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Abstract

Motivation: The time evolution or dynamic change of many biological systems during disease progression is not al-
ways smooth but occasionally abrupt, that is, there is a tipping point during such a process at which the system state
shifts from the normal state to a disease state. It is challenging to predict such disease state with the measured
omics data, in particular when only a single sample is available.

Results: In this study, we developed a novel approach, i.e. single-sample landscape entropy (SLE) method, to iden-
tify the tipping point during disease progression with only one sample data. Specifically, by evaluating the disorder
of a network projected from a single-sample data, SLE effectively characterizes the criticality of this single sample
network in terms of network entropy, thereby capturing not only the signals of the impending transition but also its
leading network, i.e. dynamic network biomarkers. Using this method, we can characterize sample-specific
state during disease progression and thus achieve the disease prediction of each individual by only one sample.
Our method was validated by successfully identifying the tipping points just before the serious disease symptoms
from four real datasets of individuals or subjects, including influenza virus infection, lung cancer metastasis, pros-
tate cancer and acute lung injury.

Availability and implementation: https://github.com/rabbitpei/SLE.

Contact: chenpei@scut.edu.cn or lnchen@sibs.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The time evolution of many biological systems is not always smooth
but occasionally abrupt, that is, the persistent effects or perturbations
of various internal or external factors sometimes result in drastic or
qualitative changes of system states at a tipping point. For example, in
some chronic diseases such as cancer (He et al., 2012; Scheffer et al.,
2009; Yang et al., 2018), irreversible deterioration may occur suddenly
within a short period of progression, while the disease (e.g. chronic in-
flammation) may progress gradually and steadily for years or even dec-
ades of a long incubation period before such a catastrophic transition.
The disease progression can be viewed as the evolution of a nonlinear
dynamical system with a tipping point occurring after progressive
changes in a certain organ or the whole organism. Regardless of specif-
ic differences in either biological processes or observed symptoms
among diseases, the progression of illness can be generally divided into
three stages or states (Supplementary Fig. S1 and Fig. 1B), i.e. a normal
state, a pre-disease state and a disease state, where the pre-disease state

is a critical state or tipping point just before disease appearance
(Achiron et al., 2010; Chen et al., 2012; Liu et al., 2014a). In other
words, during the course of illness there is a drastic transition from a
relatively healthy/normal stage via a critical/pre-disease stage to an irre-
versible disease stage (Litt et al., 2001; Liu et al., 2002; McSharry
et al., 2003; Paek et al., 2005; Roberto et al., 2003; Venegas et al.,
2005). Therefore, to prevent from or at least get ready for the cata-
strophic deterioration of a disease, it is crucial to detect its early-
warning signals by quantifying its critical state or tipping point (Chen
et al., 2012).

Although hunting for disease tipping point or pre-disease state is
of great importance, it is still a challenging task to identify the pre-
disease state or predict the disease state by finding robust biomarkers
specific to respective diseases. Traditional biomarkers, including mo-
lecular- or module-biomarkers, are employed to distinguish disease
samples from normal samples or identify the disease state by exploit-
ing the information of the differential expressions of genes/proteins
between the normal and disease states, rather than signaling the pre-
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disease state which generally are similar to the normal state in terms
of phenotypes and gene expressions (Supplementary Fig. S1). This is
also the reason why the clinical judgments through traditional bio-
markers may fail to identify a pre-disease state. By exploring the in-
formation of differential associations of the observed molecules
between the normal and pre-disease states, we proposed a new type
of dynamic network biomarker (DNB) (Chen et al., 2012; Liu et al.,
2012a) with three statistical conditions to detect the tipping point at
the network level. Specifically, it was theoretically proved that when
a biological system from a normal state approaches the critical state/
tipping point, a DNB or a group of molecules (or variables) appear
and satisfy the three statistic conditions (Chen et al., 2012): i.e. corre-
lations between the variables among this group rapidly increase, cor-
relations between this group and other variables rapidly decrease
and standard deviations of the variables among this group drastically
increase. Based on these three necessary conditions, DNB score is con-
structed to serve as an indicator of the imminent state transition for
predicting the disease state. In contrast to the information of differen-
tial expressions widely used in traditional molecular biomarkers to
‘diagnose disease’, DNB is a type of network biomarker based on the
information of differential associations, thereby being capable to ‘pre-
dict disease’ or ‘diagnose pre-disease’ state. Having been applied to
real biological and clinical data by many groups, the DNB method
and its follow-up modifications had identified the pre-disease states of
several diseases (Chen et al., 2016, 2017, 2019; Liu et al., 2014b; Liu
et al., 2015), detected the tipping points of cell fate decision
(Mojtahedi et al., 2016) as well as cellular differentiation (Richard
et al., 2016) and further investigated the immune checkpoint block-
ade (Lesterhuis et al., 2017) and so on. However, to quantify DNB,
its three statistical conditions such as standard deviation and

correlation, require multiple samples from an individual, which are
generally unavailable for many biomedical studies, thus
significantly restricting the application of DNB method in most
real cases. The single-sample problem is demanded from many bio-
medical fields, particularly in clinical practice, that is, there is usually
only one single case sample available. The lack of samples for one in-
dividual results in the failure of traditional statistic method to analyze
the biomedical problem at a network level.

In this paper, solely based on one sample, we proposed a sample-
specific method, called single-sample landscape entropy (SLE), to
identify the critical state just before the disease state or detect the
early-warning signals of the critical transition (Fig. 1). Specifically,
by exploring the dynamical difference between the normal and pre-
disease states, a local network-based entropy, i.e. SLE score, is con-
structed to characterize the statistical perturbation brought by each
individual sample against a group of given control/reference samples
(Fig. 1A). The normal/reference samples refer to samples collected
either previously from an individual, or from a number of healthy/
relatively healthy individuals, which are regarded as the background
or the normal samples in the SLE algorithm. With solid theoretical
background of DNB theory, the proposed SLE score and its corre-
sponding algorithm have the following four advantages. (i) Different
from traditional differential-gene or other static methods that focus
on the disease state, SLE method aims at capturing dynamical infor-
mation and identifying the pre-disease state during the progression
of a biological system (Fig. 1B). (ii) It detects individual-specific
entropy biomarkers, depending on the temporal and spatial infor-
mation from both individual (one-sample) information and the ref-
erence data. (iii) It is capable of analyzing a single-sample and thus
applicable to most biomedical cases. (iv) It helps to reveal ‘dark gen-
es’, which are non-differential but sensitive to network entropy
scores and perform well in prognosis (Fig. 1C). This new computa-
tional method was validated by both simulation and real datasets.
Applying the method of SLE to an individual-sample dataset of
influenza virus infection, the significant increase of SLE scores sig-
naled the respective (upcoming) influenza symptoms for all symp-
tomatic individuals, while the smooth SLE scores showed no false
positive signals for the asymptomatic subjects. SLE method was
then applied to the TCGA dataset of lung adenocarcinoma (LUAD).
Before a critical transition into cancer distant metastasis in Stage IV,
the significant increase of SLE score during stages IIIA–IIIB provided
early-warning signals of the disease deteriorations (Chiang and
Massagué, 2008; Klein, 2008). Functional enrichment analysis
for the genes in the top SLE module showed that the functions of
SLE-sensitive genes are consistent with the phenotype of viral infec-
tion for influenza virus infection and cancer processes of metastasis.
Moreover, SLE score identified the pre-disease states for acute lung
injury (Supplementary Information SC) and prostate cancer
(Supplementary Information SD). For all these complex diseases, the
critical states were identified successfully before the appearance of
severe disease deterioration. These applications are all coincident
with the clinical or experimental observation. The analyses of real
data also provided biological insights into the molecular mecha-
nisms of the critical transitions from the perspectives of both mole-
cules and networks for these complex diseases.

In summary, SLE provides an effective network approach for
studying complex diseases based on a novel entropy-induced data
transformation. It opens a new way to identify the pre-disease state
and its leading network even with ‘dark genes’ during disease pro-
gression using only a single-sample of each individual. Therefore,
SLE is of great potential in clinic application, based on which it is
possible to characterize individual-specific state through only a
single-sample and thus achieve the personalized disease prediction.

2 Materials and methods

2.1 Theoretical background
The disease progression can be modeled by three states or stages
(Supplementary Fig. S1 and Fig. 1B) (Chen et al., 2012; Scheffer
et al., 2009; Li et al., 2017; Liu et al., 2019): (i) normal state, which

Fig. 1. The schematic illustration of single-sample landscape entropy (SLE).

(A) Given a number of reference samples which can be derived from normal cohort,

the SLE is calculated based on a single-sample from any individual. Specifically,

both the reference samples and the to-be-determined single-sample are mapped to

the existing PPI network or other reference network, which can be partitioned into

local networks. For each local network centered on gene k, the local SLE score

DH(k) is calculated. (B) Give a series of samples or time-course samples from an in-

dividual, the tipping point or the pre-disease state can be identified through the sig-

nificant increase of SLE, i.e. the SLE changes gradually when the system is in the

normal state, while it increases abruptly when the system approaches the tipping

point, due to the dynamic nature of SLE. (C) Different from the traditional bio-

markers based on differential-expression genes, SLE actually identified the pre-dis-

ease sample by exploring the dynamic and network features that result in the high

SLE even with non-differential genes, that is, our SLE method can uncover the ‘dark

genes’ (in the sense of differential associations), which plays an important role when

the system approaches the critical point

Single-sample landscape entropy 1523

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/5/1522/5584232 by Shandong U
niversity user on 04 April 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz758#supplementary-data
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: -
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz758#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz758#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: 2 Methods
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz758#supplementary-data
Deleted Text: 1


is a stable state with high resilience and robustness to perturbations;
(ii) pre-disease state, which is the tipping point just before the cata-
strophic shift into the irreversible disease state and is thus character-
ized by low resilience and robustness due to its critical dynamics,
but is still reversible to the normal state with appropriate treatments;
and (iii) disease state, which is another stable state generally with
high resilience and robustness and is thus usually very difficult to re-
turn to the normal state even with intensive medical treatment.

The SLE method aims at identifying the pre-disease state before
an irreversible critical transition into the disease state. The theoretic-
al background of SLE approach is our recently proposed DNB the-
ory, which was developed to quantitatively identify the critical state
or tipping point during the progression of a complex system based
on multiple samples. Theoretically, when a complex system is near
the critical point, among all observed variables there exists a domin-
ant group defined as the DNB variables/biomolecules, which satisfy
the following three conditions based on the observed data (Chen
et al., 2012):

• The correlation (PCCin) between any pair of members in the

DNB group rapidly increases;
• The correlation (PCCout) between one member of the DNB group

and any other non-DNB member rapidly decreases;
• The standard deviation (SDin) or coefficient of variation for any

member in the DNB group drastically increases.

In other words, the above conditions are necessary conditions of
the phase transition, and can also be approximately stated as: the
appearance of a strongly fluctuating and highly correlated group of
features/variables implies the imminent transition into the disease
state. Then, these three conditions are adopted to quantify the tip-
ping point as the early-warning signals of diseases, and further, the
identified dominant group of biomolecules consists of DNB mem-
bers. The DNB theory has been applied to a number of analyses of
disease progression and biological processes to predict the critical
states as well as their driven factors (Liu et al., 2016, 2018; Yang
et al., 2018; Yu et al., 2017).

2.2 Algorithm to identify the tipping point based on SLE
Given a number of reference samples (samples from normal cohort
which are used as the background that represents the healthy or rela-
tively healthy individuals), we carry out the following algorithm to
identify the tipping point by using only one sample (see Fig. 1A).

[Step 1] Map the genes to protein-protein interaction (PPI) net-
work (or other template network), forming a global network NG. In
this work, we use the PPI network downloaded from STRING
(https://string-db.org) (Szklarczyk et al., 2015), which incorporates
the interactions of the selected genes with a confidence level 0.800.
All the isolated nodes, without any links to other nodes, were dis-
carded. Clearly, for all individual samples, the PPI network NG is
identical as a template network.

[Step 2] Extract each local network from the global network NG,
such that each local network Nk (k¼1, 2,. . ., Q) is centered at a gene

gk, whose 1st-order neighbors {gk
1, gk

2,. . ., gk
M} are the edges (Fig. 1A).

There are totally Q local networks if there are Q genes in NG.
[Step 3] For each local network Nk (k¼1, 2,. . ., Q) at a time

point t, calculate the local entropy Hnðk; tÞ based on n reference
samples {s1(t), s2(t), . . ., sn(t)} (Fig. 1A), i.e.

Hnðk; tÞ ¼ � 1

logM

XM

i¼1

pi
nðtÞlogpi

nðtÞ; (1)

with

pi
nðtÞ ¼ jPCCnðgi

kðtÞ; gkðtÞÞj
XM

j¼1

jPCCnðgj
kðtÞ; gkðtÞÞj

; (2)

where PCCnðgi
kðtÞ; gkðtÞÞ represents the Pearson Correlation

Coefficient between the center gene gk and a neighbor gk
i based on n

reference samples. In Eq. (1), the superscript k records that the local
network is centered at gk, the subscript n denotes the number of
samples and constant M is the number of edges/neighbors in the
local network Nk. In Eq. (2), symbols gkðtÞ and gk

i ðtÞ respectively de-
note the expressions of genes gk and gk

i at time point t.
[Step 4] For a single sample scase(t) of an individual, mix it with n

reference samples. Calculate the entropy Hnþ1ðk; tÞ based on nþ1
mixed samples {s1(t), s2(t), . . ., sn(t), scase(t)} (Fig. 1A)

Hnþ1ðk; tÞ ¼ � 1

logM

XM

i¼1

pi
nþ1ðtÞlogpi

nþ1ðtÞ; (3)

In Eq. (3), the definition of pi
nþ1 is similar to that in Eq. (2), but

the correlation PCCnþ1ðgi
kðtÞ; gkðtÞÞ is based on nþ1 mixed sam-

ples {s1(t), s2(t), . . ., sn(t), scase(t)}.
[Step 5] Calculate the differential entropy DHðk; tÞ between

Hnðk; tÞ and Hnþ1ðk; tÞ, i.e.

DHðk; tÞ ¼ DSDðk; tÞjHnþ1ðk; tÞ �Hnðk; tÞj; (4)

with

DSDðk; tÞ ¼ jSDnþ1ðk; tÞ � SDnðk; tÞj; (5)

where SDnðk; tÞ and SDnþ1ðk; tÞ are the standard deviations of the
gene expression for center gene gk respectively based on n reference
samples {s1(t), s2(t), . . ., sn(t)} and nþ1 mixed samples {s1(t),
s2(t), . . ., sn(t), scase(t)}. The differential entropy jHnþ1ðk; tÞ �Hnðk; tÞj
between Hnðk; tÞ and Hnþ1ðk; tÞ characterizes the differences caused
by the single case sample scase(t). In other words, comparing
with the local entropy Hnðk; tÞ based on n reference samples {s1(t),
s2(t), . . ., sn(t)}, Hnþ1ðk; tÞ based on nþ1 mixed samples {s1(t), s2(t),
. . ., sn(t), scase(t)} records the perturbation brought by the single
sample scase(t) for local network Nk. Besides, to bring the fluctuation
of genes into consideration, the differential standard deviation
DSDðk; tÞ is regarded as the weight coefficient.

[Step 6] Calculate the weighted sum of DHðkÞ for all the local
networks, i.e.

DHðtÞ ¼ 1

Q

XQ

k¼1

DHðk; tÞ; (6)

where constant Q is the number of all genes. In Eq. (6), DHðtÞ
records the overall impact caused by the single sample Scase(t), and
thus is called the global SLE score or just SLE score for the global
network NG, while DHðk; tÞ in Eq. (4) is called the local SLE score
for the local network Nk centered at gene gk.

According to the DNB theory (Chen et al., 2012), when the sys-
tem approaches the critical state, the DNB biomolecules exhibits sig-
nificantly collective behaviors with fluctuations. Thus, in a local
network within which the nodes are DNB biomolecules, the correl-
ation coefficient PCCnþ1ðgi

kðtÞ; gkðtÞÞ in the probability pi
nþ1 be-

come more similar or equalized when the system is near a critical
point (see Section E in Supplementary Information for detailed der-
ivation), leading to the increase of local SLE score DHðkÞ in Eq. (4).
Moreover, in Eq. (6), the term DSDðk; tÞ increases accordingly,
which also contributes to the boost of SLE score DHðtÞ. Thus, SLE
score can provide the early-warning signals of the critical transition.
From above algorithm, it is seen that the proposed method is not
governed by a specific kinetic system, and thus model free.

2.3 Data processing and functional analysis
We applied the SLE scheme to four time-course or stage-course data-
sets, i.e. lung adenocarcinoma (LUAD) from TCGA database, the
time-course dataset for influenza virus infection process
(GSE30550), the microarray data of acute lung injury induced by
phosgene inhalation (GSE2565), and prostate cancer (GSE5345)
which were downloaded from the NCBI GEO database (www.ncbi.
nlm.nih.gov/geo). For all these omics data, we discarded the probes
without corresponding NCBI Entrez gene symbol. For each gene
mapped by multiple probes, the average value was employed as the
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gene expression. The procedure of building a molecular interaction
network was as follows. First, the biomolecular association net-
works for Homo sapiens and Mus musculus were downloaded from
several public databases, e.g. protein–protein interactions from
STRING (http://string-db.org) (Szklarczyk et al., 2015), and tran-
scriptional regulations from TRED (rulai.cshl.edu/cgi-bin/TRED/
tred.cgi? process¼home). We integrated this linkage information
together without redundancy into a whole molecular interaction
network including 65 625 functional linkages in 11 451 molecules
for Homo sapiens, and 37 950 linkages in 6683 molecules for Mus
musculus. Second, the genes from each microarray dataset were
mapped to the integrated network to extract the related linkages.
The molecular network was used for consequent analysis. Finally,
our main results were visualized by Cytoscape (www.cytoscape.org)
in the post-processing step. The functional analysis including gene
ontology and pathway enrichment was based on GO database
(http://www.geneontology.org/page/go-database) and KEGG map-
per tool (http://www.genome.jp/kegg/tool/map\_pathway2.html).

Dataset GSE30550 comprises expression profiles of humans
with influenza virus infection. The gene expression profiles were
obtained and measured on whole peripheral blood drawn from all
subjects at an interval of 8 h post-inoculation (hpi) through 108 hpi.
There are 11 961 probe sets and 17 samples in the original
GSE30550 dataset, and 11 619 gene symbols were mapped from the
ID of the probe sets.

The LUAD dataset contained RNA-Seq data and included both
tumor and tumor-adjacent samples. The tumor samples were div-
ided into different stages based on clinical (stage) information from
TCGA, and the samples without stage information were ignored.

Functional annotations were performed by searching the NCBI
gene database (http://www.ncbi.nlm.nih.gov/gene). The enrichment
analyses were separately obtained using web service tools from the
Gene Ontology Consortium (GOC, http://geneontology.org) and cli-
ent software from Ingenuity Pathway Analysis (IPA, http://www.in
genuity.com/products/ipa).

3 Results

We present the definition and theoretical explanation of SLE score in
Section 2. Here, we used a single-sample with high-throughput omics
data, to identify the pre-disease state or early warning signals of the
disease deterioration based on the SLE score. Achieving reliable identi-
fication with only one sample is of great importance in clinic applica-
tion since it is usually difficult to obtain multiple samples from an
individual who does not yet exhibit any disease symptoms during a
short period. To illustrate how SLE works, we applied our method
first to a simulated dataset, and then four real datasets, including in-
fluenza infection (GSE30550), prostate cancer (GSE5345) and acute
lung injury (GSE2565) from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) and LUAD from the TCGA database (http://cancerge
nome.nih.gov). The applications of SLE score in influenza infection
and LUAD are illustrated in the main text, while the others are pro-
vided in Supplementary Information. The successful identification of
the pre-disease states in these diseases validated the effectiveness of
SLE method in quantifying the tipping point just before the critical
transitions into severe disease states.

3.1 Validation based on numerical simulation
In order to validate the proposed SLE method, we employed a theor-
etical network with sixteen nodes (Fig. 2A) to illustrate the identifi-
cation of the early-warning signals when the system approaches a
tipping point. Such a regulatory network with Michaelis-Menten or
Hill form is often employed in the analysis to study gene regulatory
activities such as transcription and translation (Garcia-Ojalvo et al.,
2004; Sherman and Cohen, 2012; Cantone et al., 2009), and multi-
stability and nonlinear biological processes (Chen et al., 2015;
Li et al., 2006). In addition, the bifurcation in Michaelis-Menten
form is often employed to model the state transition of gene regula-
tory networks (Gardner et al., 2000; O’Brien et al., 2012). Detailed
description of the network characterized by a set of sixteen stochastic

differential equations Eq. (S3) in Michaelis-Menten form, was pro-
vided in Supplementary Information SB. Based on a parameter q
varying from �0.4 to 0.15 with q ¼ 0 as the tipping point, a dataset
was generated for numerical simulation from the network.

In Figure 2B, we demonstrated the global SLE score, i.e. DH in Eq.
(6), for the whole 16-node network. It is seen that a sharp increase of
the global SLE score indicated the upcoming tipping point at a bifurca-
tion parameter value q ¼ 0. The underlying mechanism for SLE lies in
the fact that the differential entropy ðHnþ1ðkÞ �HnðkÞÞ follows dis-
tinct distributions respectively in the normal state (q ¼ �0:3) and in
the pre-disease state (q ¼ �0:05) (Fig. 2C), that is, when the system is
in the normal state, most probably each differential entropy is at a low
level; on the other hand, when the system approaches a tipping point
or is in the pre-disease state, some of the differential entropies increase
significantly. The sudden increase of a local SLE score is due to the col-
lective behaviors within the corresponding local network, that is, the
DNB critical properties include the drastic fluctuation of nodes and
the strong correlation among them in terms of their expressions. The
detailed theoretical explanation is provided in Section 2 and
Supplementary Information SA.

To exhibit the distinct dynamics of the system between the normal
state and the pre-disease state, we present the dynamical changes in
local SLE scores DHðkÞ ðk ¼ 1; 2; . . . ; 16Þ [as defined as in Eq. (4)]
respectively for 16 local networks, illustrating the landscape of the net-
work entropy in a global view (Fig. 2D). It is clear that when the system

A

C

D

B

Fig. 2. The validation of SLE method through a numerical experiment. (A) A net-

work with 16-nodes, based on which the numerical simulation is conducted. (B)

The curve of global SLE score DH defined in Eq. (6). It is clear that the sudden in-

crease of SLE score indicates the upcoming state transition at q ¼ 0, which is in ac-

cordance with the bifurcation parameter value at q ¼ 0 [see Eq. (S3) in

Supplementary Information]. (C) The distributions of differential entropy

ðHnþ1ðkÞ �HnðkÞÞ of the network respectively at q ¼ �0:3 (left) and q ¼ �0:05

(right). The distribution of the differential entropy follows the so-called volcano dis-

tribution (Liu et al., 2016). Comparing with the distribution of SLE at the normal

state, the volcano is much flatter when the system is at the pre-disease state, indicat-

ing the significant difference between the reference and single case sample in the crit-

ical stage. (D) The landscape of local SLE scores DHðkÞ ðk ¼ 1; 2; . . . ; 16Þ [as

defined as in Eq. (4)] respectively for 16 local networks. It clearly shows that when

the system approaches the tipping point at q ¼ 0, the drastic increase of SLE scores

for some local networks DHðkÞ ðk ¼ 1; 2; . . . ; 7Þ signals the tipping point of the

system. Actually, those indicative local networks are all centered at the DNB varia-

bles. See the detailed description in Supplementary Information SB

Single-sample landscape entropy 1525
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is far away from the tipping point, all the local SLE scores are smooth
and at a low level; when the system approaches the tipping point q ¼ 0,
the SLE scores of some local networks DHðkÞ ðk ¼ 1; 2; . . . ; 7Þ dras-
tically increase, which indicates the upcoming tipping point or pre-
disease state. It should be noted that those local networks with sharp
increasing SLE scores are actually centered in the so-called DNB mem-
bers, which is regulated by the dominant eigenvalue (see Supplementary
Information SA for details). Through this numerical experiment, it is
clear that the SLE approach is capable of exploiting the high-
dimensional information, even if there is only a single-sample. The nu-
merical experiment validates that the SLE score is reliable and accurate
in signaling the critical stage. We present the simulation and calculation
details in Supplementary Information SB. Our method is a model-free
method, which does not require a specific dynamical model of the sys-
tem under study. The model Eq. (S3) presented in Supplementary
Information is only for generating input data or samples to numerically
test our method, and is irrelevant with the real-data applications.

3.2 Tipping points of individual influenza infection
In dataset GSE30550, the time-series data records the influenza
virus infection process of 17 human adult subjects, who were inocu-
lated with live influenza virus H3N2/Wisconsin (Huang et al.,
2011). Gene expressions were derived for these subjects at 16 sam-
pling time points (�24, 0, 5, 15, 21, 29, 36, 45, 53, 60, 69, 77, 84,

93, 101 and 108 h) (Fig. 3C). Nine of the 17 adults were symptomat-
ic subjects, who developed clinical symptoms of influenza infection.
The other eight were asymptomatic subjects, who did not have any
clinical symptom at all time points (Fig. 3C). For each individual,
the gene expression profiles of the former 4 time points, i.e. -24, 0, 5
and 12 h, were regarded as reference samples, that is, the reference
samples which reflect the relatively healthy state of a volunteer were
also the individual-based samples.

Following the algorithm provided in Section 2 (also see Fig. 1),
17 SLE scores [DH defined in Eq. (6)] were calculated respectively
based on 17 individual samples in each time point (Fig. 3A).
Specifically, for each individual sample, the local SLE scores
(DHðk; tÞ in Eq. (4)) were calculated for every piece of local network
on the basis of an integrated Homo sapiens network (see Section 2
section for more details about the network). Then the global SLE
score [DHðtÞ in Eq. (6)] for each individual subject was presented as
the final score in Figure 3A. A drastic increase of SLE score indicates
the imminent appearance of flu infection symptoms (also see Fig. 3B
for each symptomatic subject).

The increase of SLE score provides an early-warning signal for
the disease state, i.e. the stage that clinical symptom arises. The
score of SLE in the nine symptomatic subjects drastically increases
before the appearance of influenza symptom, and the score in the
eight non-symptomatic subjects is stable on the whole (Fig. 3A).
Hence, the early-warning signals for the influenza symptom had
been detected in the 9 symptomatic subjects before the appearance
of the influenza symptoms, and there was no warning signal
detected for the 8 non-symptomatic subjects (Fig. 3A and C).
Clearly, the new SLE approach can effectively identify the pre-
disease samples and accurately detect the early-warning signals for
influenza virus infection on an individual basis. Therefore, at each
time point, the SLE score can be employed to identify the critical
state/stage of complex diseases based on solely an individual single-
sample. The landscape of local SLE score for the 9 symptomatic sub-
jects are presented in Figure 4.

For each individual sample at the corresponding signaling time
point, i.e. the time point with blue star mark in Figure 3B, the center
genes of all local networks were ranked according to the local SLE
scores. And the top 5% genes with the largest local SLE scores were
regarded as the SLE genes that are highly related to the occurrence
of symptoms. Then functional analysis was performed based on
these selected SLE genes.

3.3 Functional analysis of SLE genes for influenza

infection
For each individual subject at the respective tipping point, the top
5% genes with the largest local SLE scores were regarded as the SLE
genes. To validate the effectiveness of SLE score, the functional

Fig. 3. Identification of the tipping point of H1N2 influenza infection based on a sin-

gle sample. (A) The curves of SLE scores [DH defined in Eq. (6)] for 17 subjects.

Each red curve records for the SLE score based on the individual data of a symptom-

atic subject, while each blue curve corresponds to an asymptomatic individual. (B)

The individual SLE score curves of 9 symptomatic subjects. For each symptomatic

subject, the purple circle stands for the time point at which the initial flu symptoms

arises, i.e. the clinically diagnosed infection-time, and the blue star mark denotes the

identified tipping point or the pre-disease state by SLE score. (C) The summarized

prediction results. It is seen that for each symptomatic subject, the SLE score suc-

cessfully indicates the upcoming infection symptoms, while for each asymptomatic

subject, there is no false warning signal

Fig. 4. The landscapes of the local SLE score for 9 symptomatic subjects. The dy-

namical change of local SLE scores demonstrates the landscape of the network en-

tropy in a global view. For each subject, the purple circle stands for the time point at

which the initial flu symptoms arises, i.e. the clinically diagnosed infection-time, and

the orange star mark denotes the identified tipping point or the pre-disease state.

(Color version of this figure is available at Bioinformatics online.)
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analysis is carried out based on the common SLE genes that appear
in multiple symptomatic SLE gene sets. Functional analyses of these
SLE genes were performed through Ingenuity Pathway Analysis
(IPA). Besides, web analysis tool Gene Ontology Consortium
(Ashburner et al., 2000) analysis (GO analysis, http://www.geneon
tology.org/) was also employed to find biological features of SLE
gene set associated with influenza infection.

Based on GO and IPA, the enrichment analysis was proceeded
for the common SLE genes that appear in multiple tipping points
(multiple subjects). As shown in Table 1, these common SLE genes
are enriched into the biological processes of immunity or defense
against the influenza virus, e.g. ‘positive regulation of response to
external stimulus’ (GO: 1903047), ‘regulation of immune response’
(GO: 0050776), ‘regulation of lymphocyte mediated immunity’
(GO: 0002706), ‘defense response to virus’ (GO: 0051607), ‘posi-
tive regulation of natural killer cell differentiation’ (GO: 0032825)
and others in Gene ontology. Besides, SLE genes are enriched in
virus-infection functions annotation including ‘viral infection’, ‘acti-
vation of lymphocytes’, ‘response of macrophages’, ‘antimicrobial
response’, ‘replication of virus’ and others in IPA analysis.
Moreover, six genes with high frequency in all SLE gene groups that
respectively come from nine symptomatic subjects were listed in
Table 2. These genes are involved in the biological processes related
to influenza infection. The whole list of common SLE genes is pro-
vided in Supplementary Table S1. All enriched functions of common
SLE genes for influenza infection is provided in Supplementary
Table S2. The functional network based on common SLE genes is
provided in Supplementary Figure S2.

Clearly, the functional analysis shows that the SLE genes are
involved in the key biological processes or functions during influ-
enza infection. It is thus consistent with the process of influenza
virus infection, implying that the SLE genes not only identified the
pre-disease state prior to the emergence of symptoms but also were
involved in the key biological processes of influenza infection. These
SLE genes and their mutual interactions may be considered as poten-
tial drug targets against influenza infection, which will be our future
topic.

3.4 Critical state of lung adenocarcinoma (LUAD)
For the lung adenocarcinoma (LUAD) datasets, 459 tumor samples
and 58 tumor-adjacent samples were obtained from TCGA. Based
on clinical information, the samples were grouped into seven stages,
i.e. Stage IA, IB, IIA, IIB, IIIA, IIIB and IV of lung cancer (Table 3).
The tumor-adjacent (TA) samples were considered as reference sam-
ples or normal controls in this study.

Metastasis, the process by which cells leave a tumor and colonize
distant sites, is the major cause of death for cancer patients with
solid malignant tumors (Steeg et al., 1988). Especially for non-small
cell lung cancer, tumor metastasis is primarily responsible for the
low 5-year survival rate (Marcus and Zhou, 2010). Stage IV is usual-
ly an advanced or metastatic cancer in which the tumor cells have
invaded into distant tissues of other organs (Chiang and Massagué.
2008). Thus, it is crucial to identify the tipping point prior to cancer
distant metastasis, so that chemotherapy and radiotherapy or other
strategies that are employed in treating non-small cell lung cancer in
Stage III, can be carried out timely to prevent from serious deterior-
ation or slow down cancer progression (Bareschino et al., 2011). In
order to detect the early-warning signal of cancer metastasis, the

SLE score was applied to the LUAD datasets. At each stage, the SLE
score, i.e. the differential entropy DHðtÞ in Eq. (6), was calculated
for every single sample. Different from influenza-infection dataset,
there are no individual-based samples across all stages. Thus, in
each stage, an average SLE score against all single-sample-based
entropies was employed to quantify the risk of critical transition
into cancer distant metastasis.

As shown in Figure 5A, the sharp increase of the global SLE
score [DHðtÞ in Eq. (6)] was detected around Stage IIIB of LUAD,
indicating the imminent critical transition into the cancer metastasis
stage (Stage IV). It should be noted that there is different number of
samples in each stage, while according to SLE scheme, for each sin-
gle sample there is an SLE score. To quantify the tipping point, the
average value was adopted and presented as a unified score for each
stage. To show the local SLE scores [DHðk; tÞ in Eq. (4)] in a global
view, the landscape of the entropy values for 6804 local networks
was illustrated (Fig. 5B). It can be seen that around IIIB stage, there
is a group of genes whose local SLE scores abruptly increase
(Fig. 5B). This critical phenomenon resulted from the drastic in-
crease of the correlations between molecules in this group when the
system approaches the tipping point (see Section 2). In Figure 5C,
we illustrated the evolution of the top SLE gene group/module, i.e. a
mapped STRING network of top 200 genes with the largest local
SLE scores. It can be seen that a significant change in the network
structure occurs at Stage IIIB, signaling the critical transition into
cancer distant metastasis in Stage IV. The whole dynamics of the top
SLE module across all 7 stages are given in Supplementary Figure
S3. We also presented the dynamical evolution of the whole gene
network as in Figure 5D. At the lower left corner, a group of top
200 genes with the largest local SLE scores are intentionally
grouped, whose collaborative fluctuation occurs in Stage IIIB
(Fig. 5D). The whole dynamics of the network composed by all
genes across the 7 stages are given in Supplementary Figure S4.

Now that Stage IIIB is a critical stage for the cancer distant me-
tastasis, we ranked the genes by their corresponding local SLE score
in Stage IIIB, that is, the entropy value for the local network cen-
tered in a gene. For each case sample, a group of top 5% genes with
the largest local SLE values were then selected to be further ana-
lyzed. It was showed in the following sections that these SLE genes
not only are involved in metastasis processes or metastasis-related
functions, but may perform better in prognosis.

3.5 Functional analysis of SLE genes for LUAD

metastasis
The KEGG enrichment analysis (Kanehisa and Goto, 2000) showed
that the SLE genes (top 5% genes with the largest local SLE values
in Stage IIIB) were highly associated with biological processes of
cancer metastasis, such as, focal adhesion, chemokine signaling
pathway, cell cycle, mTOR signaling pathway, Ras signaling path-
way, EGFR tyrosine kinase inhibitor resistance, migration and
invasion.

Through literature searching, some genes in the common SLE
gene group have been shown to be associated with the process of
cancer metastasis. For instance, LIMK1, whose mutation occurs
commonly in lung adenocarcinomas and large cell carcinoma, func-
tionally modulates non-small-cell lung cancer metastasis (Ji et al.,
2007). LIMK1 is also a cancer drug (Dabrafenib) target against

Table 1. The enrichment analysis for common SLE genes based on GO and IPA analysis

Gene Ontology Consortium IPA

Enriched function P value Enriched biological process P value

Positive regulation of response to external stimulus (GO: 1903047) 2.45E-08 viral infection 1.80E-15

Regulation of immune response (GO: 0050776) 5.11E-07 activation of lymphocytes 3.97E-14

Regulation of lymphocyte mediated immunity (GO: 0002706) 1.75E-06 response of macrophages 1.65E-12

Defense response to virus (GO: 0051607) 6.74E-06 antimicrobial response 4.27E-11

Positive regulation of natural killer cell differentiation (GO: 0032825) 2.55E-04 replication of virus 5.52E-09

Single-sample landscape entropy 1527
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LUAD by inhibiting non-small-cell lung cancer cell growth and me-
tastasis (Koscielny et al., 2017). EGFR is considered as a key gene in
the progression and treatment of lung adenocarcinomas, whose
overexpression has been discovered in 40% of lung adenocarcino-
mas cases (Walker et al., 2009). CXCL12, a prognostic marker sig-
nificantly associated with poor prognosis in lung cancer patients
(Wen et al., 2011), may activate the canonical extracellular signal–
regulated kinases (ERK) signaling pathway, which promotes cell in-
vasion and is involved in lung cancer metastasis (Cristea and Sage,
2016). PRNP is identified as highly associated with invasion in non-
small cell lung cancer (Lader et al., 2004). Transcription factor
SOX18, a critical switch for lymphangiogenesis, plays an important
role in cancer metastasis (Tobler and Detmar, 2006). Researchers
also showed that suppressing SOX18 function is sufficient to impede
tumor metastasis (Duong et al., 2012). TP53 codon 72 polymorph-
ism was associated with an increased risk of lung cancer (Piao et al.,
2011). DLX4, a gene inhibited motility and invasion via both hema-
togenous and lymphogenous routes, is one of the metastasis signa-
ture genes (Tomida et al., 2007). Overexpression of TREM2 may
enhance tumor cell proliferation and invasion (Araki et al., 2009).
By mediating heterotypic and homotypic intercellular adhesion,
gene IGSF1 is involved in the invasion and metastasis process (Xue
et al., 2005). Mutation in gene TNFRSF6B, which may block Fas
ligand, has been observed to be amplified in almost half of lung
tumors (Cooper, 2005). Eight overlapped genes appearing in all 10
SLE gene groups that respectively come from 10 stage-IIIB single
samples were listed in Table 4. These genes have all been reported to
be associated with metastasis process or metastasis related

Table 3. The number of tumor samples within each stage in the

LUAD dataset from TCGA

Stage IA IB IIA IIB IIIA IIIB IV TAa

Samples 106 124 39 59 62 10 21 58

aTA refers to the tumor-adjacent samples, which are employed as the

reference.

Table 2. The genes with high frequency in nine SLE gene groups respectively from nine symptomatic individual samples

Gene Frequency Location Familya Relation with cancer metastasis

ACADL 9 Cytoplasm Enzyme During influenza infection, multiple steps in the b-oxidation of

long chain fatty acids including ACADL were disrupted at the

mRNA level (Tarasenko et al.,2015).

MMP9 9 Extracellular Space Peptidase MMP9 is closely related to influenza pathogenesis by mediating

excessive neutrophil migration into lung, which is involved with

viral replication (Bradley et al., 2012). Mmp9 is essential for

tissue and cellular repair and development in the lung during

influenza infection (Jamieson et al., 2013).

MNX1 9 Nucleus Transcription regulator MNX1, a motor neuron marker, is enriched to inflammatory

response according to IPA.

EWSR1 8 Nucleus Ion channel During influenza infection, EWSR1 may disturb gene expression

by mimicking or interfering with the normal function of

CTD-POLII within the transcription initiation complex

(Bavagnoli and Maga, 2013).

FLT4 8 Plasma Membrane Transmembrane receptor FLT4, also known as VEGFR-3, disorders of NF-jB-mediated

immunity (Puel et al., 2004).

FZD2 8 Plasma Membrane G-protein coupled receptor Influenza virus infection downregulates the expression of proteins

of Wnt/b-catenin signaling pathway like FZD2 (Almansa et al.,

2017).

HIGD1A 8 Cytoplasm Other In the complex seizures due to influenza A(H1N1) pdm09,

HIGD1A which is related to cellular response to stress is

significantly downregulated (Tsuge et al., 2014).

NFATC1 8 Nucleus Transcription regulator NFATC1 is critical for host resistance to viral infections (Maruya

et al., 2011).

aFrom Ingenuity Pathway Analysis.

Fig. 5. Identification of the critical state of LUAD distant metastasis. (A) It exhibits SLE

score curve of LUAD progression, which shows the critical state around IIIA–IIIB stages.

(B) The dynamical change of local SLE scores demonstrates the landscape of the network

entropy in a global view. (C) The evolution of the top SLE gene group/module, i.e. the

top 200 genes with the largest local SLE scores, illustrates that a significant change in the

network structure occurs at Stage IIIB. The network structure is derived by mapping

genes to the STRING PPI network. All the isolated nodes, without any links to other

nodes, were discarded. The color of each node represents the value of the scaled local

SLE score, while the color of each edge stands for the absolute value of Pearson correl-

ation coefficient jPCCj. The whole dynamics of the top SLE module across all 7 stages

are given in Supplementary Figure S3. (D) We illustrate dynamical evolution of the whole

gene network (the co-expressed network). All the top 200 SLE genes are intentionally put

together at the lower left corner. It is seen that by using SLE approach, the early-warning

signals of cancer distant metastasis from a network perspective can be detected at IIIB

stage, before the critical transition into distant metastasis in Stage IV. The whole dynam-

ics across the seven stages are given in Supplementary Figure S4
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functions. The whole list of common SLE genes is provided in
Supplementary Table S3. All enriched functions of common SLE
genes for influenza infection is provided in Supplementary Table S4.
The functional network based on common SLE genes of LUAD was
provided in Supplementary Figure S5.

Functional enrichment through GO analysis illustrated that the
common SLE genes are involved in the biological processes including
the regulation of cell cycle, the regulation of cell adhesion, the regula-
tion of kinase activity and others (Table 4). All these biological proc-
esses are associated with the cancer metastasis or progression of
cancer. Furthermore, in IPA (Ingenuity Pathway Analysis), these
common genes were also enriched to metastasis-related function anno-
tation, such as non-small-cell lung carcinoma and metastatic non-
small-cell lung cancer at Stage IV by functional enrichment (Table 5).

3.6 Revealing non-differential ‘dark genes’ by SLE

method
In most pathological and biomedical studies, differential expression
genes draw much attention in finding new biomarkers, key regulators
and drug targets. However, similar to non-coding RNAs (or non-
coding regions of DNA) that are now considered as the ‘dark matter’
in sequence, the SLE-based analysis shows that some non-differential
genes may play important roles in disease progression and also per-
forms well in prognosis (Fig. 6), not at the gene level but at the network
level. Thus, these non-differential genes which are sensitive to SLE
score are considered as the ‘dark matter’ in expression.

To discover these ‘dark genes’, we first selected SLE genes (top
5% genes with the largest local SLE score) that are not differentially
expressed. Different from traditional survival analysis based on gene
expression, the survival analysis exhibited in Figure 6 is carried out
based on the local SLE score, i.e. the weighted network entropy for
a local network defined as in Eq. (4). In other words, Figure 6 shows
the survival analysis results with P-values<0.05 based on some
non-differential genes in the common SLE gene group of LUAD. We
divided the samples into two groups based on the median of local
SLE score level. Each group respectively included 517 samples.
Clearly, a lower level of SLE score in HARBI1, BPIL2, CNN3 and
IL17C is significantly associated with poor survival, while a higher
level of SLE score in LAMB3 and TJP1 is associated with poor sur-
vival, which validated the effectiveness on LUAD progression for
those ‘dark genes’ in the SLE group.

These SLE genes may get involved in the key biological processes
or functions that trigger the critical deterioration, but are usually
ignored due to the non-differential characteristics in gene expres-
sion. Therefore, our new method may help to find those new bio-
markers, drug targets and prognosis indicators from the perspective
of SLE score.

4 Discussion

The lack of samples is a general problem in biological studies and
clinical practice, which often results in model errors and bias in

Table 4. The genes with high frequency in 10 SLE gene groups in the critical stage (Stage III)

Gene Frequency Location Familya Relation with cancer metastasis

SOX18 10 Nucleus Transcription regulator SOX18 is a critical switch for lymphangiogenesis thus

relates to cancer metastasis (Tobler and Detmar, 2006).

TREM2 10 Plasma membrane Transmembrane receptor TREM2 enhances tumor cell proliferation and invasion

(Araki et al., 2009).

ACYP2 10 Cytoplasm Enzyme ACYP2 associates with colorectal cancer metastasis (Zhang

et al., 2016).

FBXO32 10 Cytoplasm Enzyme FBXO32 is a negative regulator of epithelial to

mesenchymal transition (EMT), while acquisition of

EMT is important for cancer progression and metastasis

(Tanaka et al., 2016).

TTK 10 Nucleus Kinase TTK associates with metastasis via chromosomal

Instability (Harima et al., 2009).

VDAC2 10 Cytoplasm Ion channel The up-regulated expression of VDAC2 would disturb the

mitochondrial ion homeostasis in the oxidative stress

(Liu et al., 2012b), which drives tumor progression and

metastasis (Sotgia et al., 2011).

YWHAQ 10 Cytoplasm Other YWHAQ coordinates the regulation of proliferation,

survival and metastasis (Liang et al., 2016).

YY1 10 Nucleus Transcription regulator YY1 positively regulates the expression of HLJ1, whose

promoter contains four YY1-binding sites (Tsai et al.,

2014). HLJ1, a tumor suppressor, closely relates to both

tumor growth and metastasis in non-small cell lung

cancer (Chen et al., 2008).

aFrom Ingenuity Pathway Analysis.

Table 5. The functional enrichment of common SLE genes in the critical stage samples for LUAD

Gene Ontology Consortium IPA

Enriched function P value Enriched biological process P value

Regulation of cell cycle (GO: 0051726) 1.17E-06 Metastatic non-small cell lung cancer 8.16E-20

Regulation of cell-cell adhesion (GO: 0022407) 6.74E-06 Progression of carcinoma 4.08E-11

Regulation of kinase activity (GO: 0043549) 5.28E-05 Locally advanced non-small cell lung carcinoma 1.03E-08

Tube morphogenesis (GO: 0035239) 1.22E-04 Metastatic large cell lung carcinoma 1.08E-08

Ras protein signal transduction (GO: 0007265) 5.12E-04 Stage IV metastatic solid tumor 1.07E-07

Single-sample landscape entropy 1529
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analysis. In this study, to tackle with the small-sample problem, a
single-sample method was proposed to identify tipping points or
critical states which appear just before the disease state. In contrast
to the information of differential expressions used in traditional bio-
markers to ‘diagnose disease’, SLE is based on the information of
differential associations or differential networks among biomole-
cules, and thereby is capable to ‘predict disease’. By exploiting the
high-dimensional information of the observed data, this method was
successfully applied to quantifying the tipping points from both
simulation and real datasets solely based on single-sample data.

Specifically, on the basis of 17 individual time-series datasets of
the influenza virus infection, the SLE score identified the pre-disease
states for the 9 symptomatic subjects before the first occurrence of
their respective symptoms without false SLE signal for the other 8
asymptomatic subjects. The common SLE genes were enriched to im-
mune response, antimicrobial response and other influenza infection
related functions. Both computational and functional results are con-
sistent with the observation in the original study. The successful pre-
diction in influenza infection validates the effectiveness of SLE score
in quantifying the tipping point through only individual-based single-
samples. For LUAD dataset, the significant increase of SLE scores
during stages IIIA–IIIB signaled the imminent transition into distant
metastasis in Stage IV. The common SLE genes of LUAD were associ-
ated with metastatic processes or metastasis-related functions.
Moreover, SLE score succeeded in providing early-warning signals be-
fore critical transitions in acute lung injury and prostate cancer, which
were provided in Supplementary Information SC–SD. These results
also exhibited that the SLE-based analysis is consistent with the pro-
cess of disease deterioration, implying that the SLE genes not only
provide general early-warning signals to the disease states but are
found to be involved in the key biological processes of the critical
transition into a severe disease state. These SLE genes and their mu-
tual interactions may be potential drug targets against influenza infec-
tion, which will be our future topic.

It should be noted that SLE method is a model-free approach.
However, when applying SLE method, there are still a few empirical
parameters to be chosen. First, in the algorithm, we use the PPI net-
work downloaded from STRING (https://string-db.org), which
incorporates the interactions of the selected genes with a confidence
level 0.800. One could choose a different level or even other tem-
plate network when preparing the network structure. Second, a uni-
fied threshold 5% is used in this paper, that is, the top 5% genes
with the largest local SLE scores were selected as SLE genes for

further biological analysis. Besides, the number of reference samples
is important when applying SLE method. In Supplementary
Information, we presented some discussions about the SLE perform-
ance under different reference sizes or conditions (Supplementary
Information SF) and with randomly permuted orders of reference
samples (Supplementary Information SE). Given reference samples,
SLE score is capable of quantifying the difference between a new
sample and the reference samples based on the differential associa-
tions or networks, and thus detect the imminent critical transition.
On the other hand, due to the individual-based nature of SLE score,
the dynamical change of SLE score and the composition of SLE
genes for different individuals may differ from each other even for
the same disease, but the SLE score DH drastically increases when-
ever approaching the tipping point. It should also be noted that
when the reference samples and case sample are all from the same
individual, the SLE could be regarded as a personalized heath index,
that is, if an individual is continually monitored at a series of time
points, it is possible to detect any significant dynamical changes
based on SLE for this individual, by taking the healthy samples of
this individual as reference.

The pre-disease state is regarded as a critical stage reversible to
the normal state. Thus, appropriate medical care for patients in the
pre-disease state is crucial and effective in contrast to the patients in
the irreversible disease (deterioration) state. However, how to ar-
range the appropriate treatment is beyond the scope of this work,
and will be a future topic. Moreover, theoretically, any omics data
(e.g. transcriptomic data, proteomics data, or metabolomics data)
which can dynamically reflect the change of the disease progression,
can be used to detect the critical state or tipping point. Thus,
depending on the disease type, we may choose an appropriate
type of the omics data. With current high-throughput technologies,
generally RNAs can be quantified in a relatively robust way in con-
trast to proteins and metabolites. Therefore, the transcriptomic data
(e.g. RNA-Seq or microarray) are effective for SLE identification
from the computational viewpoint, although metabolomics and
proteomics data can also be used to identify the critical state in a
similar way.

In summary, we proposed a novel computational method SLE
score solely based on a single-sample of each individual. As exhib-
ited above, SLE score is capable to identify the tipping point as well
as the dynamic network biomarkers during disease progression for
individuals. This method is of great potential in personalized pre-
disease diagnosis and prevention medicine. The identification of SLE
genes is also helpful in elucidating molecular mechanism of disease
progression at the network level, discovering new network bio-
markers, ‘dark genes’, drug targets and prognosis indicators.
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