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The dynamical model of a nonlinear wave is governed by a partial differential equation which is
a special case of the b-family equation. Its traveling system is a singular system with a singular
straight line. On this line, there exist two degenerate nodes of the associated regular system.
By using the method of dynamical systems and the theory of singular traveling wave systems,
in this paper we show that, corresponding to global level curves, this wave equation has global
periodic wave solutions and anti-solitary wave solutions. We obtain their exact representations.
Specially, we discover some new phenomena. (i) Infinitely many periodic orbits of the traveling
wave system pass through the singular straight line. (ii) Inside some homoclinic orbits of the
traveling wave system there is not any singular point. (iii) There exist periodic wave bifurcation
and double anti-solitary waves bifurcation.

Keywords : Bifurcation; solitary wave; periodic wave; singular system; nonlinear wave equation.

1. Introduction

Many authors have studied the b-family equation.

ut − uxxt + (b + 1)uux = buxuxx + uuxxx. (1)

When b = 2, Eq. (1) becomes the CH equation
formulated by Camassa and Holm [1993], showing
that there are peakons in the equation. Boyd [1997]
found coshoidal waves in the CH equation. Con-
stantin and Escher [1998] discovered wave breaking
phenomenon in the CH equation. Constantin and
Strauss [2000] proved the stability of peakons for the
CH equation. Reyes [2002] studied the integrability
of the CH equation. Johnson [2002] discussed the
CH equation and related models for water waves.

When b = 3, the b-equation reduces to the DP
equation given by Degasperis and Procesi [1999].

Lundmark and Szmigielski [2003, 2005] gave an
inverse scattering method for computing the n-
peakon solutions of the DP equation and obtained
concrete expressions of the 3-peakon solutions.
Chen and Tang [2006] confirmed that the DP equa-
tion has kink-like waves.

The solutions of the b-equation were investi-
gated numerically for some values of b by Holm and
Staley [2003]. For arbitrary b > 1, Guo and Liu
[2005] proved that Eq. (1) has periodic cusp waves
with explicit expressions. Guha [2007] presented an
Euler–Poincaré formalism of the DP equation.

To investigate the bifurcation of the peakon
waves, Liu and Qian [2001] proposed a generalized
CH equation

ut + 2kux − uxxt + au2ux = 2uxuxx + uuxxx.

(2)
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Similarly, to study the change of peakons,
Wazwaz [2006, 2007] suggested a generalized DP
equation

ut − uxxt + 4u2ux = 3uxuxx + uuxxx (3)

and another type of b-family equation

ut − uxxt + (b + 1)u2ux = buxuxx + uuxxx. (4)

Since the CH and DP equations possess com-
plex structures and properties, many pioneers were
interested in their modified forms [Eqs. (2)–(4)].
Tian and Song [2004] presented physical explana-
tion for Eq. (2). Shen and Xu [2005] studied the exis-
tence of some traveling waves for Eq. (2). Denoting
c as the constant wave speed of traveling waves, for
some special values of c, the explicit traveling wave
solutions were searched for Eqs. (2) and (3). When
c = 1, Khuri [2005] obtained a singular wave solution
composed of triangular functions for Eq. (2). When
c = 1 and c = 2 respectively, Wazwaz [2007] gave 11
explicit traveling wave solutions consisting of trian-
gular functions or hyperbolic functions for Eq. (2),
and Liu and Ouyang [2007] obtained a peakon solu-
tion formed of hyperbolic functions for Eq. (2). He
et al. [2008a] employed the bifurcation theory to get
some solutions for Eq. (2). When a = 3, Liu and
Liang [2011] studied some nonlinear waves and their
bifurcations for Eq. (2). When c = 5/2, Wazwaz
[2007] got nine exact solutions for Eq. (3). Besides,
Liu and Ouyang [2007] gave a peakon solution for
Eq. (3). Zhang et al. [2007] employed the bifurca-
tion method of dynamical systems to show the exis-
tence of some nonlinear waves for Eq. (2). Wang and
Tang [2008] obtained the exact solutions for Eq. (2)
when c = 1

3 and c = 3 respectively, and gave two
explicit solutions for Eq. (3) when c = 1

4 and c = 4
respectively. Yomba [2008a, 2008b] presented two
methods to find the explicit traveling wave solutions
for Eqs. (2) and (3). He et al. [2008b] utilized the
method of dynamical systems to give some exact
solutions for Eq. (3). Liu and Tang [2010] investi-
gated the bifurcations of periodic wave solutions for
Eqs. (2) and (3).

When the wave speed c = 2+b
2 , Wazwaz [2007]

obtained two soliton solutions for Eq. (4). When b >
1, Liu [2010] studied the coexistence of multifarious
exact solutions for Eq. (4). When b �= 0,−1,−2,
Chen et al. [2016] studied the periodic waves and
their limit forms for Eq. (4). When b > 1, Yang
et al. [2018] studied the existence and bifurcation
of peakons for Eq. (4) of high order.

In this paper, we consider the case of b = 0 in
Eq. (4), that is, the equation

ut − uxxt + u2ux = uuxxx. (5)

Using the qualitative analysis and bifurcation
method of dynamical systems (see [Li & Chen, 2007,
2013; Li et al., 2016; Liu & Yan, 2013] for instance),
we discovered some interesting properties which are
rarely seen in the literature.

This paper is organized as follows. In Sec. 2,
we derive the traveling wave system of Eq. (5) and
investigate its bifurcations in phase portraits. In
Sec. 3, we calculate the exact representations for
solitary wave solutions and periodic wave solutions.
In Sec. 4, a short conclusion is given.

2. Bifurcations of Phase Portraits
for the Traveling Wave System
of Eq. (5)

In this section, we describe traveling wave system
and study its bifurcations of phase portraits for
Eq. (5). Let ξ = x − ct. Substituting u = ϕ(ξ) into
Eq. (5), and integrating once, we have

(ϕ − c)ϕ′′ = g − ϕ +
1
3
ϕ3 +

1
2
(ϕ′)2, (6)

where g is an integral constant.
Equation (6) is equivalent to the planar dynam-

ical system

dϕ

dξ
= y,

dy

dξ
=

g − ϕ +
1
3
ϕ3 +

1
2
y2

ϕ − c
, (7)

with the first integral

y2

ϕ − c
− 1

3
ϕ2 − 4

3
cϕ + 2(1 − c)c ln |ϕ − c|

+
2(3g − 3c2 + c3)

3(ϕ − c)
= h. (8)

Clearly, system (7) is a singular nonlinear traveling
wave system of first class as defined in [Li & Chen,
2007] and [Li, 2013] with a singular straight line
ϕ = c.

In order to find the exact solutions of sys-
tem (7), we next assume that c = 1. Thus, sys-
tem (7) becomes

dϕ

dξ
= y,

dy

dξ
=

g − ϕ +
1
3
ϕ3 +

1
2
y2

ϕ − 1
, (9)
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with the first integral

H(ϕ, y) =
y2 − 1

3
ϕ3 − ϕ2 +

4
3
ϕ + 2g − 4

3
ϕ − 1

= h.

(10)

We study the associated regular system of sys-
tem (9) as 



dϕ

dτ
= y(ϕ − 1),

dy

dτ
= g − ϕ +

1
3
ϕ3 +

1
2
y2,

(11)

where dτ = dξ
ϕ−1 for ϕ �= 1.

Notice that both systems (9) and (11) own the
same first integral as (10). But, these two systems
define different vector fields. On the left side of the
straight line ϕ = 1, the direction of the vector field
defined by (9) is just inverse with the direction of
the vector field defined by (11). The straight line
ϕ = 1 is a solution of the first equation in system
(11), but is not a solution of system (9).

To investigate the equilibrium points of sys-
tem (11), we write that f(ϕ) = ϕ3 − 3ϕ + 3g. If
ϕe is a real zero of f(ϕ), then system (11) has the
equilibrium point Ee(ϕe, 0).

For given parameter g, we will utilize the fol-
lowing notations:

σ1 =
1
2
(12g + 4

√
9g2 − 4)

1
3 , when g ≥ 2

3
, (12)

σ2 =

√
4 − 9g2

−3g
, when |g| ≤ 2

3
, (13)

σ3 =
1
2
(−12g + 4

√
9g2 − 4)

1
3 , when g <−2

3
,

(14)

α =




2 cos
[
1
3
(π + arctan σ2)

]
, when 0< g≤ 2

3
,

√
3, when g = 0,

2 cos
[
1
3
arctan σ2

]
, when −2

3
≤ g < 0,

1
σ3

+ σ3, when g < −2
3
,

(15)

β =
1
2
(−α +

√
3(4 − α2)), when |g| <

2
3
, (16)

γ = − 1
σ1

− σ1, when g ≥ −2
3
, (17)

α∗ = −2α − 3, when g <
2
3
, (18)

β∗ = −2β − 3, when |g| <
2
3

(19)

and

y0 =

√
2
(

2
3
− g

)
, when g <

2
3
. (20)

Thus, the following conclusions hold:

(i) When g < −2
3 , f(ϕ) has only one real zero

point ϕ = α.
(ii) When g = −2

3 , f(ϕ) has two real zero points
ϕ = α = 2, β = γ = −1.

(iii) When −2
3 < g < 2

3 , f(ϕ) has three real zero
points ϕ = α, β, γ.

(iv) When g = 2
3 , f(ϕ) has two real zero points

ϕ = α = β = 1, γ = −2.
(v) When g > 2

3 , f(ϕ) has only one real zero point
ϕ = γ. For 6 > g > 2

3 , write

σ4 =

√
60g − 36 − 9g2

3g − 10
, (21)

α1 = −1 + 4 cos
[
1
3
(π + arctan σ4)

]
, (22)

β1 =
1
2
(−3 − α1 +

√
45 − 6α1 − 3α2

1) (23)

and

γ1 =
1
2
(−3 − α1 −

√
45 − 6α1 − 3α2

1). (24)

Let M(ϕe, ye) be the coefficient matrix of the
linearized system of system (11) at an equilibrium
point Ee(ϕe, ye) and J(ϕe, ye) = det M(ϕe, ye).
Then we have

J(ϕe, 0) = −(ϕe − 1)2(ϕe + 1),

J(1,∓y0) = y2
0.

(25)

By the theory of planar dynamical systems (for
instance, see [Li, 2013]), we know that the dis-
tributions and properties of equilibrium points of

1950098-3



July 9, 2019 16:27 WSPC/S0218-1274 1950098

Z. Li & R. Liu

(a) g < − 2
3 (b) g = − 2

3 (c) − 2
3 < g < 2

3

(d) g = 2
3 (e) 6 > g > 2

3 (f) g ≥ 6

Fig. 1. Bifurcations of phase portraits of system (11).

system (11) are as follows:

(1) When g < −2
3 , system (11) has three equilib-

rium points (α, 0) and (1,∓y0). (α, 0) is a saddle
and (1,−y0) is a stable degenerate node, while
(1, y0) is an unstable degenerate node.

(2) When g = −2
3 , system (11) has a double equi-

librium point (−1, 0) and a simple equilibrium
point (2, 0) and (1,∓2

√
6

3 ). (2, 0) is a saddle
point; (−1, 0) is a cusp and (1,−2

√
6

3 ) is a stable
degenerate node, while (1, 2

√
6

3 ) is an unstable
degenerate node.

(3) When −2
3 < g < 2

3 , system (11) has five sim-
ple equilibrium points (γ, 0), (β, 0), (α, 0), and
(1,∓y0). (γ, 0) is a center; (β, 0) and (α, 0) are
two saddles and (1,−y0) is a stable degener-
ate node, while (1, y0) is an unstable degenerate
node.

(4) When g = 2
3 , system (11) has a high-order equi-

librium point (1, 0) and a center at (−2, 0).
(5) When g > 2

3 , system (11) has a simple singular
point (γ, 0) which is a center.

From the above discussion, we obtain the bifur-
cations of phase portraits of system (11) as shown
in Figs. 1(a)–1(f).

Corresponding to the phase portraits given by
Figs. 1(a)–1(f), when h varies from −∞ to ∞,
the curves defined by H(ϕ, y) = h in (10) are
changed. Figures 2–6 show all possible cases for
−∞ < g < ∞.

Remark 1. Notice that for the regular system (11),
on the left side of the straight line solution ϕ =
1, the directions of all orbits are anti-clockwise
because (1,−y0) is a stable degenerate node, (1, y0)
is an unstable degenerate node. But, for the singular

(a) h ∈ (−∞, hα) (b) h = hα (c) h ∈ (hα,∞)

Fig. 2. The changes of the curves defined by H(ϕ, y) = h when −∞ < g < − 2
3 .
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(a) h ∈ (−∞,− 20
3 ) (b) h = hα = − 20

3 (c) − 20
3 < h < 7

3

(d) h = hβ = hγ = 7
3 (e) h > 7

3

Fig. 3. The changes of the curves defined by H(ϕ, y) = h when g = − 2
3 .

(a) h ∈ (−∞, hα) (b) h = hα (c) hα < h < hβ

(d) h = hβ (e) hβ < h < hγ (f) h ≥ hγ

Fig. 4. The changes of the curves defined by H(ϕ, y) = h when − 2
3 < g < 2

3 .

(a) h ∈ (−∞,− 5
3 ) (b) h = hα = − 5

3 (c) − 5
3 < h < hγ = 4

3 (d) h ≥ 4
3

Fig. 5. The changes of the curves defined by H(ϕ, y) = h when g = 2
3 .
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(a) h ∈ (−∞, hγ) (b) h ∈ [hγ ,∞)

Fig. 6. The changes of the curves defined by H(ϕ, y) = h
when 2

3 < g < ∞.

system (9), on the left side of the straight line solu-
tion ϕ = 1, the directions of all orbits are clockwise
by the vector fields defined by system (9).

Therefore, we emphasize that in Figs. 2(a),
2(b)–5(a), 5(b), the direction of vector fields for the
closed curves passing through the singular straight
line ϕ = 1 is clockwise. Thus, these curves in
Figs. 2(a)–5(a) give rise to global periodic orbits
of system (9). In Figs. 2(b)–5(b), the closed curves
passing through the singular straight line ϕ = 1
are homoclinic orbits of system (9). Of course, in
Fig. 4(d) the closed curve is a homoclinic orbit of
system (9) too.

3. Exact Solutions of Eq. (5)

In this section, we will derive the exact solutions of
Eq. (5). From (10) we see that

y2 = h(ϕ − 1) +
1
3
ϕ3 + ϕ2 − 4

3
ϕ − 2g +

4
3
. (26)

Thus, by using the first equation of system (9),
we obtain∫ ϕ

ϕ0

ds√
s3 + 3s2 + (3h − 4)s − 6g + 4 − 3h

=
1√
3
ξ.

(27)

By calculating (27), we can obtain all exact
solutions.

3.1. Periodic wave solutions
and bifurcation

For given g ∈ (−∞,∞), we use the notations of α,
β and γ as (15)–(17), and let

hα = H(α, 0), hβ = H(β, 0), hγ = H(γ, 0).
(28)

From Figs. 2–6, we see the following facts:

(i) If we write

hρ =




hγ , when g >
2
3
,

−5
3
, when g =

2
3
,

hα, when g <
2
3
,

(29)

and let h ∈ (−∞, hρ), then in the curves defined
by H(ϕ, y) = h there exist global families of
periodic orbits of system (9).

(ii) If −2
3 < g < 2

3 and hβ < h < hγ , or g = 2
3

and −5
3 < h < 4

3 , then in the curves defined by
H(ϕ, y) = h there exist local families of peri-
odic orbits of system (9).

On the ϕ–y plane, the periodic orbits possess
expression

y2 =
1
3
(r1 − ϕ)(r2 − ϕ)(ϕ − r3), (30)

where

r3 ≤ ϕ < r2, (31)

r1 = −1 −
3
√

2δ2

3 3
√

δ∗
+

3
√

δ∗
3 × 3

√
2
, (32)

r2 = −1 +
(1 − i

√
3)δ2

3 × 3
√

22 3
√

δ∗
− (1 + i

√
3) 3
√

δ∗
6 × 3

√
2

, (33)

r3 = −1 +
(1 + i

√
3)δ2

3 × 3
√

22 3
√

δ∗
+

(−1 + i
√

3) 3
√

δ∗
6 × 3

√
2

, (34)

δ0 =
√

729(−5 + 3g + 3h)2 + (−21 + 9h)3, (35)

δ1 = −270 + 162g + 162h, (36)

δ2 = −21 + 9h (37)

and

δ∗ = 2δ0 + δ1. (38)

Thus along the periodic orbits, the integral equa-
tion (27) changes into∫ ϕ

γ3

ds√
(r1 − s)(r2 − s)(s − r3)

=
1√
3
ξ. (39)
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Completing the integration and solving ϕ in the
integral equation (39), we obtain the periodic wave
solution

u(x, t, g, h) = r3 + (r2 − r3)sn2(Ωξ, k), (40)

where

Ω =
√

r1 − r3

2
√

3
, (41)

ξ = x − t (42)

and

k2 =
r2 − r3

r1 − r3
. (43)

Remark 2. When 2
3 < g < 6 and h = 0, it follows

that

r1 = α1, r2 = β1 and r3 = γ1. (44)

Thus we have

u(ξ, g, 0) = γ1 + (β1 − γ1)sn2(ηξ, k0), (45)

where

η =

√
α1 − γ1

12
(46)

and

k2
0 =

β1 − γ1

α1 − γ1
. (47)

From (45) we have

lim
g→ 2

3
+0

u(ξ, g, 0) = u1(ξ), [see (51)]. (48)

This implies that an anti-solitary wave is a
bifurcation from a periodic wave when g → 2

3 + 0.
The evolution of wave profiles of u(ξ, g, 0) is given
in Fig. 7.

3.2. Anti-solitary wave solutions
and bifurcations

Now, we derive anti-solitary wave solutions as
follows.

(1) When g = 2
3 , on ϕ–y plane, the homoclinic orbit

[see Fig. 5(b)] owns expression

y2 =
1
3
(1 − ϕ)2(ϕ + 5) for −5 ≤ ϕ < 1. (49)

Along the homoclinic orbit, Eq. (27) changes into∫ ϕ

−5

1
(1 − s)

√
s + 5

ds =
1√
3
|ξ|. (50)

Solving (50) for ϕ, we obtain the anti-solitary wave
solution

u1(ξ) = ϕ = 1 − 6 sech2

(
ξ√
2

)
. (51)

(2) When |g| < 2
3 , on the ϕ–y plane, the two

homoclinic orbits [see Figs. 4(b) and 4(d)] have
expressions

y2 =
1
3
(α − ϕ)2(ϕ − α∗) for α∗ ≤ ϕ < α (52)

and

y2 =
1
3
(β − ϕ)2(ϕ − β∗) for β∗ ≤ ϕ < β. (53)

According to (52), Eq. (27) reduces to∫ ϕ

α∗

1
(α − s)

√
s − α∗

ds =
1√
3
|ξ|. (54)

Solving (54) for ϕ, we get anti-solitary wave solution

uα(ξ, g) = ϕ = α − 3(α + 1)sech2

(
1
2
√

α + 1 ξ

)
.

(55)

(a) g = 2
3 + 10−1 (b) g = 2

3 + 10−3 (c) g = 2
3 + 10−5

Fig. 7. The evolution of wave profiles of u(ξ, g, 0) when g → 2
3 + 0.
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Via (53), Eq. (27) becomes∫ ϕ

β∗

1
(β − s)

√
s − β∗

ds =
1√
3
|ξ|. (56)

Solving (56) for ϕ, we get another anti-solitary wave
solution

uβ(ξ, g) = ϕ = β − 3(β + 1)sech2

(
1
2

√
β + 1ξ

)
.

(57)

(3) When g = −2
3 , on the ϕ–y plane, the homoclinic

orbit [see Fig. 3(b)] owns the expression

y2 =
1
3
(2 − ϕ)2(ϕ + 7) for −7 ≤ ϕ < 2. (58)

Along the homoclinic orbit, Eq. (27) changes into∫ ϕ

−7

1
(2 − s)

√
s + 7

ds =
1√
3
|ξ|. (59)

Solving (59) for ϕ, we get the anti-solitary wave
solution

u2(ξ) = ϕ = 2 − 9 sech2

(√
3

2
ξ

)
. (60)

(4) When g < −2
3 , on the ϕ−y plane, the expression

of homoclinic orbit [see Fig. 2(b)] is the same as
for (52). Therefore, the expression of anti-solitary
wave solution is the same as for (55).

From the expressions of anti-solitary waves, we
have the following limits:

(1) When g → −2
3 − 0, we have

lim
g→− 2

3
−0

uα(ξ, g) = u2(ξ). (61)

(2) When g → −2
3 + 0, we have

lim
g→− 2

3
+0

uα(ξ, g) = u2(ξ) (62)

and

lim
g→− 2

3
+0

uβ(ξ, g) = −1. (63)

When g → −2
3+0, the evolution of wave profiles

of uα(ξ, g) and uβ(ξ, g) is given in Fig. 8.
(3) When g → 2

3 − 0, we have

lim
g→ 2

3
−0

uα(ξ, g) = u1(ξ) (64)

and

lim
g→ 2

3
−0

uβ(ξ, g) = u1(ξ). (65)

When g → 2
3 − 0, the evolution of wave profiles

of uα(ξ, g) and uβ(ξ, g) is given in Fig. 9.

To sum up, we have proved the following two
theorems:

Theorem 1. Consider the following three paramet-
ric conditions:

(1) For given g ∈ (−∞,∞), h ∈ (−∞, hρ);
(2) For given g ∈ (−2

3 , 2
3 ), h ∈ (hβ , hγ);

(3) For given g = 2
3 , h ∈ (−5

3 , 4
3).

If one of the three conditions holds, then Eq. (5) has
the family of periodic wave solutions as (40).

(4) When g → 2
3 + 0, an anti-solitary wave is

bifurcated from a periodic wave [see (48) and
Fig. 7].

Theorem 2. For given g and ξ = x − t, Eq. (5)
has the following anti-solitary wave solutions and

(a) g = − 2
3 + 10−1 (b) g = − 2

3 + 10−3 (c) g = − 2
3 + 10−5

Fig. 8. The evolution of wave profiles of uα(ξ, g) and uβ(ξ, g) when g → − 2
3 + 0.

1950098-8



July 9, 2019 16:27 WSPC/S0218-1274 1950098

Bifurcations and Exact Solutions in a Nonlinear Wave Equation

(a) g = 2
3 − 10−1 (b) g = 2

3 − 10−3 (c) g = 2
3 − 10−5

Fig. 9. The evolution of wave profiles of uα(ξ, g) and uβ(ξ, g) when g → 2
3 − 0.

bifurcations:

(1) If g = 2
3 , then Eq. (5) has only one anti-solitary

wave solution u = u1(ξ) as in (51).
(2) If |g| < 2

3 , then Eq. (5) has two anti-solitary
wave solutions u = uα(ξ, g) and u = uβ(ξ, g) as
in (55) and (57).

(3) If g = −2
3 , then Eq. (5) has only one anti-

solitary wave solution u = u2(ξ) as in (60).
(4) If g < −2

3 , then Eq. (5) has a unique anti-
solitary wave solution whose expression is the
same as with uα(ξ, g) in (55).

(5) g = −2
3 is a parametric value of double anti-

solitary waves bifurcation [see (62) and (63)
and Fig. 8].

(6) g = 2
3 is not only the parametric value of peri-

odic wave bifurcation, but also that of double
anti-solitary waves bifurcation [see (48), (64),
(65) and Figs. 7 and 9].

4. Conclusion

In this paper, we have investigated the expressions
and bifurcations of anti-solitary traveling waves and
periodic traveling waves [Eq. (5)], when wave speed
equals to 1, because the corresponding traveling
system (9) of Eq. (5) is a singular system with
the singular straight line ϕ = 1 and on this line
there exist two nodes of the associated regular sys-
tem (11). Therefore, there exist no peakon and com-
pacton solutions of Eq. (5). There exist smooth anti-
solitary wave solutions and smooth periodic wave
solutions of Eq. (5). Specially, we discover some new
phenomena. (i) Infinitely many periodic orbits of
the traveling wave system pass through the singu-
lar straight line. (ii) Inside some homoclinic orbits of
the traveling wave system there is no singular point.

(iii) There exist periodic wave bifurcation and dou-
ble anti-solitary waves bifurcation.
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