fig. 2 a, b), thus equivalently expanding the data size on the

arget variable or naturally resulting in the future values of the target

ariable 𝑦 . Moreover, by comparing the forecasting error, the STICM di-

ectly makes the Granger inference of causal factors on the target vari-

ble, which are in turn selected as the effective/spatial variables to sig-

ificantly improve the forecasting robustness and accuracy of the target

ariable. 

To validate the accuracy and robustness, STICM was applied to a se-

ies of representative mathematical models, i.e. , a 90-dimensional cou-

led Lorenz system [24] under different noise conditions. Furthermore,

he STICM was applied to many real-world datasets in this study and

redicted, e.g. (1) the daily number of cardiovascular inpatients in the

ajor hospitals of Hong Kong [ 25 , 26 ], (2) the wind speed in Japan

27] , (3) a ground meteorological dataset in the Houston, Galveston,

nd Brazoria areas [28] , (4) the population of the plankton commu-

ity isolated from the Baltic Sea [ 29 , 30 ], (5) the spread of COVID-19

n the Kanto region of Japan [31] , (6) the traffic speed of multiple lo-

ations in Los Angeles [32] . The results show that the STICM achieves

ultistep-ahead forecasting that is better than the other seven exist-

ng methods in terms of accuracy and robustness. More descriptions

f each compared method are illustrated in Supplementary Section 6.

s a model-free method based only on the observed data, the STICM

ramework paves a new way to make multistep-ahead forecasting by

ncorporating the primary-conjugate STI equations into an autoencoder

orm. This framework exploits both the STI transformation and causal

onvolutional structure, thus is of great potential for practical applica-

ions in many scientific and engineering fields, and also opens a new

ay to dynamically explore high-dimensional information in machine

earning. 
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Fig. 2. Schematic illustration of the STICM framework. (a) The information flow of the STICM is similar to the autoencoder (AE) but is constrained by primary 

and conjugate STI equations. The primary STI equation represents the encoder, while the conjugate STI equation corresponds to the decoder. However, unlike AE, 

the low-dimensional/temporal code 𝑌 𝑡 is mapped by the delay embedding scheme from the time series of a target variable 𝑦 . (b) The encoder and decoder of STICM 

are implemented by a temporal convolutional network (TCN) structure and a temporal deconvolutional structure, respectively, through which the spatiotemporal 

matrix [ 𝑿 

1 , 𝑿 

2 , … , 𝑿 

𝑡 ] is input sequentially and mapped to [ 𝒀 1 , 𝒀 2 , … , 𝒀 𝑡 ] . 
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. Methods 

The detailed description of the parameters and variables in STICM

ramework are summarized in Supplementary Table 3. The default hy-

erparameters for STICM on each dataset are summarized in Supple-

entary Table 5. 

.1. Delay embedding theorem for dynamical systems 

Generally, the dynamics of a discrete-time dissipative system can be

resented as 

 

𝑡 +1 = 𝜙
(
𝐗 

𝑡 
)

(1)

here 𝜙 ∶ ℝ 

𝑛 → ℝ 

𝑛 represents a nonlinear function, whose n -

imensional variables are denoted as vector 𝐗 

𝑡 = ( 𝑥 𝑡 1 , 𝑥 
𝑡 
2 , … , 𝑥 𝑡 

𝑛 
) ′ with

ime superscript 𝑡 and vector transpose symbol “ ′ ”. The Takens’ em-

edding theorem provides the following facts [ 16 , 17 ]. 

If  ⊆ ℝ 

𝑛 is a compact attractor with the Minkowski dimension/box-

ounting dimension 𝑑, for a smooth diffeomorphism 𝜙 ∶  →  and a

mooth function ℎ ∶  → ℝ , there is a generic property that the mapping

𝜙,ℎ ∶  → ℝ 

𝐿 is an embedding when 𝐿 > 2 𝑑, that is, 

𝜙,ℎ ( 𝑋 ) = 

(
ℎ ( 𝑋 ) , ℎ ◦ 𝜙( 𝑋 ) , … , ℎ ◦𝜙𝐿 −1 ( 𝑋 ) 

)′
(2)

here symbol “ ◦ ” is the function composition operation. In particular,

etting 𝑋 = 𝐗 

𝑡 and ℎ ( 𝐗 

𝑡 ) = 𝑦 𝑡 where 𝑦 𝑡 ∈ ℝ , then the mapping above has

he following form with Φ𝜙,ℎ = Φ and (
𝐗 

𝑡 
)
= ( 𝑦 𝑡 , 𝑦 𝑡 +1 , … , 𝑦 𝑡 + 𝐿 −1 ) ′ = 𝐘 

𝑡 (3)
3 
Moreover, since the embedding is one-to-one mapping, we can also

erive its conjugate form Ψ ∶ ℝ 

𝐿 → ℝ 

𝑛 as 𝐗 

𝑡 = Φ−1 ( 𝐘 

𝑡 ) = Ψ( 𝐘 

𝑡 ) (Sup-

lementary Section 1). Here 𝐗 

𝑡 is an n -dimensional vector here, but

ometimes it is used as 𝐷-dimensional variables ( 𝐷 ≤ 𝑛 ) in this work.

he above theory can be summarized as the following spatiotemporal

nformation (STI) transformation equation: 

 

Φ
(
𝐗 

𝑡 
)
= 𝐘 

𝑡 

𝐗 

𝑡 = Ψ( 𝐘 

𝑡 ) 
(4) 

here Φ ∶ ℝ 

𝐷 → ℝ 

𝐿 and Ψ ∶ ℝ 

𝐿 → ℝ 

𝐷 are nonlinear differentiable

unctions satisfying Φ◦Ψ = 𝑖𝑑, symbol “ ◦ ” represents the function com-

osition operation and 𝑖𝑑 denotes the identity function. 

Note that to use the causal convolution framework of TCN, we let

 = [ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ] in Eq. 3 for this work with map 𝐹 ( i.e. , Eq. 7 ),

ather than 𝑋 = 𝐗 

𝑡 with map Φ. 

.2. STICM framework with STI transformation 

For each observed high-dimensional/spatial state 𝐗 

𝑡 =
 𝑥 𝑡 1 , 𝑥 

𝑡 
2 , … , 𝑥 𝑡 

𝑛 
) ′ with 𝑛 variables with 𝑡 = 1 , 2 , … , 𝑚 , a correspond-

ng delayed/temporal vector 𝐘 

𝑡 = ( 𝑦 𝑡 , 𝑦 𝑡 +1 , … , 𝑦 𝑡 + 𝐿 −1 ) ′ is constructed

or one target variable 𝑦 ( e.g. , 𝑦 𝑡 = 𝑥 𝑡 
𝑘 
) through a delay embedding

cheme with parameter 𝐿 as the embedding dimension satisfying

 > 𝐿 > 1 ( Fig. 1 a), where the symbol “ ′ ” is the transpose of a

ector. Specifically, the matrix 𝑋 of the original measurable variables
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 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 } is as follows: 

 = 

[
𝐗 

1 , 𝐗 

2 , … , 𝐗 

𝑚 
]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑥 1 1 𝑥 2 1 ⋯ 𝑥 𝑚 1 
𝑥 1 2 𝑥 2 2 ⋯ 𝑥 𝑚 2 
⋮ ⋮ ⋱ ⋮ 
𝑥 1 
𝑛 

𝑥 2 
𝑛 

⋯ 𝑥 𝑚 
𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 𝑛 ×𝑚 
(5)

Through the delay embedding scheme, the matrix 𝑌 of the target

ariable 𝑦 = 𝑥 𝑘 is 

(6) 

here 𝑌 contains the unknown/future values { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 }
n the lower-right corner (shadow area) of the target variable. It is clear

hat 𝐗 

𝑡 is a known high-dimensional/spatial vector for multiple vari-

bles at one time point 𝑡 , while 𝐘 

𝑡 is a temporal vector of one target 𝑦

t multiple time points 𝑡, 𝑡 + 1 , … , 𝑡 + 𝐿 − 1 . 
Based on the generalized Takens’ embedding theory [33] , the dy-

amics of the original system can be topologically reconstructed from

 delay embedding scheme if 𝐿 > 2 𝑑 > 0 , where 𝑑 is the Minkowski di-

ension of the attractor [ 16 , 17 ]. By combining the causal convolution

tructure and STI transformation, we developed a STICM framework,

hich provides multistep-ahead forecasting with dynamic causal infer-

nce among the observed variables on the basis of both the primary

nd conjugate STI equations ( Fig. 2 a). The known high-dimensional

ime series, i.e. , one sliding window matrix 𝑋 𝑤𝑖𝑛 = [ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ]
ith window size 𝑤 + 1 from the whole spatiotemporal matrix 𝑋 =

 𝐗 

1 , 𝐗 

2 , … , 𝐗 

𝑚 ] , is mapped to one delayed temporal vector 𝐘 

𝑡 for 𝑡 =
 , 2 , … , 𝑚 , which actually forms the following STICM-based STI equa-

ion set: 
 

𝐹 
([
𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 
])

= 𝐘 

𝑡 

𝐹 −1 
(
𝐘 

𝑡 
)
= 

[
𝐗̂ 

𝑡 − 𝑤 , 𝐗̂ 

𝑡 − 𝑤 +1 , … , 𝐗̂ 

𝑡 
] (7) 

here the first formula is the primary equation with 𝐹 ∶ ℝ 

𝑛 ×( 𝑤 +1 ) →
 

𝐿 and the second formula is the conjugate equation with 𝐹 −1 ∶
 

𝐿 → ℝ 

𝑛 ×( 𝑤 +1 ) ( Fig. 2 a), 𝐗̂ 

𝑡 is the recovered vector of 𝐗 

𝑡 . Given 𝑚

nown states 𝑿 

𝑡 ( 𝑡 = 1 , 2 , … , 𝑚 ) , there are 𝐿 − 1 future values of 𝑦 , i.e. ,

 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } in 𝐘 

𝑡 ( Fig. 1 a and Supplementary Fig. 1b).

atrix [ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ] of Eq. 7 is the known spatiotemporal in-

ormation of 𝑛 variables, and 𝐘 

𝑡 presents the temporal information of

he target variable. In Eq. 7 , the first and second equations are the pri-

ary and conjugate forms of the STI equations, respectively. The pri-

ary equation encodes one spatiotemporal matrix [ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ]
o one temporal vector 𝐘 

𝑡 , while the conjugate form decodes/recovers

he encoded temporal information 𝐘 

𝑡 to the spatiotemporal informa-

ion [ ̂𝐗 

𝑡 − 𝑤 , 𝐗̂ 

𝑡 − 𝑤 +1 , … , 𝐗̂ 

𝑡 ] . The STI equations ( Eq. 7 ) hold when some

eneric conditions are satisfied according to the delay embedding theory

 16 , 17 ]. Clearly, the properly determined function 𝐹 is the key to solv-

ng the STICM-based STI equations ( Eq. 7 ) for the high-dimensional in-

ut/matrix 𝑋 and providing the future values { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 }
f the target variable. The details of Takens’ embedding theory and the

TI equations are given in Supplementary Section 1 and Supplementary

ection 2, respectively. 

The dilated causal convolution layers are employed in the framework

f STICM ( Fig. 2 b), that is, for input series 𝑋 = [ 𝐗 

1 , 𝐗 

2 , … , 𝐗 

𝑚 ] and a

lter 𝑔 ∶ { 0 , … , 𝑘 − 1 } → ℝ , the dilated causal convolution operation

on element 𝐗 

𝑡 is defined as 

𝐗 

𝑡 
)
= 

(
𝑋 ∗ 𝑑 𝑔 

)(
𝐗 

𝑡 
)
= 

𝑘 −1 ∑
𝑖 =0 

𝑔 ( 𝑖 ) ⋅ 𝐗 

𝑡 − 𝑑⋅𝑖 (8)

here 𝑑 is the dilation factor, 𝑘 is the filter size. Dilation is thus equiv-

lent to introducing a fixed step between every two adjacent filter taps.

 larger dilation enables an output at the top level to represent a wider
4 
ange of inputs, thus effectively expanding the receptive field of a Con-

Net. In this way, we construct the network structure for encoder 𝐹 .

imilarly, we adopted an inverse dilated convolution scheme in decoder

 

−1 , which is shown in Supplementary Section 4 in detail. 

.3. STICM algorithm 

The determination of 𝐹 and 𝐹 −1 includes two main factors: 1) the

emi-supervised training scheme and 2) the effective variable selection.

his structure of STICM is capable of exploiting not only the input of spa-

ial information but also the temporally intertwined information among

he numerous variables of the complex dynamic system, thus signifi-

antly enhancing the forecasting robustness and accuracy. In this study,

ach layer of the encoder 𝐹 and decoder 𝐹 −1 is followed by the ReLU ac-

ivation function. The STICM algorithm is carried out to uncover the to-

e-predicted/future values { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } of the target 𝑦 = 𝑥 𝑘 
ith the following procedure. 

Step 1: Construct the STICM-based STI equation. Based on the de-

ay embedding scheme, we construct the delay-embedded matrix of the

arget variable 𝑦 as Eq. 6 with the columns 𝐘 

𝑡 = ( 𝑦 𝑡 , 𝑦 𝑡 +1 , … , 𝑦 𝑡 + 𝐿 −1 ) ′.
learly, vectors { 𝐘 

𝑚 − 𝐿 +2 , … , 𝐘 

𝑚 } contains the unknown/future values.

he steady state or the attractor is generally constrained in a low-

imensional space for a high-dimensional dissipative system, which

olds for most real-world systems. Assuming 𝐹 = ( 𝐹 1 , 𝐹 2 , … , 𝐹 𝐿 ) ′ and

 > 2 𝑑 where 𝑑 is the Minkowski dimension of the attractor, the pri-

ary form of the STICM-based STI equation set ( Eq. 7 ) is 

 

 

 

 

 

 

𝐹 1 
([
𝐗 

1 ]) 𝐹 1 
([
𝐗 

1 , 𝐗 

2 ]) ⋯ 𝐹 1 
([
𝐗 

𝑚 − 𝑤 , … , 𝐗 

𝑚 
])

𝐹 2 
([
𝐗 

1 ]) 𝐹 2 
([
𝐗 

1 , 𝐗 

2 ]) ⋯ 𝐹 2 
([
𝐗 

𝑚 − 𝑤 , … , 𝐗 

𝑚 
])

⋮ ⋮ ⋱ ⋮ 
𝐹 𝐿 

([
𝐗 

1 ]) 𝐹 𝐿 
([
𝐗 

1 , 𝐗 

2 ]) ⋯ 𝐹 𝐿 
([
𝐗 

𝑚 − 𝑤 , … , 𝐗 

𝑚 
])
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑦 1 𝑦 2 ⋯ 𝑦 𝑚 

𝑦 2 𝑦 3 ⋯ 𝑦 𝑚 +1 

⋮ ⋮ ⋱ ⋮ 
𝑦 𝐿 𝑦 𝐿 +1 ⋯ 𝑦 𝑚 + 𝐿 −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(9) 

In a similar form of Eq. 9 , we have the conjugate equation with 𝐹 −1 

see Supplementary Eq. 7). Clearly, by simultaneously solving both the

rimary and conjugate STICM-based STI equations, the STICM provides

 series of future values { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } , which is indeed the

 𝐿 − 1 )-step-ahead forecasting. 

Step 2: Train the STICM network. Because there are both known

nd unknown values in the delay embedding matrix 𝑌 , the STICM

s trained in a semi-supervised manner. Specifically, the nonlinear

appings 𝐹 = ( 𝐹 1 , 𝐹 2 , … , 𝐹 𝐿 ) ′are fit via a “consistently self-constrained

cheme ” simultaneously for preserving the time consistency for the

nown and unknown values, thus maintaining the integrity of 𝐹 . Ac-

ording to the framework of STICM, there are three high-level require-

ents for the network used in training. 

Due to the delay-embedding nature in the output 𝑌 (as shown in

q. 9 ), we have totally 𝑚 + 𝐿 − 3 temporally self-constrained conditions

 𝑗−1 
([
𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 
])

= 𝐹 𝑗 
([
𝐗 

𝑡 − 𝑤 −1 , 𝐗 

𝑡 − 𝑤 , … , 𝐗 

𝑡 −1 ]) (10)

here 𝑗 ∈ { 2 , 3 , … , 𝐿 } and 𝐗 

𝑡 = ( 𝑥 𝑡 1 , 𝑥 
𝑡 
2 , … , 𝑥 𝑡 

𝑛 
) ′ is a spatial sample at

ime point 𝑡 . Among conditions Eq. 10 , there are 𝑚 − 1 conditions for

he determined states and 𝐿 − 2 conditions for future values. Clearly,

hese conditions constrain the training of STICM in terms of the temporal

equence of samples. For the target variable 𝑦 , the estimated values of

ts delay embeddings in each iteration are obtained as follows 

̂
 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
𝑦̂ 1 
)
1 

(
𝑦̂ 2 
)
1 ⋯ ( ̂𝑦 𝑚 ) 1 (

𝑦̂ 2 
)
2 

(
𝑦̂ 3 
)
2 ⋯ 

(
𝑦̂ 𝑚 +1 

)
2 

⋮ ⋮ ⋱ ⋮ (
𝑦̂ 𝐿 

)
𝐿 

(
𝑦̂ 𝐿 +1 

)
𝐿 

⋯ 

(
𝑦̂ 𝑚 + 𝐿 −1 

)
𝐿 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(11) 

here ( ̂𝑦 𝑡 ) 𝑗 ( 𝑡 = 1 , 2 , … , 𝑚 + 𝐿 − 1; 𝑗 = 1 , 2 , … , 𝐿 ) is generated from the

utput of the j th sub-mapping function 𝐹 𝑗 . 
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f  
Through an auto perception procedure, the training or optimization

f STICM is accomplished through a process of minimizing a loss func-

ion with three weighted mean-squared error components 

 = 𝜆1  𝐷𝑆 + 𝜆2  𝐹𝐶 + 𝜆3  𝑅𝐸𝐶 (12)

In Eq. 12 , the first part  𝐷𝑆 is a determined-state loss from the ob-

erved/known states { 𝑦 1 , 𝑦 2 , … , 𝑦 𝑚 } of 𝑦 , and is of the following form 

 𝐷𝑆 = 

1 
2 𝑚𝐿 − 𝐿 

2 + 𝐿 

𝐿 ∑
𝑗=1 

𝑚 ∑
𝑡 = 𝑗 

((
𝑦̂ 𝑡 
)
𝑗 
− 𝑦 𝑡 

)2 
(13)

here ( ̂𝑦 𝑡 ) 𝑗 ( 𝑡 = 1 , 2 , … , 𝑚 ) is the estimation of

 𝑗 ([ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ]) , and 𝑦 𝑡 ( 𝑡 = 1 , 2 , … , 𝑚 ) is the known value of

 . Loss  𝐷𝑆 is constructed from the differences between the estimations

 ̂𝑦 𝑡 ) 𝑗 and the observed values (ground truth) 𝑦 𝑡 for all past time points

 ( 𝑡 = 1 , 2 , … , 𝑚 ) . 
In Eq. 12 , the second part  𝐹𝐶 is a future-consistency loss in terms of

he future/unknown series { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } of 𝑦 , and has form

 𝐹𝐶 = 

1 
𝐿 ( 𝐿 − 1 ) 

𝐿 ∑
𝑗=2 

𝑚 + 𝑗−1 ∑
𝑡 = 𝑚 +1 

((
𝑦̂ 𝑡 
)
𝑗 
− mean 

(
𝑦̂ 𝑡 
))2 

(14)

here mean ( ̂𝑦 𝑡 ) denotes the average of all estimated future values

f 𝑦̂ 𝑡 in Eq. 11 that corresponds to the same future time point

 ( 𝑡 = 𝑚 + 1 , 𝑚 + 2 , … , 𝑚 + 𝐿 − 1 ) . Clearly,  𝐹𝐶 is constructed from the

emporally self-constrained conditions in Eq. 10 . An intuitive under-

tanding of the future-consistency loss is that by minimizing  𝐹𝐶 , it

nsures that the outputs from different sub-mappings but correspond-

ng to the same future time point 𝑡 are identical, which preserves the

emporal consistency of the outputs at the lower right corner of the de-

ay embedding matrix 𝑌 during the training procedure. 

In Eq. 12 , the third part  𝑟𝑒𝑐 is a reconstruction loss in terms of the

onsistency of encoder and decoder, which is of the following form 

 𝑟𝑒𝑐 =∥ 𝑋 − 𝑋̂ ∥F (15)

here 𝑋 = [ 𝐗 

1 , 𝐗 

2 , … , 𝐗 

𝑡 ] , 𝑋̂ = [ ̂𝐗 

1 , 𝐗̂ 

2 , … , 𝐗̂ 

𝑡 ] , and ∥ ⋅∥F is the Frobe-

ius norm. 

Based on the integration of the above three losses, the STICM

s trained in a semi-supervised manner. The cooperation of future-

onsistency loss  𝐹𝐶 and determined-state loss  𝐷𝑆 helps to fit the

onlinear mapping 𝐹 = ( 𝐹 1 , 𝐹 2 , … , 𝐹 𝐿 ) ′. The reconstruction loss  𝑟𝑒𝑐 

uarantees the consistency of encoder and decoder. After the con-

ergence of the training process, the 𝑚 + 𝐿 − 1 to-be-predicted values

 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } can eventually be determined from the esti-

ated matrix 𝑌 , i.e. , 

 

𝑚 + 𝑖 = mean 
(
𝑦̂ 𝑚 + 𝑖 

)
= 

1 
𝐿 − 𝑖 

𝐿 ∑
𝑗= 𝑖 +1 

(
𝑦̂ 𝑚 + 𝑖 

)
𝑗 

(16)

ith 𝑖 = 1 , 2 , … , 𝐿 − 1 . The implementation of the deconvolution layer

n decoder 𝐹 −1 is similar and provided in Supplementary Section 4 and

upplementary Fig. 1c. 

Step 3: Identify the causal/driving variables. 

To decrease the noisy effect and boost the robustness on the forecast-

ng results, we choose the most relevant variables to the target variable

rom the high-dimensional data. Given a time series of 𝑛 -dimensional

amples ( 𝑥 𝑡 1 , 𝑥 
𝑡 
2 , … , 𝑥 𝑡 

𝑛 
) ′𝑡 =1 , 2 , …, 𝑚 , we calculate the forecasting errors be-

ween the case “with an observable 𝑥 𝑖 ” and the case “without 𝑥 𝑖 ”. Then,

ne can determine whether 𝑥 𝑖 is a causal/effective factor of the target

ariable 𝑦 in the sense of Granger causality, thus improving the fore-

asting performance by selection or deletion of the variable. 

First, a reference RMSE 𝜖𝑟 of the model trained by the original 𝑛 -

imensional input was calculated as the normalized difference between

riginal and predicted values, i.e. , 

𝑟 = RMSE ( 𝑦, 𝑦̂ |Λ) = 

√ ∑𝑚 + 𝐿 −1 
𝑡 = 𝑚 ( 𝑦 𝑡 − 𝑦̂ 𝑡 |Λt ) 2 

𝐿 − 1 
(17)
5 
here 𝑦 𝑡 denotes the original value of the target variable, 𝑦̂ 𝑡 denotes the

redicted one, and Λt denotes the past terms of 𝑋 

𝑡 . Subsequently, by

xcluding 𝑥 𝑖 , 𝑖 = 1 , 2 , … , 𝑛 from the original data, the model is trained

ased on an ( 𝑛 − 1) -dimensional input with a test RMSE 𝜖𝑖 , 

𝑖 = RMSE 
(
𝑦, 𝑦̂ |Λ∖ 𝑥 𝑖 ) = 

√ ∑𝑚 + 𝐿 −1 
𝑡 = 𝑚 

(
𝑦 𝑡 − 𝑦̂ 𝑡 |Λt ∖ 𝑥 𝑡 

𝑖 

)2 
𝐿 − 1 

(18)

here Λt ∖ 𝑥 𝑡 
𝑖 

denotes the past terms of 𝑋 

𝑡 without 𝑥 𝑡 
𝑖 
. Then, a causality

rror 𝜖𝑖,𝑟 is obtained as 

𝑖,𝑟 = 𝜖𝑖 − 𝜖𝑟 (19)

hich denotes the influence of Granger causality from variable 𝑥 𝑖 to 𝑦 .

fter ranking all 𝜖𝑖,𝑐 ( 𝑖 = 1 , 2 , … , 𝑛 ), we selected the spatial information

f top 𝑞 causal/effective variables as new input data, which are most

elevant to the target variable 𝑦 . By excluding irrelevant variables or

oisy information, the final STICM is trained based on such a lower-

imensional input and enhances the forecasting performance in terms

f both accuracy and robustness. The schematic illustration of this step

an be found in Supplementary Fig. 1a. The time complexity analysis of

his step is presented in Supplementary Section 7. The other details of

he STICM algorithm are provided in Supplementary Section 3. 

. Results 

.1. Performance of the STICM on Lorenz models 

To demonstrate the basic idea of the STICM method, the synthetic

ime-series datasets under multiple noise levels were generated from a

enchmark nonlinear system, i.e. , the following 90-dimensional coupled

orenz model ( 𝑛 = 90 ) [24] 

̇
 ( 𝑡 ) = 𝐺 ( 𝐗 ( 𝑡 ) ; 𝑃 ) (20)

here 𝑃 is a parameter vector of the function set 𝐺( ⋅) with 𝐗 ( 𝑡 ) =
 𝑥 𝑡 1 , 𝑥 

𝑡 
2 , … , 𝑥 𝑡 90 ) 

′. The specific Lorenz system is presented in Supplemen-

ary Section 5. 

.1.1. Noise-free situation 

We first apply the STICM to a noise-free Lorenz system ( Eq. 20 ) with

 = 50 and 𝐿 − 1 = 15 , i.e. , taking a time series of 50 steps as known

nformation/input, and making a 15-step-ahead forecasting /output for

he target variables. As demonstrated in Fig. 3 , the STICM predicted

he future values for both the single-wing ( Fig. 3 c, the observed and

o-be-predicted series distributed in a single wing of the attractor) and

ross-wing ( Fig. 3 d, the observed and to-be-predicted series distributed

n two different wings of the attractor) cases. By randomly selecting

hree target variables 𝑦 1 , 𝑦 2 and 𝑦 3 from { 𝑥 1 , 𝑥 2 , … , 𝑥 90 } , the forecast-

ng performances of the STICM on three-dimensional cases are presented

n Fig. 3 a and b. Notably, the predicted values (the red curves) for each

arget variable were obtained by the one-time forecasting; that is, the

TICM provides an efficient way to obtain a whole horizon (15 steps)

f future information. Clearly, on the basis of the 90-dimensional short-

erm time series, the STICM inferred the top 30 effective/causal vari-

bles of the targets and significantly improved the performance in both

ccuracy and robustness by applying the forecasting of the target with

hese 30 variables ( Fig. 3 c and d, Tables 1 and S1). Note that the training

nd forecasting of the STICM are based only on the observed data. 

Here and below, to validate the effectiveness of the STICM, its fore-

asting performance was compared with seven representative meth-

ds, i.e. , the LSTM network [ 8 , 9 ], Holt’s exponential smoothing (HES)

 6 , 7 ], autoregression (AR) [34] , autoregressive integrated moving aver-

ge (ARIMA) [4] , radial basis function network (RBFN) [35] , multiview

mbedding (MVE) [36] , and support vector regression (SVR) [ 37 , 38 ].

dditionally, it is from Table 1 that the STICM achieved better per-

ormances compared with other time-series forecasting methods on the
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Fig. 3. The forecasting performance of the STICM on the high-dimensional Lorenz system. In noise-free or noisy situations, the time-series data were generated 

on the basis of the 90D coupled Lorenz system ( Eq. 20 ). We randomly selected three targets 𝑦 1 , 𝑦 2 and 𝑦 3 among variables { 𝑥 1 , 𝑥 2 , … , 𝑥 90 } . By applying the STICM 

with parameter 𝑚 = 50 ( i.e. , the length of the input series is 50), the 15-step-ahead forecasting ( 𝐿 − 1 = 15 ) were performed for 𝑦 1 , 𝑦 2 and 𝑦 3 , respectively. (a) The 

forecasting of the 3D system of 𝑦 1 , 𝑦 2 and 𝑦 3 in the single-wing situation. (b) The forecasting of the 3D system in the cross-wing situation. (c) The forecasting of 𝑦 1 in 

a noise-free case of the single-wing situation. (d) The forecasting of 𝑦 1 in a noise-free case of the cross-wing situation. (e) The forecasting of target 𝑦 1 in a noisy case 

(with noise strength 𝜎 = 0 . 5 ) of the single-wing situation. (f) The forecasting of 𝑦 1 in a noisy case (with noise strength 𝜎 = 0 . 5 ) of the cross-wing situation. For each 

case, the forecasting are carried out based on all variables (the left panels of (b), (c), (d), and (e)) and based on the top 30 causal variables (the right panels of (b), 

(c), (d), and (e)). The PCC network (each edge is weighted with Pearson correlation coefficient) and causal relation network (each edge is weighted with Granger 

causality index) of the six selected effective variables in the noisy-free case (g) and (h), respectively. These two networks in the noisy case (with noise strength 

𝜎 = 0 . 5 ) are illustrated in Supplementary Fig. 4. (i) The relation network of the six variables from the Lorenz equations. 

6 
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Table 1 

Comparison of the performance among eight forecasting methods . 

Dataset Metric a 
Methods 

STICM MVE AR ARIMA HES LSTM RBFN SVR 

Lorenz system 

(noise-free) 

RMSE 0.111 1.498 1.546 1.685 1.564 0.806 1.798 2.024 

PCC 0.997 0.731 -0.66 0.297 -0.637 0.992 -0.419 0.193 

Lorenz system with noise 

( 𝜎 = 0 . 5 ) 
RMSE 0.307 1.607 1.486 1.382 1.565 1.62 1.86 2.026 

PCC 0.989 0.711 -0.66 -0.339 -0.644 -0.15 0.29 0.218 

Cardiovascular inpatients RMSE 0.228 0.968 1.071 1.065 1.391 1.104 0.994 0.804 

PCC 0.974 0.467 0.351 0.366 -0.157 0.21 0.244 0.865 

Plankton density RMSE 0.548 1.669 1.441 0.776 2.408 3.647 3.728 2.84 

PCC 0.917 0.522 0.359 0.781 -0.372 0.377 -0.503 0.412 

Wind speed RMSE 0.908 2.632 1.348 3.28 5.144 2.243 1.985 2.384 

PCC 0.942 0.895 -0.28 0.817 0.417 -0.189 0.873 0.321 

Traffic speed RMSE 0.66 2.248 2.344 3.135 2.728 4.597 6.676 3.544 

PCC 0.901 0.359 0.044 0.162 -0.434 0.204 -0.181 0.265 

Japan Covid-19 

transmission 

RMSE 0.608 2.311 2.553 4.148 2.819 4.031 3.48 6.16 

PCC 0.9 0.012 0.049 -0.037 0.356 0.016 0.405 0.422 

Meteorological data RMSE 0.811 0.935 1.065 1.029 1.267 1.154 1.278 1.165 

PCC 0.728 0.324 0.015 0.093 -0.171 0.067 -0.053 0.341 

a The performance metrics include the values of the root-mean-square error (RMSE) and the Pearson correlation coefficient 

(PCC). The RMSE was normalized by the standard deviation of the real data. 
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oise-free cases of the 90-dimensional Lorenz system; that is, the accu-

acy of the STICM is the best in terms of the Pearson correlation coef-

cient (PCC) and the root mean square error (RMSE). Specifically, the

MSEs decreased from 0.804 to 0.123 and from 0.357 to 0.098 for cases

n Fig. 3 c, d, respectively. As shown in Table 1 , the STICM achieved the

mallest RMSE 0.111 in the noise-free situation, while the best record

f the other methods is 0.806. In addition, the inferred causality net-

ork among the six selected variables ( Fig. 3 h) is consistent with the

irect causal relations from the original equations ( Fig. 3 g), and fully

eveals intrinsic dynamic associations (including both direct and in-

irect causal relations) of the coupled Lorenz system comparing with

he PCC network ( Fig. 3 g). Note that the direct causal relation from

 𝑖 to 𝑥 𝑗 in Fig. 3 i is determined if 𝑥 𝑖 is one of the bases/independent

ariables of 𝑥 𝑗 in Supplementary Eq. 17. Moreover, the perfor-

ances of eight time-series forecasting methods on the datasets with-

ut effective/causal variable selection are shown in Supplementary

able 1. 

.1.2. Additive noise situation 

Second, the STICM was applied to the noisy cases of the 90D Lorenz

ystem ( Eq. 20 ) with additive white noise ( 𝜎 = 0 . 5 ) to predict the same

arget variable, while 𝑚 = 50 , and 𝐿 − 1 = 15 . Specifically, the cross-

ing case is exhibited in Fig. 3 f, and the single-wing case is presented

n Fig. 3 e. After the selection of the top 30 effective/causal variables,

he forecasting accuracy of the STICM improves significantly and is

etter than that of the other seven methods for both the single-wing

nd cross-wing cases ( Table 1 and Supplementary Table 1). Specifi-

ally, the RMSEs of our proposed method decreased from 0.368 to

.339 ( Fig. 3 e) and from 0.361 to 0.274 ( Fig. 3 f). The average RMSE

0.307) of STICM across all noisy cases is the best among all fore-

asting methods ( Tables 1 and S1). Therefore, the STICM still predicts

he future dynamics accurately when the system is perturbed by addi-

ive noise, which demonstrates the robustness property of the STICM

ramework. 

The STICM achieves satisfactory performance even with noisy data

ompared with traditional approaches because of its two characteristics,

hat is, simultaneously solving both conjugated STI equations in Eq. 7 ,

nd effective variable selection among all observables. 

.2. The application of the STICM on real-world datasets 

Predicting the future values of key variables by exploiting the rel-

vant high-dimensional information is of great importance for study-

ng complex systems forecasting potential risk. The STICM method was
7 
pplied to the following various high-dimensional real-world datasets,

nd was also compared with seven existing methods. The detailed per-

ormances of all the forecasting methods are exhibited in Table 1 . For

ach dataset, the specific settings and parameters are presented in Sup-

lementary Table 2. The description of each dataset is also provided in

upplementary Section 5. To further demonstrate the generalization of

he proposed method, the STICM is applied to the field of human pose

rediction [39] , and corresponding contents are presented in Supple-

entary Section 8 and Supplementary Table 6. 

.2.1. Cardiovascular inpatients forecasting 

The first real-world dataset contains the number series of cardiovas-

ular inpatients in major hospitals in Hong Kong and the indices se-

ies of air pollutants, i.e. , the daily concentrations of nitrogen dioxide

NO 2 ), sulfur dioxide (SO 2 ), ozone (O 3 ), respirable suspended partic-

late (Rspar), mean daily temperature, relative humidity, etc., which

ere obtained from air monitoring stations in Hong Kong from 1994 to

997 [25] . As the previous study has reported the relevance between

ir pollutants and cardiovascular inpatients [40] , the STICM was em-

loyed to predict daily cardiovascular disease admissions on the basis

f a group of air pollutants ( Fig. 4 ). Thus, for the 14-dimensional system

 𝑛 = 14 ), the known time points were set as 𝑚 = 70 (days) and the fore-

asting horizon as 𝐿 − 1 = 25 (days). By inferring and selecting the top

1 effective variables, the forecasting accuracy of the STICM increases

ignificantly and is better than that of the other methods ( Tables 1 and

1). As shown in Fig. 4 i, the STICM uncovers the causal relationship

etween the admissions of cardiovascular diseases and air pollutants,

n accordance with the literatures [41–43] . The inferred causal rela-

ions among the air pollutants also agree with the chemical reactions

Table S4). 

.2.2. Plankton density forecasting 

The STICM was then applied to a dataset collected in a long-term

xperiment with a marine plankton community isolated from the Baltic

ea from 1990 to 1997 [ 29 , 30 , 44 ], including the species abundance time

eries of herbivorous and predatory zooplankton species, several phyto-

lankton species, detritivores, and bacteria. These plankton species con-

tructed a complex food web. As shown in Fig. 4 e- 4 h, the STICM predicts

he dynamic trend of the abundances of two target species ( Cyclopoids

nd Rotifers ), with parameter settings 𝑛 = 12 (total 12 plankton species),

 = 18 (the known abundance information of 18 steps), and 𝐿 − 1 = 6
6 step-ahead forecasting). By selecting the top 8 effective variables, the

TICM achieves a higher forecasting accuracy, i.e. , RMSE = 0 . 542 and
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Fig. 4. Future state forecasting of cardiovascular admission and plankton abundance. For two periods (a)-(b) and (c)-(d), the STICM predicted the number 

of cardiovascular admissions based on the high-dimensional time series of air pollutant indices with known length 𝑚 = 70 and forecasting horizon 𝐿 − 1 = 25 . For 

two target planktons, i.e., Cyclopoids and Rotifers , the STICM predicted the dynamic change of their abundance based on the high-dimensional plankton dataset 

with known length 𝑚 = 18 and forecasting horizon 𝐿 − 1 = 6 . By selecting the top 11 and top 8 effective variables for the cardiovascular admission dataset and 

plankton abundance dataset, respectively, the forecasting accuracy of the STICM increases significantly ((b), (d), (f), and (h)). The performances of the STICM and 

other methods are compared in (a)-(h). Based on the STICM, causal networks (i) and (j) were constructed to show the regulatory relationship among cardiovascular 

admission and air pollutants and that among the plankton, respectively. 

8 
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CC = 0 . 879 for cyclopoids and RMSE = 0 . 553 and PCC = 0 . 953 for Ro-

ifers , than other methods ( Tables 1 and S1). In addition, Fig. 4 j depicts

he inferred causal network among four species, i.e., Rotifers, Cyclopoids,

ico cyanobacteria , and Protozoa . Being consistent with the original food

hain network, the causal network also contains other relations among

hese four species. For example, the links from Cyclopoids to Rotifers and

rom Rotifers to Pico cyanobacteria reveal the fact that the abundance

f predators can influence that of the preys. The link from Protozoa to

otifers reveals the competitive relation when they have the common

redators and preys. 

.2.3. Wind speed forecasting 

Wind speed is one of the weather variables with highly time-varying

haracteristics in nonlinear meteorological systems and is thus ex-

remely difficult to predict. The wind speed dataset was collected from

he Japan Methodological Agency [27] . Among the 155 wind stations

istributed all around Japan, we selected one target station near Tokyo.

s shown in Fig. 5 , the STICM predicted the dynamics of the wind

peed in the target station with parameter settings 𝑛 = 155 , 𝑚 = 64 , and

 − 1 = 26 ( Fig. 5 a and c). After inferring and selecting the 70 most

ffective variables, the forecasting accuracy of the STICM increases sig-

ificantly, as shown by the comparisons in Fig. 5 b and d. Based on the

ffective variables, the forecasting of the STICM are better than those of

he other methods ( Tables 1 and S1). Long-term forecastings were also

erformed by selecting 70 top effective variables and are provided in

ig. 5 e and f, from which the wind speed in the target station was con-

inuously predicted for a whole season (3 months). The forecastings for

ore periods are provided in Supplementary Fig. 5. The inferred causal

elations between the locations of top 50 effective variables and that

f the target station are consistent with the corresponding monsoon-

pecific wind directions ( Fig. 5 g and h). 

.2.4. Traffic speed forecasting 

The transportation system consisting of vehicles, roads and other

ransportation elements, can be considered as a high-dimensional com-

lex system [45] . Meanwhile, intelligent inspection on such a system

s of great importance to city management and development. However,

ue to the complexity of traffic dynamical systems, predicting the traf-

c flow precisely is full of challenges. STICM was applied to predict the

raffic speed (mile/h), which was based on a dataset generated from

 = 207 loop detectors in the 134-highway of California, USA. The traf-

c speed was recorded every five minutes from Mar 1 st , 2012 to Jun

0 th , 2012 [32] . In such a dynamic system, each loop detector was con-

idered as a variable by which the traffic speed detected was mainly de-

ermined by the observed values from the nearest neighbor sensors. We

elected four target sensors, which are the intersections of main roads

Target 1 is located at the intersection of San Diego Freeway and Ventura

reeway; Target 2 is located at the intersection of Hollywood Freeway

nd Ventura Freeway; Target 3 is located at the intersection of Glendale

reeway and Ventura Freeway; Target 4 is located at the intersection

f Hollywood Freeway and Harbor Freeway). Consequently, 55 nearest-

eighbor detectors of the target detector were selected to constitute a

ubsystem. By applying the STICM, the multistep forecasting ( 𝐿 − 1 = 19
ime points ahead) of four target locations/sensors were obtained based

n the neighbor 55 variables ( 𝑛 = 55 , Fig. 6 a, c, e, and g) and top 30

ffective variables ( 𝑛 = 30 , Fig. 6 b, d, f, and h) with 𝑚 = 60 time points.

ased on the effective variables, the RMSEs of the predicted traffic speed

n 19 time points significantly decreased, i.e. , from 1.757 ( Fig. 6 a) to

.852 ( Fig. 6 b) for Target 1, from 1.551 ( Fig. 6 c) to 0.536 ( Fig. 6 d)

or Target 2, from 2.207 ( Fig. 6 e) to 0.762 ( Fig. 6 f) for Target 3, and

rom 1.844 ( Fig. 6 g) to 0.489 ( Fig. 6 h) for Target 4. The forecasting

esults of the STICM are better than those of the other seven forecast-

ng methods ( Tables 1 and S1). Supplementary Movie S1 shows the dy-

amic change in the predicted traffic speed. As shown in Fig. 6 i and j,

ost of the causal/effective detectors are distributed around each target
etector. s

9 
.2.5. Japan Covid-19 transmission forecasting 

The pandemic of coronavirus disease 2019 (COVID-19) has posed

 global threat to public health. To assist public health departments

ith their strategic planning, it is important to predict the spread of

his infectious disease. The STICM provides a data-driven approach to

redict the dynamic change in daily new cases of infectious disease. As

hown in Fig. 7 , the STICM predicted the number of COVID patients

n several cities with severe epidemics in Japan [ 31 , 46 ], with param-

ter settings 𝑚 = 30 and 𝐿 − 1 = 14 . Based on all 47 districts ( 𝑛 = 47 ),
he forecasting of COVID-19 new cases of the six target districts are

rovided in Fig. 7 a (Tokyo), 7 c (Tochigi), and 7e (Gunma). After in-

erring and selecting the top 20 effective/causal districts in each tar-

et district, the STICM was predicted much more accurately than the

ther methods for the six districts ( Fig. 7 b (Tokyo), 7d (Tochigi), and 7f

Gunma)). The quantitative comparisons are provided in Tables 1 and

1. Fig. 7g presents the network of COVID-19 transmission in the

anto region, Japan. The forecasting for more districts is provided in

upplementary Fig. 3. 

.2.6. Meteorological data forecasting 

The last real-world dataset contains 72-dimensional ground mete-

rological data ( 𝑛 = 72 ) recorded per month in an area around Hous-

on, Galveston, and Brazoria [28] from 1998 to 2004. As shown in

upplementary Fig. 2, the relative humidity and geopotential height

ere accurately predicted. For each target index, the STICM was ap-

lied to make a 17-step-ahead forecasting ( 𝐿 − 1 = 17 ) based on the for-

er 𝑚 = 50 steps of the 72-dimensional data. The forecasting results

f the STICM are better than those predicted by other seven methods

 Tables 1 and S1). 

. Discussion 

Time-series forecasting is of great importance in a wide range of

eal-world applications. There are many interesting related works lever-

ging spatial information from data to enhance time-series forecasting

47–51] . In this work, we proposed the STICM framework to achieve

he multistep-ahead forecasting with causal factor inference based on

igh-dimensional time series in a robust way. Through STICM, the spa-

iotemporal information of high-dimensional observables is transformed

nto the temporal information of a target variable on the basis of the

elay embedding theory. That is, the primary STI form is an encoder

hich transforms the spatiotemporal matrix [ 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ] to

he temporal vector 𝐘 

𝑡 of a target variable by 𝐹 , while the conjugate

TI form recovers the temporal vector 𝐘 

𝑡 back to the original matrix

 𝐗 

𝑡 − 𝑤 , 𝐗 

𝑡 − 𝑤 +1 , … , 𝐗 

𝑡 ] by 𝐹 −1 . Training 𝐹 and 𝐹 −1 simultaneously in a

emi-supervised manner, the STICM solves the STI equations and makes

he forecasting highly robust, as shown in the applications. Clearly, the

ultiple future/unknown values { 𝑦 𝑚 +1 , 𝑦 𝑚 +2 , … , 𝑦 𝑚 + 𝐿 −1 } are obtained

oncurrently by the STICM, indicating that the proposed method makes

he multistep-ahead forecasting. The results of the ablation study on

raining loss ( Eq. 12 ) are shown in Supplementary Section 9 and Supple-

entary Table 7, demonstrating that all the constraints in the primary

nd conjugate STICM-based STI equations contribute to producing ac-

urate and robust time-series forecasting. Moreover, the STICM carries

ut causal inference based on Granger causality and thus identifies the

ausal/effective variables on the target variable. Causal inference en-

bles a deep understanding of the intrinsic dynamics of the complex

ystem, thus providing the interpretability of the STICM, and to a con-

iderable extent, reducing the dimension. Thus, forecasting accuracy is

nhanced by selecting the effective variables for forecasting. A series

f applications show that the STICM achieves better performance than

even traditional forecasting approaches. However, there are limitations

f Granger causality that it fails to reveal the real causality in some cases.

n the future, we will explore the causality relationship from different

erspectives to better investigate the intrinsic dynamics of a complex

ystem. 
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Fig. 5. Wind speed forecasting. The STICM predicts the wind speed of a target station around Tokyo marked by a pink star symbol. Based on the time series from 

all 155 variables (the wind speed of 155 stations) and from the selected top 70 effective variables, the STICM predicted the future wind speed for two periods ((a) 

and (c) based on all variables and (b) and (d) based on the top 70 variables) with known length 𝑚 = 64 and forecasting horizon 𝐿 − 1 = 26 . The long-term forecastings 

were performed by the STICM as in (e) and (f), which showed the robustness of the proposed method by predicting the whole season (3 months). The causal relations 

among the target station and its top 50 effective/causal stations are provided in (g) (for a wet monsoon with wind direction mainly from the southeast) and (h) (for a 

dry monsoon with wind direction mainly from the northwest) (Based on the standard map with the approval number of GS (2020) 4400 on the standard map service 

website of the Ministry of Natural Resources of the People’s Republic of China, the base map has not been modified.). 

10 
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Fig. 6. Traffic speed forecasting. Based on the 207-dimensional traffic speed dataset, the STICM predicted the traffic speed of four target locations/sensors with 

60-step known information ( 𝑚 = 60 ) and 19-step forecasting horizon ( 𝐿 − 1 = 19 ), i.e. , (a) and (b) for target 1, (c) and (d) for target 2, (e) and (f) for target 3, (g) and 

(h) for target 4, where the four target locations were marked by red star symbols in (i). By inferring and selecting the top 30 effective variables ( i.e. , the effective 

traffic speeds in 30 locations), the forecasting accuracy of the STICM significantly increases and is better than that of the other methods ((b), (d), (f), and (h)). The 

associations/causal relations among the neighboring locations/sensors are shown in (j). 

11 
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Fig. 7. Predicting the number of COVID-19 patients. Based on the time series of COVID-19 new cases of 47 districts (the left subfigures) or selected top 20 

effective districts in each target district (the right subfigures), the STICM predicts the numbers of future new cases, with 30-step known information ( 𝑚 = 30 ) and 

14-step forecasting horizon ( 𝐿 − 1 = 14 ), i.e. , (a) and (b) for Tokyo, (c) and (d) for Tochigi, (e) and (f) for Gunma. Based on the STICM, the casual network (g) of 

COVID-19 transmission in the Kanto region, Japan revealed the regulatory relationship in terms of COVID-19 spread among the districts in this region (Based on the 

standard map with the approval number of GS (2020) 4400 on the standard map service website of the Ministry of Natural Resources of the People’s Republic of 

China, the base map has not been modified.). 

12 
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11198 . 
In conclusion, the proposed STICM framework has the following

dvantages compared with traditional forecasting methods. First, the

TICM is capable of exploring the time-series data and transforming

he spatial information of high-dimensional observables into the tem-

oral information of a target variable. Second, once being trained in a

emi-supervised manner, the STICM well solves the primary and conju-

ate STI equations simultaneously (corresponding to a spatiotemporal

onvolutional autoencoder), thus making the time-series forecasting ro-

ustly even in noise-perturbed cases. Third, in practical applications,

he STICM can distinguish the effective/relevant variables, thus unveil-

ng the underlying causal mechanism (in the sense of Granger causal-

ty) among massive observables of the dynamical systems. In addition,

uilding on a solid theoretical background of the STI equations and with

he TCN causal convolution structure, the STICM opens a new way to

xplore the spatiotemporal information from high-dimensional time se-

ies, and has been validated by the applications to a variety of real-world

cenarios. 
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