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Abstract: Many studies have been carried out for early diagnosis of complex diseases by finding ac-
curate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-
throughput technologies provides unprecedented rich information to characterize various disease geno-
types and phenotypes in a global and also dynamical manner, which significantly accelerates the study of
biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that dis-
tinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of
data measurement. However, many of them suffer from low coverage and high false-positive rates or high
false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties,
network biomarkers (or module biomarkers) attract much attention and also achieve better performance
because a network (or subnetwork) is considered to be a more robust form to characterize diseases than
individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease
samples from normal samples, and they generally cannot ensure to identify predisease samples due to their
static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex
network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of
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biomarkers) has been developed, which is different from traditional static approaches, and the DNB is
able to distinguish a predisease state from normal and disease states by even a small number of samples,
and therefore has great potential to achieve “real” early diagnosis of complex diseases. In this paper,
we comprehensively review the recent advances and developments on molecular biomarkers, network
biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases
considering a small number of samples and high-throughput data (or big data). Detailed comparisons of
various types of biomarkers as well as their applications are also discussed. C© 2013 Wiley Periodicals, Inc.
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1. INTRODUCTION

Evidence suggests that there is usually a drastic change during disease progression, which results
in the critical transition from a normal/stable state to a disease state of a living organism.1–5

Therefore, as shown in Figure 1A, disease progression can generally be expressed by three
stages, that is, a normal/stable state, a predisease state, and a disease state. A normal/stable
state is a relatively “healthy” stage that includes the chronic inflammation period or the stable
period in which the disease is under control, whereas a predisease state is actually the limit of
the normal/stable state just before the critical transition. At this predisease stage, the state is
considered to be reversible to the normal/stable state if an appropriate treatment is performed,
and thus is unrobust. However, if the system moves over the critical point to the disease state,
it becomes very difficult to be reversed to the normal/stable state even by advanced medical
treatment. Therefore, it is important to distinguish the predisease state from the normal and
diseased ones (or achieve early diagnosis) so as to take the prevention action at appropriate
timing, which saves not only the human life but also medical resources. In the present study, we
simply use a “normal state” to represent a “normal/stable state.”

On the other hand, a biomarker is objectively measured and evaluated to indicate nor-
mal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention.6 Specifically, a disease biomarker is an indicator to distinguish the disease state
from the normal state, and its value is correlated with the disease-associated specificity, sensitiv-
ity, traceability, stability, repeatability, and reliability.7–9 The research of biomarkers has already
been one of the central topics in biological and medical fields. Translational and clinical research
fundamentally depends on specific and accurate biomarkers. Discovery and identification of in-
novative biomarkers are also valuable and crucial for the successful development and validation
of novel therapeutics. In particular, recent rapid advance of high-throughput technologies pro-
vides unprecedented rich information to characterize genotypes and phenotypes of diseases in a
global and also dynamical manner, which significantly accelerates the study of biomarkers from
both theoretical and clinical perspectives. Molecular biomarkers (e.g., genes, RNAs, proteins,
and metabolites) are widely adopted in clinical practices due to the simplicity of measurement
and implementation, for example, prostate-specific antigen (PSA),10–12 BRCA mutations for
breast cancer,13, 14 and expression profiles (such as serum protein electrophoresis) for detect-
ing monoclonal gammopathies.15 However, molecular biomarkers generally suffer from low
coverage and high false-positive rates (or even high false-negative rates) due to complications
and variations of genetic, epigenetic, and environment factors in the initiation and progres-
sion process of diseases, which seriously limit their further clinical applications to diagnosis
and prognosis. To overcome those difficulties, network biomarkers (or module biomarkers)16, 17

attract much attentions and also achieve better performance because a network (or subnetwork)
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Figure 1. Disease states and biomarkers. (A) Three stages during disease progression, that is, a normal/stable
state, a predisease state and a disease state. A normal/stable state is a relatively healthy stage including the
chronic inflammation period or the stable period during which the disease is under control, whereas a predisease
state is the limit of the normal/stable state just before the critical transition. At this stage, the predisease state
is considered to be reversible to the normal/stable state if appropriately treated. However, if the system passes
over the critical point to the disease state, it usually becomes irreversible to the normal/stable state. (B) Three
types of biomarkers, that is, traditional molecular biomarkers, recent developed network biomarkers, and newly
developed dynamical network biomarkers (DNBs). (C) Main purposes of the three types of biomarkers. Both
molecular and network biomarkers are indicators on the disease state, whereas the DNBs signal the predisease
state. (D) Major features of the three biomarkers. Clearly, both molecular and network biomarkers are static
measurements on the disease, whereas DNBs are dynamical measurements on the predisease, thus, providing
the early-warning signals for the predisease state. In this paper, a “normal state” means a “normal/stable state”
for the purpose of simplicity.

is considered to be a more robust form to characterize diseases than individual molecules. But,
both molecular and network biomarkers mainly distinguish disease samples from normal sam-
ples, which generally per se hardly identify predisease samples due to their static nature, thereby
lacking ability to early diagnosis, as shown in Figure 1B–D. Unlike these traditional static ap-
proaches, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of
biomarkers)18, 19 has been developed on the basis of nonlinear dynamical theory and complex
network theory. The DNB is able to fundamentally distinguish a predisease state from normal
and disease states even by a small number of samples, and therefore has great potential to
achieve “real” early diagnosis of complex diseases. Figure 1 illustrates major features of the
three types of biomarkers. Note that a DNB is a group of molecules, which are highly fluctu-
ating but strongly correlated without consistent values at the predisease stage, and thus it is
a concept different from the conventional biomarkers, which are required to keep consistent
values for the respective disease and normal samples. Also, a DNB has been shown to be the
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leading network that makes the critical change first and thus drives the whole system into
the disease state18, 19 and, therefore, is highly related to causal or driving factors (or genes) of
the disease.

In this paper, we review the recent advances and developments on molecular biomarkers,
network biomarkers, and DNBs of complex diseases, focusing on computational methods.
Detailed comparisons of DNBs and traditional biomarkers as well as their applications are
also presented. In addition to the three types of biomarkers shown in Figure 1, there are also
other forms of biomarkers, for example, pathophysiologic status (such as patient performance
status),20 mammographic images,21 and cell-based markers (e.g., circulating tumor cells),22

which are beyond the scope of this paper, and the readers are suggested to refer to the related
publications for the details on those biomarkers.

2. MOLECULAR BIOMARKER

Genes, RNAs, proteins, and metabolites are known as biological molecules, which are basic
entities to interact with each other for performing various biological functions in a cell. With
the rapid advance of high-throughput technologies at the molecular level, large amounts of
data from genomics, proteomics, and metabolomics have been generated to tackle challenging
problems in biomedical sciences, and further to provide new ways for studying diseases, by
characterizing phenotypes, making early diagnosis, and developing niche-targeting drugs in a
systematic manner.

A. Biomarkers at Molecular Level

Molecular biomarkers are quantifiable molecular measurements of biological homeostasis that
aim to distinguish the disease state (which represents the stage of badly ill) from the normal state
(which represents a relatively healthy stage, an incubation period, or a chronic inflammation
stage), as shown in Figure 1. For example, the PSA, kallikrein-3, is used as an effective molecular
biomarker to routinely screen for prostate inflammation and cancer.23–25 Another example of
molecular biomarker is ERBB2, which is a transforming cell growth factor, and the expression of
ERBB2 is recognized to be associated with an aggressive phenotype of breast cancer. Molecular
biomarkers are generally employed to indicate a specific disease state or a phenotype, based on
the obviously different molecular features of the disease state from those of a normal state, which
is also the basis of the diagnosis through molecular biomarkers.26, 27 Generally, the detection of
new molecular biomarkers is based on their common property, that is, the expression profiles
of the biomarkers should show distinct difference between a disease (or an abnormal) state and
a normal state, which makes the classification or comparison of molecular expression profiles
an important approach. Figure 2 shows a general framework to detect molecular biomarkers
from high-throughput data. Obviously, the expressions of the molecular biomarkers should
clearly reflect the severity or presence of the illness at a disease state such that the expression
of a biomarker is significantly higher or lower in the disease state than that in a normal state
(see Fig. 2D). Besides, from the viewpoint of clinical applications, the number of biomarkers
for a specific disease is required to be as small as possible. Another important feature is that the
molecular biomarkers need to be highly specific for each complex disease, since maintaining
high specificity or low false-positive rate is of a high priority for disease sample screening.28
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Figure 2. Molecular biomarkers. (A) Expression data of normal and disease samples (e.g., gene, protein, or
metabolite expression data). (B) Expression profiles by statistical implementation (e.g., normalization) for both
normal and disease samples. (C) Detection of molecular biomarkers, which show distinct difference between a
disease state and a normal state. (D) Classification and validation of the detected molecular biomarkers.

B. Computational Methods for Identifying Molecular Biomarkers

Since a biomarker is a key indicator for specific diagnosis and reliable prognosis of a disease as
well as therapy scheduling and monitoring, a great number of articles are published every year
for the purpose of identifying novel biomarkers from both experimental and computational
aspects.29, 30 Table I lists major computational methods and their important features for dis-
covering molecular biomarkers based on high-throughput data. The main task of identifying
molecular biomarkers is to find a number of molecules whose expressions can classify the dis-
ease and normal samples in a clear way, or can determine a clear boundary between the disease
and normal samples. Specifically, multivariate logistic regression analysis is a classic approach
to identify candidates of molecular biomarkers. The decision boundary derived from logistic
regression is defined by an affine function of individual molecules, that is, a weighted sum plus
a constant term,12, 31–40 which can identify the important candidate molecules or biomarkers
responsible for the phenotypes. However, the effectiveness is highly dependent on the sample
distribution, that is, variables should follow the multinomial distribution, which limits further
clinical application. Classification and regression trees (CARTs) were also applied to detect
the molecular biomarkers by many researchers.41–48 CART is a training data-driven approach,
by which the model needs not to assume any particular form for its decision boundary, and
is considered as one of the powerful tools for developing nonlinear classification models on
disease and normal samples. The limitation of this method comes from the complexity of
computations during the construction of the tree, especially when there are a large number of
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Table I. Overview of Computational Methods to Detect Molecular Biomarkers of Complex Diseases

Computational
methods Description Advantages Disadvantages

Representative
references

Multivariate
analysis (logistic
regression)

Combine multiple
measurements of the
markers (a few
markers or the same
marker in different
samples) into a single
valued score

The method is easy to
interpret, and possible
to test global
statistical significance

The effectiveness
degrades when the
distribution of
sampling data deviates
from the normal
distribution

12,31–39

Classification and
regression tree
(CART)

Recursively partition the
training dataset and
construct groups of
molecular biomarkers
(multimarker) directly
based on logical
combinations of
disease phenotype
characteristics

It is unnecessary to
assume any particular
form of decision
boundary, and easy to
identify useful
molecular groups that
are based on simple
combinations of
clinical characteristics

It is required to perform
hundreds of statistical
comparisons during
the construction of the
tree, thus, sometimes
the model is likely to
diverge

41–48

Voting panel
approach

Produce a positive or
negative result by
individually using the
cutoff value for each of
multiple clinical inputs

The method is very
simple, and easy to
operate

The method is not
accurate by frequently
using the voting
scheme

49–53

Artificial neural
network (ANN)

Construct a network of
simple information-
processing artificial
neurons by arranging
the elements in a
particular
interconnection
pattern

It can be used to
approximate any
functional form from
observed data with
quick and parallel
computation

It is sometimes difficult
to select an
appropriate ANN
design with the right
modeling capacity

54–69

Supporting vector
machine (SVM)

Separate two classes of
data in a
high-dimensional
space by hyperplanes
based on some
selected nonlinear
functions (kernels)

The learning process
often involves a
straightforward
solution to an
optimization problem

The effectiveness is
limited by the choice
of the kernel functions

50

Genetic algorithm
(GA)

Perform randomized
search and
optimization
mimicking evolutional
and natural genetics

It is a powerful tool for
discovering a set of
functions that best
define properties of
candidate genes

The method is less
effective and has lower
likelihood of
convergence when
there are a large
number of genes

66–70

nodes. Besides, since CART is mainly based on heuristic algorithms, such as the greedy algo-
rithm where locally optimal decisions are made at each node, it cannot guarantee to obtain the
globally optimal decision tree with the best classification. Voting panel method is very simple
and easy to be operated, and it can directly produce positive or negative results from control
and disease samples by individually using the cutoff value for each of the multiple clinical
inputs. Results from individual molecules are then combined using a mixture of logic “AND”
or “OR” operators,49–53 by which it can straightforwardly indicate the classification of samples.
However, the classification is not accurate by frequently using voting scheme, if the sampling
scale is large. Artificial neural networks (ANNs) also received much attentions as a nonlinear
modeling tool from clinical diagnostics to theoretical understanding of the mechanics.54–59

They are composed of simple information-processing elements, that is, artificial neurons, by
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arranging them in particular interconnection patterns. This method provides information to
rank the importance of molecules, and thus identifies the disease-related molecules. With the
correct implementation, ANNs can be applied naturally in a large dataset. However, the classi-
fication process is not so straightforward and the robustness strongly relies on the appropriate
selection of cost function and learning algorithm. The machine learning method, such as
supporting vector machine (SVM), is widely applied on the engineering field. It is a super-
vised method that has been recently applied to derive molecular biomarkers for biomedical
applications,60–65 by separating the disease samples from normal ones in a high-dimensional
space based on some selected nonlinear functions (i.e., kernels). The largest bottleneck of
SVM is the parameters tuning, which is considered crucial in the procedure of training, and
so experience dependent and fastidious that it would greatly influence the performances. Ge-
netic algorithm (GA) performs randomized search and optimization mimicking evolutional
and natural genetics, which is a powerful tool for discovering a set of functions that best de-
fine properties of genes, and thus has many applications in classifying disease samples and
further finding disease-related molecules.66–70 The shortcoming of GA is not so efficient with
repeated evaluation process. In addition, classifying the samples by GA is often encumbered
by exponentially increasing in search space size. Recently, the dimensionality reduction ap-
proach as a new algorithm was developed to discover biomarkers by classifying biomadical
data, in order to distinguish a set of lower dimensional samples from higher dimensional ex-
pression datasets.71, 72 In addition, there are several methods or tools classifying a wide range of
high-dimensional biomedical data, such as risk stratification approach73–75 and heterogeneous
expression profile analysis,76, 77 which are also potentially effective to biomarker discovery and
assessment. For high-throughput data or big biological data, DNA microarray data at the gene
level have been widely exploited to find molecular biomarkers on various diseases, including
breast cancer,78, 79 brain cancer,80 pancreatic cancer,81 and acute leukemias.82 On the other
hand, at the protein and metabolite levels, proteomics and metabonomics data have been used
to identify new biomarkers of many diseases,83 such as bladder cancer,84 diabetes mellitus,85 and
toxicity screening.86 Recently in contrast to single-level data, multilevel data for a single sample
(or disease; with DNA sequence, DNA methylation, gene expression, protein expression, and
metabolite expression) become available (e.g., in TCGA database), which stimulates the study
of the integration87, 88 of multilevel and multisource data to identify the biomarkers of complex
diseases. The major features of those computational methods are shown in Table I.

3. NETWORK BIOMARKER

Although molecules are basic components of a cellular machinery, a complex disease is gener-
ally caused not from the malfunction of individual molecules but from the interplay of a group
of correlated molecules or a network.89 In fact, a disease is the result of cell’s or tissue’s response
to its microenvironment, and such response is usually not influenced by single molecules, but
by complex interactions of many signaling pathways and molecular subnetworks.90–92 In the
past years, rapidly developing technology allows us to obtain gene (or protein) expressions and
other high-dimensional profile data at the genome-wide scale,93 that is, with over thousands of
measurements in each sample including SNP (sequence data), gene expression (transcriptome),
mass spectrum (proteome), and small molecules (metabolome) data in different levels. The
availability of such high-throughput data has already driven the integrative research by describ-
ing complex phenomena to studying essential design principles, and by studying individual
components to understanding functional modules or networks for biomolecular systems, such
as cells, tissues, organs, and even the entire organism.94–96 Therefore, to better diagnose a disease
state, researchers proposed to study the combinations or a relatively large group of interacting
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molecules to deeply understand the complex interplay and pathways of multiple molecules.
From a network point of view, groups of interacting molecules with similar behavior, that
is, network biomarkers or module biomarkers provide a quantifiable and also stable form to
characterize biomedical phenotypes or diseases in contrast to individual molecular biomarkers,
which has inspired the development of systems medicine in the network level.93, 96–98

A. Biomarkers at Network Level

The network biomarker was first proposed in 2008.16 The similar name of “subnetwork mark-
ers” was raised even earlier in 2007.99 The concept of network biomarkers was established
by the development of genomic high-throughput technology and the system-wide and multi-
dimensional studies on molecule expression profiles of disease progression. Specifically, these
techniques, such as microarray and mass spectrometry (MS) technology, can simultaneously
screen the whole human genome in terms of RNA transcripts or proteins.100 Based on the
rapidly accumulated high-throughput datasets, the protein–protein interaction (PPI) networks
have been constructed for many complex diseases, and played a central role in studying the path-
way regulation of these diseases, which provides new perspectives to accurately and robustly
classify disease samples on the basis of the rich information including both biomedical knowl-
edge and topological structure. Therefore, the development of network biomarkers is mainly
based on the available PPI networks and the signaling pathways. For instance, by applying to a
cardiovascular related protein network, Jin et al.16 identified some molecules, which compose
a network with a set of high-confident interacting proteins that can classify two groups of
patients more accurately than the former single molecules without consideration of biological
molecular interaction. It is believed that some molecular interactions in such a network are
activated under specific conditions, and thus may indicate the dysfunctional process underlying
the corresponding disease phenotypes. Therefore, some key subnetworks with dysfunctional
pathways of protein interactions (or gene regulations, or biochemical reactions) associated with
certain disease are also called network biomarkers, which are able to distinguish the disease
state in a more accurate manner. A typical procedure to identify network biomarkers is shown
in Figure 3. Clearly, compared to Figure 2, network biomarkers focus on interacting molecules
rather than individual molecules.

B. Network Biomarkers Based on Expression Data

The task to find reliable network biomarkers depends on the high-quality information of inter-
actions among molecules as well as the available expression data for specific disease and control
samples. Ideker et al. proposed that a type of active modules, which are connected subnetworks
and whose genes show significant correlated changes in an mRNA-expression (or other) state
under particular experimental conditions, can be taken as biomarkers.101 Decomposing a whole
network into active modules not only reduces network complexity, but also helps to find signal-
ing pathways, based on which an open source software Cytoscape is developed and widely ap-
plied in studying protein–protein, protein–DNA, and genetic interactions that are increasingly
available for humans and model organisms.102 Some efficient methods were also proposed103, 104

to detect the active modules in a molecular interaction network. Combined with the benefits
of high-throughput sampling, many research works16, 99, 105–110 show that network biomarkers
are potential candidates of clinical trials for complex diseases. Actually, many effective net-
work biomarkers have been detected for complex diseases, for example, breast cancer99, 110 and
gastric cancer.111 Unlike conventional expression clustering or classification methods, network-
based analyses could identify molecules that are not differentially expressed. Specifically, if the
overall activity of a molecule is lowly expressed, it would not attract attentions through the
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Figure 3. Network biomarkers. Schematic representation shows the main procedures to detect network biomark-
ers form high-throughput data, which distinguish distinct genotypes and phenotypes to indicate the disease
state. From the high-throughput expression profiles (A), we obtain the normalized expression profiles (B) from
which we can further construct the molecular interaction network by combining available interaction information
and expression data (C). Some key subnetworks in (D) are identified for a certain disease by decomposing the
molecular interaction network. (E) Those subnetworks are called network biomarkers if they can distinguish a
disease phenotype from a normal phenotype to indicate the disease state. (F) The identified network biomarkers
classifies the disease and normal samples in a more accurate manner comparing with individual molecular
biomarkers selected without consideration of the network or interactions.

conventional expression comparison methods. However, if such molecules participate in a sig-
nificant subnetwork that shows a distinct phenotype in the disease or abnormal stage, then they
are essential for maintaining the module integrity to meet the requirement of interconnecting
many higher scoring molecules (see Fig. 3). In such sense, this property is important for the
discovery of disease-causing genes, because the phenotypic changes may be regulated not by
individual expressions but by their collective behavior in the network. Recently, more and more
works and methods are developed for studying the regulation pathways and their roles in the
disease state. For instance, active subnetwork identification is a method for identifying active
subnetworks by using existing PPI networks. Such active subnetworks, which are strongly con-
nected regions of the whole network, show significant changes in expression over a particular
subset of the conditions, and can classify the disease samples in a systematic way, thereby dis-
tinguishing the disease phenotype.99 A similar method is referred to in Ref. 112, where Lee et al.
proposed that the disease phenotype can be identified by pathway classifiers based on pathway
activities, whose level is summarized from the gene expression levels of its condition respon-
sive genes, defined as the subset of genes in the pathway whose combined expression provides
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optimal discriminative power for identifying the disease phenotype. Another systems biology
approach, that is, the disease-specific pathway identification method, was developed. It aims at
extracting disease-specific subnetworks or pathways by using regression models or scoring mod-
ules, for example, carcinogenesis relevance values in Ref. 113 and modularity score in Ref. 114.
This approach is effective in identifying network biomarkers and disease-specific dysregulated
pathways based on the integration of PPIs, pathway knowledge, and graph information.113–116

However, the regression model-based method is not suitable for the small sample cases, in which
the parameters are biased. Classification of differential interactions is a new method based on
the analyses of differential interactions between disease and normal samples, in contrast to the
clustering method based on differential gene (or protein) expressions that are widely employed
in conventional methods. This method was recently proposed and applied to discover mod-
ule biomarkers for diseases, and the successful application on gastric cancer suggests that the
differential interactions are effective on identifying dysfunctional modules from the molecular
interaction network, which can be applied as network biomarkers.111 Modeling the information
flow is an approach for identifying dysfunctional modules in complex diseases, which models
the information flow from source disease genes to targets of differentially expressed genes via a
context-specific PPI network. The dysregulated pathways are sorted out as subnetworks from
the pathway interaction networks. Such subnetworks effectively characterize the functional de-
pendency or crosstalk between pathways, and thus are capable of distinguishing disease samples
from normal ones.118–120 The SVM-based method has been used for separating two groups of
molecules, and recently is applied in detecting network biomarkers, by identifying a compre-
hensive key interaction map and integrating different types of interaction information of other
species (heterogeneous data sources) within the SVM scheme.121–123 The major shortcoming
of classical SVM is its high computational cost for the constrained optimization program-
ming. Classification of detecting topological changes in biological networks is an efficient and
straightforward method in identifying a condition-specific local network under different bi-
ological conditions. This type of classification, for example differential dependency network
(DDN) analysis, compares the topological differences between any two networks,124, 125 which
is a powerful method for distinguishing disease samples when the topology of disease networks
is significantly different from the topology of normal samples. In addition to detecting disease
states, some recent works also identify network biomarkers in order to predict disease outcome,
such as the research work by Taylor et al.,126 in which functional module markers are picked
out by observing substantial differences in the biochemical structure between different types
of hubs that are usually associated with oncogenesis. The major features of computational
methods for network biomarker are listed in Table II.

C. Network Biomarkers Based on Sequence Data

Recent genome sequencing studies as well as genome-wide association studies (GWASs) have
drastically expanded the knowledge on the relations between sequences and diseases, which
enables us to integrate sequence data to discover new network biomarkers or functional mod-
ule biomarkers. An example is the studies on integration of networks with single-nucleotide
polymorphism (SNP) data for disease association, which becomes a rapidly growing trend and
can be referred to a number of interesting works that develop various approaches of associ-
ation tests and bridge the pathways and gene-oriented analyses of genome-wide association
(GWA).128 Analyzing GWA at the level of multiple SNPs enablesdetection of the cumulative
effect of many variants within a biological pathway that may act additively to determine disease
susceptibility.129–131 Association tests by using imputed genotypes at many SNPs to facilitate
comparisons with the results of other GWA scans allow geneticists to accurately evaluate the
evidence for association at genetic markers that are not directly genotyped.132, 133 Applying
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Table II. Overview of Computational Methods to Detect Network Biomarkers of Complex Diseases

Detection Representative
methods Description Advantages Disadvantages references

Active subnetwork
identification
method

Identify active
subnetworks by using
available large-scale
protein–protein
interaction (PPI)
networks. Both
scoring for nodes and
aggregate scoring for
active subnetworks are
used

The method can identify
some disease-related
genes that are not
differentially expressed

The method is limited by
the availability of
interaction networks
and can be used only
when there is an
activity P-value for
every measurement

99, 112

Disease-specific
module or
pathway
identification
method

Extract disease-related
subnetworks by
identifying the key
modules via regression
models or scoring
pathways

The method is effective
in generating static
models of
disease-specific
modules or signal
transduction pathways

The method is time
consuming due to
exhaustive search
procedure

113–115

Classification of
differential
interactions

Investigate differential
interactions (between
disease and control
samples) and network
rewiring between
molecules related to
pathogenesis

The method can identify
crucial modules that
cannot be detected in
differential expression
of genes by
discovering
information of the
molecular interactions

The method is time
consuming for
large-scale interaction
networks

111, 117

Modeling the
information
flow approach

Determine dysfunctional
modules by modeling
the information flow
from source disease
genes to targets of
differentially expressed
genes via a
context-specific PPI
network

The method is effective
in finding dysregulated
modules with
dysfunctional
pathways

The method is insensitive
when the genes are not
differentially expressed

118–120

Supporting vector
machine
(SVM)-based
method

The kernel methods are
employed to integrate
network and
expression data for the
classification, and
applied to identify
disease states by
detecting
disease-related
modules or
disease-associated
subnetworks

By using various
biological knowledge
and data sources (e.g.,
gene coexpression,
regulatory networks,
evolutionary
relationship, and
functional similarity),
the effectiveness and
efficiency are
significantly improved

The effectiveness is
limited by the choice
of the kernel functions
and the computational
cost is high for real
applications

14, 89, 103–105

Classification of
detecting
topological
changes in
biological
network
(network
comparison
method)

The network
topology-based
approaches (such as
differential
dependency network
[DDN] analysis) to
estimate statistically
significant topological
changes in the disease
networks between
different biological
stages

The method can
straightforwardly
identify the local
network under
different biological
conditions, compare
the difference between
any two networks, and
thus is efficient when
the network topology
significantly differs

The method is not
convenient in realistic
applications, since this
approach runs into the
difficulty that the
network structure
learning can be
inconsistent with a
limited number of data
samples

124, 125, 127
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pathway-based association approaches, Wang et al.134 identified most significant gene sets and
pathways related to diseases, which is one of the first studies to propose the use of pathway
information in GWA studies. Such pathway-based association approaches not only widen the
application in GWA studies of complex diseases, but also suggest a new way to find molecular
networks and cellular pathways that can mark disease states.

Using massive genome sequencing data, the pathway-based analysis also generates various
methods and algorithms that can be employed to identify network biomarkers for complex
diseases.135 Vandin et al.136 proposed an efficient algorithm for identifying significantly mutated
pathways in cancer, which can detect the subnetworks in a genome-scale gene interaction
network that are mutated in a statistically significant number of patients. Such pathway-based
analysis is able to rescue true disease-related molecules from a list of nondifferential expression
but involved in a high-scored pathway. Nguyen et al.137 applied a new label-free quantitation
method to assemble high-density temporal data and study cellular signaling pathways.

Figure 3 schematically illustrates how to detect network biomarkers from high-throughput
expression data and available network information. In the procedure, a whole molecular net-
work (Fig. 3B), which is constructed from high-throughput expression profiles and molecular
interaction data, is decomposed into multiple subnetworks based on topological structures or
other specific conditions, by network classification methods, for example, scoring each subnet-
work according to its activity. From the scores of subnetworks on available disease and control
samples, optimization or classification methods are generally used to identify candidate net-
work biomarkers, which can detect distinct phenotypes between normal and disease samples.
Many methods based on sequence data use the similar procedure shown in Figure 3 to identify
biomarkers by further integrating sequence information.

4. DYNAMICAL NETWORK BIOMARKER

Both molecular biomarkers and network biomarkers aim to diagnose the disease state, rather
than the predisease state before a critical transition, as shown in Figures 1 and 4. To achieve the
early diagnosis on a complex disease, it is very important to detect early-warning signals of the
predisease state so as to prevent the drastic deterioration, which is a common phenomenon in
many complex diseases. The progression and development of a complex disease is often modeled
as a nonlinear dynamical system, or a dynamical network. However, in contrast to the detection
of the disease state for many diseases, it is usually a very difficult task to identify the predisease
state as the state of the system may show little distinct change before the critical point or the
predisease state is really reached. In other words, there may be no noticeable change between a
normal and a predisease state. This is the reason that results in the failure of diagnosis based
on traditional molecular biomarkers or static network biomarkers. To overcome this problem,
a general theory and methodology to detect early-warning signal was recently proposed based
on a model-free concept, that is, a dynamical subnetwork of biomarkers or a DNB, which can
identify a predisease state18 even with only a few of samples provided that high-throughput data
are available for each sample. Figure 4 schematically illustrates the major dynamical features
of DNB as well as its main differences from the traditional biomarkers.

A. Biomarkers at Dynamical Network Level

The DNB18 was proposed as a general early-warning indicator based on a new concept, that
is, a dynamical subnetwork of biomarkers, which appears only in the predisease stage and is
proven to satisfy some measurable conditions.
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Figure 4. Dynamical network biomarkers. A schematic illustration of dynamical features for a disease progres-
sion from a normal state to a disease state through a predisease state. (A) The normal state is a steady state,
where the system generally is stably and robustly regulated by its molecular network, and may be robust. In this
state, the expression of genes are usually consistent. (B) The predisease state is defined a limit of the normal
state and situated before the imminent phase transition point is reached. At this stage, traditional methods or
biomarkers fail to distinguish the predisease samples from normal samples. However, DNB scorings/criteria are
effective in distinguishing the predisease samples. DNB is dynamical measurements on the predisease, thus,
providing the early-warning signals for the predisease state. (C) Beyond the critical point, the system abruptly
deteriorates and enters the disease state. The disease state is the other steady state, during which the system
is regulated by a disease network and also may be robust. The traditional biomarkers can distinguish disease
samples from normal samples at this stage.

In particular, it can be theoretically proved that, when the system is near the critical point,
there exists a dominant group or the so-called DNB, which is a group of molecules satisfying
the following three conditions:

1. The correlation between any pair of members in DNB becomes very strong (e.g., the
Pearson correlation coefficient [PCC] of their expression drastically increases).

2. The correlation between one member of DNB and any other molecule of non-DNB
becomes very weak (e.g., PCC of their expression drastically decreases).

3. Any member of DNB becomes highly fluctuating (e.g., the standard deviation [SD] of its
expression drastically increases).

In other words, DNB is an observable subnetwork of the original system, and composed
of a special group of molecules that are strongly and dynamically correlated when the system
is in a predisease state, according to the first condition. The second condition implies that
DNB molecules behave almost independent of other non-DNB molecules although they are in
the same system or network, that is, the DNB is indeed an isolated subnetwork or functional
module, with all its members behaving dynamically in a strongly collective manner in the
predisease state. The third condition implies that the expressions of these DNB molecules
increasingly and strongly fluctuate as the system is approaching the critical state or point. It
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is this dynamical property that makes the traditional molecular biomarkers or static network
biomarkers fail to identify the predisease phenotype in the early stage. Therefore, regardless of
disease types and personal variations, the three conditions are considered as essential criteria to
identify the DNB that in turn indicates early-warning signals of the predisease state. In addition,
these properties also hold in many complex diseases as well as many biological processes with
sudden transition phenomena.138

In order to detect a reliable and clear signal of the predisease state, a composite index was
proposed by combining the three criteria18:

I = SDd · PCCd

PCCo

where PCCd is the average Pearson’s correlation coefficient among the molecules of DNB (or
equivalently the dominant group) in absolute value; PCCo is a factor representing the average
Pearson’s correlation coefficient of the molecules of DNB with the other molecules in absolute
value; SDd stands for the average standard deviation of the molecules of DNB. During any
sampling interval in the predisease state, despite the stochastically fluctuation in the expression
of each molecule, the composite index I is able to provide a reliable and also significant early-
warning signal of a complex disease when the biological system approaches the predisease
state/critical point, according to the three properties of DNB above.

B. Detecting the Leading Network by High-Throughput Data

DNB is also the leading network of the critical transition, which makes the critical change first
and thus drives the whole system into a disease state through a predisease state.19 That is, the
leading network can be viewed as the subnetwork that first moves over the critical point into
the disease state, and thus has strong relationship with the causal genes (or driving factors) or
with the disease network in contrast to those consequent differentially expressed genes resulting
from the disease. Therefore, identifying this leading network during a critical transition can not
only indicate the emergence of the predisease state, but also reveal the underlying pathogenesis
and mechanism of the disease initiation as well as progression at the network level.138–140

Generally, reliable identification of the leading network and the predisease stage from a
large number of genes as well as from many stages by high-throughput data is, however, a
very difficult problem because of widely existing noise in data and usually a small number of
samples. In addition, it is a costly computational work to find the leading network by satisfying
the three criteria due to a large number of variables of high-throughput data. Therefore, effective
computational methods are demanded to detect DNB in a reliable and efficient manner, so as
to accurately identify the predisease state and further elucidate the mechanism of the sudden
deterioration, which is still an open problem. In order to demonstrate how DNB can reveal
the imminent catastrophic transition and achieve the early diagnosis of complex diseases, in
Figure 5, we show a successful application of DNB on a specific complex disease, that is, the
acute lung injury driven by carbonyl chloride inhalation.141 By applying the three criteria and
DNB classification scheme on the microarray data (GSE2565), a group of observable molecules
were screened out, which form a strong correlated subnetwork just before the occurrences of
sudden deterioration and thus provide a reliable early-warning signal.18 Specifically, we use
time-course (from 0 to 72 hr) microarray data of mice for the lung injury with carbonyl chloride
inhalation exposure. Clearly, DNB and its members show little distinct differences comparing
with other genes at all sampling points except at 8 hr in Figure 5. At 8 hr, there is a strong signal
from DNB (Fig. 5D), which indicates the imminent deterioration of the lung injury (or the
predisease state) due to the exposure to the gas (although there is no injury in the lung at this
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Figure 5. Detection of early-signal for acute lung injury by dynamical network biomarker (DNB). (A–F) Show
the dynamical evolution of the whole mouse network (3452 genes and 9238 links) including the detected DNB
during the disease progression (from 0.5 to 72 hr). The network was constructed from the whole mapped mouse
molecular network (PPIs and transcription factors (TF)-target regulations) based on the expression data. The
thickness of each edge represents the PCC value between a pair of molecules, while the color of each node
represents the SD value of a molecule. The identified DNB is placed in the center of the whole network. The
predisease state or DNB was detected at 8 hr, at which there is a strong signal (D) to indicate the imminent
deterioration of the disease. (G) Shows the composite index of DNB. The dotted purple line indicates the
predisease period (at sampling time point 4, i.e., 8 hr). The red curve represents the case group, while the blue
one represents the control group. The composite index increase drastically from sampling time point 3 (4 hr),
and reaches the peak at sampling time point 4 (8 hr). This fact strongly suggests that the predisease state is
near sampling time point 4, and the system is driven into the disease state after sampling time point 4, which
is consistent with the experimental results.18,141 Clearly, DNB is not only wildly fluctuated, but also strongly
correlated subnetwork at the predisease or critical state. Also, see the reference18 for the original analysis.

timing). Actually, it was confirmed that the phenotypic changes (injury) for the lung occurred
at the next time point (12 hr; Fig. 5E), which validated the effectiveness of DNB for the early
diagnosis on the predisease state. Interestingly, however, after the system passes the critical point
and is in a disease state, for example, at 72 hr (Fig. 5F), the members in DNB behave similarly
to other genes again, without any significant difference from other genes. In other words, the
DNB distinguishes not the disease state from the normal state, but the predisease state from the
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Figure 6. Static and dynamical signals during disease progression. (A) The average value of a molecule (e.g.,
gene or protein expression) at each stage during disease progression is considered as a static signal, which
is used in the traditional molecular or network biomarkers. Such a signal is able to distinguish a disease state
from a normal state but cannot clearly distinguish a predisease state from a normal state. (B) The dynamics of a
molecule at each stage during disease progression is a dynamical signal, which is used in dynamical network
biomarker (DNB). This signal is able to clearly identify a predisease state from a normal state, and therefore can
be used for early diagnosis of a disease. Note that the static signal (A) is the average value of the dynamical
signal (B) at each stage.

normal state. Figure 5G shows the strong signal of the DNB based on the composite index I at
8 hr (or sampling time point 4). More examples for demonstrating the DNB for early diagnosis
of diseases can be found in Refs. 18, 19, 139, 140.

Figure 6 illustrates the static and dynamical signals during the progression of a disease to
clearly describe the difference between the traditional biomarkers and DNB. Figure 6A shows
a curve of the average value of a molecule (e.g., gene or protein expression) at each stage during
the disease progression, which is considered as a static signal. Such a signal is able to identify a
disease state, and thus is used in the traditional molecular or network biomarkers. But the static
signal cannot clearly tell the difference between a predisease state and a normal state so as to
make early diagnosis of the illness or disease. Figure 6B demonstrates dynamics of a molecule
at each stage during the disease progression, which is a dynamical signal and used in DNB. This
signal is able to clearly discriminate a predisease state from a normal state, and thereby can be
used for early diagnosis of a disease. Figure 6A is the average value of the dynamical signal (i.e.,
Fig. 6B) at each stage. It is noteworthy that due to individual variations, each patient may not
have exactly the same leading network or DNB even for the same disease, that is, some molecule
members in the DNB may differ from person to person.18 Hence, unlike molecular biomarkers
and network biomarkers, a DNB does not always contain a group of fixed members even for
the same disease but might have different molecules depending on individual variations that
can be identified by high-throughput data of each individual. Comparing with the traditional
molecular and network biomarkers, DNB has obvious advantages. First, DNB is used for
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detecting the predisease state instead of the disease state, and thus provides the early signal of
a disease. Second, since DNB is based on a model-free method and further can be obtained
by a small number of samples, it is relatively easy to be implemented clinically. In addition,
although a DNB is now used for detecting the predisease state, theoretically it can be used to any
biological process to detect the critical transition as well as the leading network of the related
phenotype provided that there is a drastic change during the process, for example, switching
behavior of cell-differentiation processes, aging processes, and phase changes of cell cycle or
circadian rhythm. It also opens a new way to explore the information from big biological
data to understand the underlying mechanism of complex biological behaviors. Moreover, in
addition to complex diseases, since DNB is conceptually a strongly correlated but also wildly
fluctuated subnetwork (or group), the concept of a DNB would be generally applicable for
detecting early-warning signals of critical transitions or bifurcations to a wide class of complex
networks/systems.

5. CONCLUSION

Several decades of intensive research have discovered many molecular biomarkers on various
diseases that are useful in the diagnosis, characterization, and therapy selection of complex
disease. Considering the biomarker at a system level, that is, the network biomarker. Further this
biomarker in a dynamical manner, that is, the DNB, would greatly advance the understanding
of complex diseases by identifying the dynamical relationships of molecules with biological
behavior associated with these diseases, and thus not only achieve accurate early diagnosis, but
also provide deep insight into the clinicopathologic features during the disease initiation and
progression.
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