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As a highly infectious disease, the reproduction number of coro-
navirus disease 2019 (COVID-19) was estimated to be as high as
6.47 in the early stage [1]. Many studies have suggested that early
interventions, such as the use of masks, social distancing, self-
isolation, quarantine and even lockdown of entire regions and
communities, are effective in containing or at least, mitigating
the spread of the virus [2]. It is thus crucial to detect the early-
warning signal of the COVID-19 outbreak so that a timely public
health strategy can be carried out to reduce the magnitude and
spread of the pandemic. However, the complex characteristics of
both biological and social systems lead to the challenge of achiev-
ing the real-time prediction of infectious disease outbreaks. Fur-
thermore, a surveillance system for such detection can be costly,
thereby resulting in the failure to detect the potential progression
of epidemics in many countries that lack adequate public health
infrastructure [3,4]. Machine learning methods have been devel-
oped in the field of forecasting [5] but generally fail to predict out-
breaks of infectious diseases when there are only limited samples.
Statistical and mathematical models have been proposed to
describe the transmission of the current COVID-19 epidemic [6],
which helps clinicians understand its spread. However, unlike time
series data prediction, an outbreak is a typical nonlinear event with
characteristics that develop from gradual change to drastic transi-
tion, thus making the prediction of a COVID-19 outbreak rather dif-
ficult. Therefore, it is of great importance to develop an effective
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model-free method for directly predicting such nonlinear events
or for detecting early-warning signals of infectious disease out-
breaks based on real-time data such as daily new cases.

The spread of COVID-19 is usually regarded as a time-
dependent nonlinear dynamical system with a tipping point at
which the system falls into a large-scale disease outbreak state
through a critical transition [7]. There is a general consensus that
the dynamic progression of the infectious disease can be described
as three stages (Fig. S1 online) [8,9], i.e,, a normal stage, a pre-
outbreak stage and an outbreak stage, where the pre-outbreak
stage is viewed as the tipping point just before the critical transi-
tion that leads to a large and possibly uncontrollable epidemic out-
break. At the pre-outbreak stage with only limited sporadic cases,
disease transmission could be controlled with appropriate mea-
sures. However, if the disease spreads continuously with no or
few containment measures, the pervasiveness of the virus and
the massive number of cases pose insurmountable difficulties for
governments, resulting in an irreversible local epidemic or even
the global pandemic. Thus, it is crucial to detect early-warning sig-
nals of epidemic disease outbreaks at the pre-outbreak stage.
Recently, we proposed the dynamic network marker (DNM) or
dynamic network biomarker (DNB) concept [10,11], which is an
extension of the critical slowing down theory to high-
dimensional systems [12]. When the dynamical system approaches
the critical point, the DNM theory suggests that a small group of
the observed variables (DNM elements) will intensively fluctuate
with high correlations and thus convey early-warning signals for
the impending critical transition by several statistical indices; that
is, the correlations between variables/elements in the DNM group
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drastically increase; and the deviations of all the DNM elements
rapidly increase in a strongly collective manner [13] (Supplemen-
tary materials Note S1 online).

In this study, on the basis of the DNM concept, a computational
method, landscape network entropy (LNE), is proposed to predict
epidemic disease outbreaks. Specifically, by exploring the dynamic
information based on a combination of a district network and high-
dimensional daily new case data, the proposed LNE method can
quantitatively characterize the spread of an infectious disease in
a district network and thus detect the early-warning signals of
COVID-19 outbreaks. Unlike the time-series prediction or tradi-
tional detection of the outbreak stage, the LNE method aims to
identify the pre-outbreak stage or critical stage that generally has
no clear abnormalities but with high potential of critical transition
into the catastrophic/nonlinear event in the near future. In partic-
ular, in contrast to traditional methods, a major feature of this
work is to exploit high-dimensional dynamic information in the
network collectively to provide reliable prediction.

LNE is a model-free method based only on the topological struc-
ture of the district network and daily new case data. In a country/
region, the geographic distribution of districts and their adjacent
information are modeled as a network, in which each node repre-
sents a district. Specifically, based on geographical and transporta-
tion information, there is an edge between two neighboring
districts in such a network, representing their adjacency and inter-
active relations. Practically, we construct the district network for a
region according to the main transportation form and the specific
geographical proximity among districts (Fig. S2 online). For exam-
ple, in the Kanto region of Japan, the main transportation of trav-
ellers is by intercity railways such as Shinkansen, Japan Railways
(JR) lines and metro systems, which serve as the main public trans-
portation system in Kanto with approximately 3.16 billion annual
passenger rides and a daily ridership of 6.31 million people. There-
fore, the district network of Kanto is constructed based on geo-
graphical proximity, with edges representing the main railways
that connect two adjacent districts. The main mode of transporta-
tion in the other 4 regions (i.e., Hubei Province of China, South
Korea, mainland Italy, and Western Europe) is similar, implying
that geographically adjacent networks are suitable. However,
among the 17 US states with severe COVID-19 epidemics, the main
interstate transportation is by air. A 17-node complete graph/fully-
connected network in which each pair of states is connected by an
edge/airline is more suitable for modeling the main mode of inter-
state transportation (Fig. S2 online). A given district network is
partitioned into many local networks. Each local network is com-
posed of a central node/district and all its first-order neighbors.
Thus, for a local network N with (L + 1) members, i.e., a central
node k and L first-order neighbors k; (i=1, 2, ---, L) (Fig. S3
online), its local LNE at time point ¢ can be calculated in terms of
the product of entropy and deviation as follows:

L
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where vector K(t) = (Mt =M+1),--- c(t—1),ct)) with ck(t)
representing the number of daily new cases reported in district k
at time point t, and M representing the length of the sliding win-

—

dow. PCC(k,'(t),ﬁ(t)) is the Pearson’s correlation coefficient (PCC)
between the central node k and its first-order neighbor k; at sam-

pling point t, and SD(K)(t)) is the standard deviation of the number
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of daily new cases for central node k at sampling point t. The speci-
fic choice of M is provided in Table S1 (online). On each day, the
mean LNE of all the local networks was taken to quantitatively
detect the early-warning signal of the critical transition from the
normal stage to the outbreak stage in a region; that is, if the LNE
index (the reciprocal of significance P-value of LNE) at time point
t is above a signicance threshold value, then time point ¢ is consid-
ered to be in the pre-outbreak stage. The calculation details of LNE,
and the specific choice of the threshold value are presented in
Supplementary materials Note S2 (online).

As a model-free method of nonlinear event prediction, the LNE
method was applied to the data of daily new cases in six regions,
i.e.,, Hubei Province of China, the Kanto region of Japan, Western
Europe, mainland Italy, South Korea, and 17 US states (Table S2
online). LNE detected the early warning signals of all six regional
COVID-19 outbreaks from both global and local perspectives. First,
the data of daily new COVID-19 cases were collected from March 2,
2020 to November 21, 2020 in ten districts around the Kanto
region of Japan. A ten-node network was built based on the geo-
graphic adjacency information of the ten districts (Fig. 1a). As pre-
sented in Fig. 1b, the first warning point, marked by a fuchsia circle,
appeared on March 21, indicating an upcoming critical transition
into the outbreak of COVID-19 thereafter, and, in fact, there was
an abrupt increase in daily new cases from March 26 (the blue
curve in Fig. 1b). The signaling point was also backed up by the
announcement that the government of Japan officially declared a
nationwide state of emergency on April 7 in response to the surge
of new COVID-19 cases. There was a signal on April 28, indicating a
possible tipping point in the opposite direction that the first wave
of the epidemic would soon be under control. After approximately
two months of fighting against the epidemic, an end to Japan’s
COVID-19 state of emergency was formally declared by the govern-
ment of Japan. However, 12 days later, another warning signal
appeared on June 8, prior to the second wave of the COVID-19 epi-
demic, and prior to the emergency reports from the government,
i.e., “Tokyo revised its COVID-19 monitoring system guidelines
on June 30” and “Tokyo raises virus alert to the highest level on
July 15 as infections resurge”. Furthermore, after the government
announced the reopening of borders on September 25 and
resumed bilateral business travel from October 7, a third warning
signal was detected on October 31, which was then validated by
the third-wave surge of daily new cases. On November 19, the
COVID-19 alert level in Tokyo was raised to the maximum again.
In addition, the early-warning signals of the COVID-19 outbreak
were also detected by the district-specific LNE index for the six dis-
tricts in the Kanto region (Fig. 1c). For these districts, the LNE
indices signal imminent disease outbreaks. For instance, in Tokyo,
the first and second signaling points (the fuchsia circles) appeared
on March 20 and June 8 earlier than those of the Kanto region, after
which the daily new cases sharply increased in this city. During the
epidemic, the dynamic change of the district network mapped with
local LNE is presented in Fig. 1d. The district-specific LNE indices
for all ten districts are shown in Fig. S4 (online).

For the 17 US states with severe epidemics, as shown in Fig. Te,
the first warning signal (the fuchsia circle mark) provided by LNE
appeared on March 8, indicating the emergence of an upcoming
COVID-19 outbreak thereafter. The state of emergency over
COVID-19 was declared on March 13. The second warning signal
was detected on May 28, before the second-wave of a significant
increase in daily new cases. On June 22, a series of restrictions were
issued on immigration to the United States, suspending most H-1B,
H-2B, and H-4 visas. The third and fourth warning signals occurred
on July 3 and October 16, which were before the events that Wash-
ington, D.C. issued a new mask mandate as cases rose sharply from
July 22, and the US government issued a border-control agreement
to help curb the spread of COVID-19 on October 19. The network
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Fig. 1. Real-time monitoring of COVID-19 spreads and outbreaks in the Kanto region of Japan and other regions. (a) A ten-node network of the Kanto region. (b) The LNE index
(the red curve) and the number of daily new cases (the blue curve) in the Kanto region. (c¢) The district-specific (local) LNE indices (the red curves) and the number of daily
new cases (blue curves) for six districts. (d) The dynamic evolution of the district-network during the epidemic. (e-i) The results of other five regions. For all the LNE indices,
the fuchsia circles represent the early warning points, which are ahead of the drastic increases in daily new cases. In the case of multiple warning points appearing within a

short period of time, the first warning signal is marked.

and state-specific LNE indices for all 17 US states are shown in
Fig. S5 (online). For Western Europe, the first warning signal
appeared on February 21 (Fig. 1f). Indeed, the warning signal was
prior to the sharp increase in daily new cases from March 3. Fur-
thermore, the signal was also before the emergency event on
March 2, when the European Commission announced the estab-
lishment of a “Coronavirus Response Team”, to coordinate the
response to the spread of COVID-19. The second warning signal
was detected on July 23 (Fig. 1f), predicting the second wave of
the epidemic 12 days later. On August 4, Paris made mask-
wearing compulsory for pedestrians outdoors in the city and
extended the area several times over the following weeks. The
local LNE indices for all 10 countries in Western Europe are shown
in Fig. S6 (online). Furthermore, for the COVID-10 outbreaks in
South Korea (Fig. 1g and Fig. S7 online), mainland Italy (Fig. 1h
and Fig. S8 online), and Hubei Province, China (Fig. 1i and Fig. S9
online), the warning points provided by LNE are all ahead of the
abrupt increase in the daily new cases. The warning signals were
also backed up by the emergency events officially released by the
governments. In addition, LNE predicted the surge of COVID-19
cases in the local areas of Heilongjiang Province (Fig. S10 online)
and Shijiazhuang City (Fig. S11 online), both of which had typical
sporadic bursts in China in January 2021. More details on predict-

ing the COVID-19 outbreaks are provided in Supplementary mate-
rials Note S3 (online).

The LNE index can not only predict the COVID-19 outbreaks but
also characterize the criticality of the dynamic spread of seasonal
influenza. We collected historical longitudinal outpatient records
of influenza from clinics distributed in 23 wards in Tokyo, Japan,
between January 1, 2016 and March 31, 2020. To profile influenza
transmission in the city, a 23-node network is constructed accord-
ing to the actual locations of the 23 wards and their adjacency rela-
tionships (Fig. 2a). As shown in Fig. 2b, early-warning signals were
detected by LNE for seasonal outbreaks of influenza from
2016 to 2020. For each influenza epidemic later developing into
a massive outbreak, the LNE index is sensitive and increases signif-
icantly at least 3 weeks (i.e., the lead time) before the increase in
outpatient counts, indicating the emergence of the critical transi-
tion into an epidemic. The dynamic evolution of the city network
during an annual influenza outbreak is presented in Fig. 2c. More
details of the prediction of influenza outbreaks are presented in
Supplementary materials Note S4 (online).

Based on the LNE method, a web tool is developed to facilitate
the identification of the tipping point or the pre-outbreak stage
during the dynamic process of disease spread (Fig. 2d, www.rp-
computationalbiology.cn/monitor). Based on this web tool, we
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Fig. 2. Real-time monitoring of seasonal influenza outbreaks for 23 wards in Tokyo, Japan, between 2016 and 2020. (a) A 23-node city network of Tokyo. (b) The annual
monitoring results of Tokyo for 2016-2017,2017-2018, 2018-2019, and 2019-2020. The red curve represents the LNE index, and the blue curve shows the weekly number of
clinic visits caused by influenza. The fuchsia circle represents the first signaling point, which occurs before the sharp increase in the number of clinic visits. The x-axis
represents a period spanning from the 17th week (the first week in May) to the 60th or 61st week (the last week in March). The y-axis is the average number of weekly clinic
visits. (¢) The dynamic evolution of the city network during the influenza outbreak of 2017-2018. (d) An illustration of the web tool for the real-time monitoring of infectious

disease outbreaks.

enabled the real-time monitoring function to detect early-warning
signals to the outbreaks of infectious diseases, including COVID-19
and influenza, in seven regions. In each region, both the global and
local LNE indices were provided. More details of the web tool were
provided in Supplementary materials Note S5 (online).

Epidemic models have provided rich prospective information
on disease transmission. Through literature and information min-
ing, we collected the basic reproduction number Ry, which is an
important and critical parameter in well-studied epidemic models,
reflecting the transmission strength of a virus [14,15]. As shown in
Fig. S12 (online), the dynamic change in LNE and that of the basic
reproduction number Ry were compared. The signal point of LNE
(i.e., the significant change point of LNE with significance, where
P < 0.05) almost corresponds to the change in Ro; that is, there
are signals from LNE when Ry is approximately 1. In the early per-
iod in the United States, there was no obvious relation between the
LNE signal and the R, values, which may be caused by the fact that
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the number of reported cases was inaccurate because of the lack of
test kits. Theoretically, the basic reproduction number Ry is the
dominant eigenvalue of the next-generation matrix [14] and thus
Ro =1 corresponds to the bifurcation point of the nonlinear
disease-transmission dynamical system |[15], which can be quanti-
fied by the LNE. Therefore, the proposed LNE method can also pro-
vide early-warning signals for Ry = 1 before Ry > 1 or before the
critical state transition from a stable fixed point (Fig. S12 online).
More details were shown in Supplementary materials Note S6
(online).

To illustrate how the specific topological structures of the dis-
trict networks affect the warning performance, we applied the
LNE method to a different district-network structure for each
region and show the results in Fig. S13 (online). For example, no
signal was detected for Hubei Province with a fully-connected net-
work, while false positive signals were observed for the 17 US
states under a geographically adjacent network structure (see
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Supplementary materials Note S7 online for more details). Time-
window entropy is also presented for the single-point outbreak
scenarios without any geographical structure in Supplementary
materials Note S8 and Fig. S14 (online).

In summary, the LNE method requires information only from
geographic district networks and high-dimensional data of daily
new cases. As a model-free and data-driven method, LNE requires
neither feature selection nor a model/parameter training proce-
dure. It performed well in predicting the COVID-19 and seasonal
influenza outbreaks (Figs. 1, 2, and Table S2 online). The first sig-
naling point predicted by the LNE index is ahead of an abrupt
increase in the daily new cases, providing appropriate timing for
implementing a proactive strategy to control the spread of infec-
tious diseases. Some signaling points indicate the tipping point
with the opposite direction at which the epidemic will soon be
under control. The applications and analyses in this study have
shown that by incorporating the high-dimensional dynamic infor-
mation of district networks, LNE can accurately detect the pre-
outbreak stages. Therefore, LNE is potentially useful in practical
real-time monitoring of public health management strategies.
The source codes are publicly available at https://github.com/
zhongjiayuna/LNE_Project. Data and materials used in this study
are presented in Supplementary materials Note S9 (online).
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