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Abstract

Tipping points or critical transitions widely exist during the progression of many biological processes. It is of great importance to
detect the tipping point with the measured omics data, which may be a key to achieving predictive or preventive medicine. We present
the tipping point detector (TPD), a web tool for the detection of the tipping point during the dynamic process of biological systems,
and further its leading molecules or network, based on the input high-dimensional time series or stage course data. With the solid
theoretical background of dynamic network biomarker (DNB) and a series of computational methods for DNB detection, TPD detects
the potential tipping point/critical state from the input omics data and outputs multifarious visualized results, including a suggested
tipping point with a statistically significant P value, the identified key genes and their functional biological information, the dynamic
change in the DNB/leading network that may drive the critical transition and the survival analysis based on DNB scores that may help
to identify ‘dark’ genes (nondifferential in terms of expression but differential in terms of DNB scores). TPD fits all current browsers,
such as Chrome, Firefox, Edge, Opera, Safari and Internet Explorer. TPD is freely accessible at http://www.rpcomputationalbiology.cn/
TPD.
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Introduction
A complex biological process is generally regarded as the pro-
gression of a high-dimensional nonlinear dynamic system. Such a
continuum of progressive changes always occurs in the microen-
vironment and macroenvironment of a certain organ or the whole
organism and is involved in complicated regulations among mas-
sive biomolecules [1–5]. The time evolution or dynamic change
of many biological systems, such as disease progression, the cell
fate commitment, is not always smooth but occasionally abrupt;
that is, there is a tipping point or critical state during such a
process at which the system state shifts irreversibly from one
state (e.g. normal state) to another state (e.g. disease state) [6–10].
There are many studies investigated the microscopic mechanisms
of complex diseases [11–13], and a group of researchers put an
emphasis on network biomarkers in a biological process [14–18].
Regardless of differences in specific biochemical environments,
the time evolution of a complex biological system is usually mod-
eled as a time-dependent nonlinear dynamic system, in which
the abrupt state transition is viewed as the phase shift at a
bifurcation point [6]. The progression of a complex biological
process with a tipping point can be roughly divided into three
states or stages: the before-transition state when the system is far
away from the bifurcation point, the critical/pre-transition state

when the system approaches the bifurcation point and the after-
transition state when the system passes the bifurcation point [6,
19–21]. Recently, there are some well-designed methods proposed
to capture the signal of state transitions, such as BioTIP, which
is capable of inferring lineage-determining transcription factors
governing critical transition from single-cell transcriptomes [22].

Based on a solid theoretical background, the dynamic network
biomarker (DNB) identifies the critical state during biological
processes or observed symptoms among diseases [1, 19], and the
progression of a biological system is divided into three stages or
states from a computational point of view i.e. a before-transition
state, a critical state and an after-transition state. For a given
omics time series, the design of a suitable tipping point detector
(TPD) based on DNB involves the consideration of the following
factors:

1) When a complex system is before the tipping point/critical
state, the system state is stable with high resilience, and the
curve of a TPD index is expected to be steady and smooth;
when the system is near the tipping point, the system state
is unstable with low resilience, and there is a sudden increase
in the corresponding detector index; when it is after the
tipping point, the system is in another stable state, and the
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Figure 1. Schematic presentation of the TPD toolset. TPD consists of two parts: input workflow (A–C) and visualized outputs (D–G). (A) TPD accepts
gene expression microarray data including bulk and single-cell data as input after pre-processing steps. (B) There are three detection methods based
on the DNB concept provided by TPD for different data types (e.g. bulk or single-cell data). (C) For an input dataset, TPD provides options for users to
assign samples to time points, set the cutoff parameter, choose species (Homo sapiens or Mus musculus) and decide whether to perform survival analysis,
etc. (D) The tipping point is indicated by both the global detection curve and the landscape display of local genes. (E) Dynamic changes in the molecular
network, which consists of DNB genes, evolving from the before-transition state and critical state to the after-transition state. (F) For the scRNA-seq
data analysis, TPD outputs the analysis results, including cell type clustering and fraction information. (G) Finally, the biological description of signaling
genes with the top highest and lowest CI values is shown.

corresponding curve of the detector index becomes smooth
again [1, 9, 19, 23].

2) When the complex system is in a critical state, among
all observed genes, there exists a dominant group of
biomolecules defined as the DNB, which are intuitively a
group of strongly correlated molecules with simultaneously
fluctuating expressions. This group of biomolecules can
be identified together with the tipping point by suitable
detection methods [1, 24].

3) The identified key genes (i.e. signaling genes with the top
highest and lowest DNBs or modified DNB scores) may play
important roles in the progression of the complex biological
system and are involved in the dynamic changes in the
network, survival analysis, cell type clustering results, etc.
[25–28].

Based on these requirements, we developed the TPD, which
is the first publicly accessible web tool for the detection of the
tipping point and the analysis of the identified DNB. An overview
of TPD workflow is demonstrated in Figure 1.

Materials and methods
TPD provides three different methods for tipping point detec-
tion with the solid DNB theoretical background i.e. conventional
dynamic network biomarker (cDNB) [1, 19] and single-sample
landscape entropy (SLE) [24] for bulk datasets and single-cell
graph entropy (SGE) [28] for single-cell RNA sequencing (scRNA-
seq) datasets (Figure 1B), which quantitatively identify each can-
didate tipping point with a method-specific composite index (CI)
(Figure 1D). A detailed description of these methods is provided as
below.

cDNB
Given a bulk dataset, the cDNB algorithm in the proposed webtool
TPD is for detecting the dynamic differences in statistical indices.
First, TPD mapped the gene expression to the default Homo sapiens
or Mus musculus protein–protein interaction (PPI) network. Second,
the network was partitioned into many local networks. Each local
network contained a center node/gene and all of its 1st-order
neighbors based on the network structure. The local-network
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index I-score of a center node at time point t for a local network
with M + 1 members (i.e. one center node with M 1st-order
neighboring nodes) was then calculated through the following
definition:

It = SDin(t)
PCCin(t)
PCCout(t)

, (1)

where

SDin(t) =
∑n

i=1 SD
(
gi(t)

)

M
(2)

is the average differential standard deviation (SD) of the nodes
inside the local network. Vector gi(t) stands for the gene expres-
sions of a nodes i inside the local network;

PCCin(t) =
∑n

i,j=1,i �=j | PCC
(
gi(t), gj(t)

)
|

M (M − 1)
(3)

is the average value of Pearson correlation coefficients (PCCs) (in
absolute value) inside the local network i.e. both nodes i and j are
in the same local network;

PCCout(t) =
∑n

i,l=1,i �=l | PCC
(
gi(t), gl(t)

) |
M (M − 1)

(4)

is the average PCC (in absolute value) between a member (node i)
in the local network and that (node l) outside the local network.

Thus, the network-based index, which is also called the global
composite cDNB score, It, can quantitatively identify the criticality
of the state for each DNB node. Each node has an It value, and
hence those It scores for all of nodes with the time evolution
construct a landscape. When the system approaches the critical
state, It of each DNB node increases drastically based on the three
statistic conditions of DNB, whereas It of other non-DNB node may
have no significant change.

SLE
Given a dataset with reference samples, such as the gene expres-
sions of the healthy cohort, and one single case sample from a to-
be-test individual, the SLE algorithm in in the proposed webtool
TPD is for determining whether the single case sample is from a
critical/pre-disease state. The algorithm of SLE can be described
as follows:

1) Map the genes to the PPI network (or other template net-
works), forming a global network NG.

2) Extract each local network from the global network NG, such
that each local network Nk (k = 1, 2, . . . , Q) is centered at a
gene gk, whose 1st-order neighbors {gk

1, gk
2, . . . , gk

M} are the
edges. There are totally Q local networks if there are Q genes
in NG.

3) For each local network Nk (k = 1, 2, . . . , Q) at a time point
t, calculate the local entropy Hn(k, t) based on n reference
samples {s1(t), s2(t), . . . , sn(t)} i.e.

Hn (
k, t

) = − 1
log M

M∑
i=1

pn
i (t) log pn

i (t), (5)

with

pn
i (t) = | PCCn (

gk
i (t), gk(t)

) |
∑M

j=1 | PCCn
(
gk

j (t), gk(t)
)

|
, (6)

where PCCn
(gk

i (t), gk(t)) represents the PCC between the expres-
sions of center gene gk and that of a 1st-order neighbor gk

i based
on n reference samples. In Equation (5), the superscript k records
that the local network is centered at gene gk, the subscript n
denotes the number of samples and constant M is the number of
edges/neighbors in the local network Nk. In Equation (6), vectors
gk(t) and gk

i (t) respectively denote the expressions of genes gk and
gk

i at time point t.

4) For a single sample scase(t) of an individual, mix it with n
reference samples. Calculate the entropy Hn+1(k, t) based on
n + 1 mixed samples {s1(t), s2(t), . . . , sn(t), scase(t)}

Hn+1 (
k, t

) = − 1
log M

M∑
i=1

pn+1
i (t) log pn+1

i (t), (7)

In Equation (7), the correlation PCCn+1(gk
i (t), gk(t) is based on

the n + 1 mixed sample set.
5) Calculate the differential entropy �H(k, t) between Hn(k, t)

and Hn+1(k, t) i.e.

�H
(
k, t

) = �SD
(
k, t

) | Hn+1 (
k, t

) − Hn (
k, t

) |, (8)

with

�SD
(
k, t

) =| SDn+1 (
k, t

) − SDn (
k, t

) |, (9)

where SDn(k, t) and SDn+1(k, t) are the SDs of the gene expression
for center gene gk based on n reference samples {s1(t), s2(t), . . . ,
sn(t)} and n + 1 mixed samples {s1(t), s2(t), . . . , sn(t), scase(t)},
respectively. The differential entropy | Hn+1(k, t)−Hn(k, t) | between
Hn(k, t) and Hn+1(k, t) characterizes the differences caused by
the single case sample scase(t). In other words, comparing
with the local entropy Hn(k, t) based on n reference samples
{s1(t), s2(t), . . . , sn(t)}, Hn+1(k, t) based on n + 1 mixed samples
{s1(t), s2(t), . . . , sn(t), scase(t)} records the perturbation brought by
the single sample scase(t) for local network Nk. Besides, to bring the
fluctuation of genes into consideration, the differential standard
deviation �SD(k, t) is regarded as the weight coefficient.

6) Calculate the weighted sum of �H(t) for all the local net-
works i.e.

�H(t) = 1
Q

Q∑
k=1

�H
(
k, t

)
, (10)

where constant Q is the number of all genes (i.e. the number of all
local networks). In Equation (10), the CI �H(t) records the overall
impact caused by the single sample scase(t), and thus is called
the global SLE score or just SLE score for the global network NG,
whereas �H(k, t) in Equation (8) is called the local SLE score for
the local network Nk centered at gene gk.

SGE
Given a scRNA-seq dataset. The SGE algorithm in the proposed
webtool TPD is for detecting the critical transition of cell differen-
tiation or cell fate commitment. Suppose there are totally N cells
in a time point. The algorithm of SGE can be described as follows:

1) Plotting a scatter diagram for each pair of genes
(
gi, gj

)
, in a

cartesian coordinate system where the vertical- and horizontal-
axes are the expression values of the two genes, respectively. In
the scatter diagram of genes gi and gj, for cell Ck (k = 1, 2, . . . , N),
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we set two boxes near gene expression values E(k)

i (the gene
expression of gi in cell Ck) and E(k)

j (the gene expression of gj

in cell Ck), representing the strip neighborhood of E(k)

i and E(k)

j

respectively.
2) Calculating statistical dependency index r(k)

i,j as follows

r(k)

i,j = n(k)
(
Ei, Ej

)

N
− n(k) (Ei)

N
· n(k)

(
Ej

)

N
, (11)

where n(k)(Ei) and n(k)(Ej) represent the number of the points/cells
in the strip neighborhood of E(k)

i , and that of E(k)

j , respectively.

n(k)(Ei, Ej) denote the number of points/cells in the box neighbor-
hood of (Ei, Ej).

3) Building a specific network for each cell. If the statistical
dependency index r(k)

i,j . is larger than zero, there is an edge between
gi and gj in the cell Ck, otherwise there is no edge. In this way, a
cell-specific network N(k) for cell Ck is built, where weight of each
edge is determined by the dependency index r(k)

i,j

4) Extracting each local network/subnetwork from the cell-
specific network. Specifically, for a cell Ck, there are Q local
networks LN(k)

i

(
i = 1, 2, 3, . . . , Q

)
corresponding to its Q genes.

5) Calculating the gene-specific local SGE value H(k)

i for each
local network. Given a local network LN(k)

i centered at a gene gi,
the corresponding local SGE value is obtained from

H(k)

i = − 1
log(M)

M∑
j=1

p(k)

i,j log p(k)

i,j , (12)

with

p(k)

i,j =
r(k)

i,j · E(k)

j∑S
j=1 r(k)

i,j · E(k)

j

, (13)

where the value E(k)

j represents the gene expression of a neighbor

gi
j in Ck and constant M is the number of neighbors in the local

network LN(k)

i .
6) Calculating the cell-specific SGE value H(k) based on a group

of genes with highest local SGE values i.e.

H(k) =
∑T

i=1
H(k)

i , (14)

where constant T is an adjustable parameter representing the
number of top genes with the highest local SGE values. In the
web tool TPD, the default parameter T = 5% ∗ Q, that is, the
top 5% genes with the highest SGE values are chosen as the
signaling features. H(k) called the composite SGE index, which is
capable to detect the tipping point of the single cell data during
the progression of cells, like cell differentiation.

The determination of a tipping point
To quantify how a CI captures the criticality, the one sample t-test
offers a unified way to determine whether there is a significant
difference between the before-transition and the critical states.
To determine whether a value x is statistically different from the
mean of an n-dimensional vector X = (x1, x2, · · · , xn), the one
sample t-test is defined as the following equation

TS = √
n

mean (X) − x
SD (X)

(15)

where mean(X) represents the mean of vector X, and SD(X)

represents the SD of the vector X. To estimate the statistical signif-
icance between mean(X) and x, the P value associated with TS is
obtained from the t-distribution. There is a statistical significance
between mean(X) and x if P < 0.05, otherwise statistically it shows
little significant difference. Therefore, if C(t) denotes the value of
a CI at time point t, then the time point t is determined as a tipping
point if the CI satisfies the following two conditions. (i) C(t) >

C(t − 1) and (ii) C(t) is significantly different (P < 0.05) from the
prior information (i.e. the mean of vector {C(1), C(2), . . . , C(t − 1)}.
Here, C(t) is the CI based on any of the above three detection
methods i.e. the cDNB score in Equation (1), the SLE score in
Equation (10) or the composite SGE index in Equation (13).

The running environment and resources
The above three detection methods embedded in TPD were writ-
ten in Python.NET Core and HTML 5.0. The platform is deployed
on a computing server provided by Ali Cloud with the following
instance type: 2 cores, 4 GB compute-optimized type c6 gener-
ation V, system disk: ultra cloud disk/dev/xvda 40 GB. In TPD,
the embedded PPI networks of H. sapiens and M. musculus are
STRING networks from https://cn.string-db.org/ [29], with default
confidence level 800. The gene annotation is based on DAVID [30].

TPD web tool
Data preparation and input files
TPD provides the analysis for both bulk data and single-cell
datasets (Figures 1A and 2). It allows users to upload the time
series or stage course data [e.g. molecular expression matrices, in
which each row represents the expressions of a gene labeled with
its official gene symbol, the first column lists the gene IDs (official
symbols), and other columns are data of samples]. The accepted
data formats include TXT, CSV and XLS files. There is no header
of the input file.

Before unloading bulk and scRNA-seq data, TPD generally
requires a pre-processing step that makes the gene expressions
filtered and normalized (Fig. 1A). Specifically, genes with zero
expressions in 50% or more samples for the bulk data, and those
with zero expressions in 80% or more cells for the single-cell
data, should be removed. Then the gene expressions should
be normalized through Z-score (for bulk data) or through
Log2 transformation (for single-cell data). TPD allows users to
assign samples to specific time points or stages, and offers
several analysis options (Figure 1C). In addition, TPD provides
examples of different types of inputs, including seven bulk
datasets (acute lung injury dataset for M. musculus, 6 The Cancer
Genome Atlas (TCGA) datasets for H. sapiens) and four scRNA-
seq datasets (MEFs-to-Neurons and mouse hepatoblast cells
(MHCs)-to-hepatocyte cholangiocyte cells (HCCs) datasets for M.
musculus, neural progenitor cells (NPCs)-to-Neurons and hESCs-
to-definitive endoderm cells (DECs) for H. sapiens), which can be
downloaded from the web tool directly. For each example, there is
a Readme file illustrating the details of the corresponding dataset.

Options of analysis
TPD allows users to decide (i) whether to perform survival analy-
sis, (ii) the type of species from which the input data were derived,
(iii) the specific method of tipping point detection that should
be used, (iv) the cutoff of identified key genes (the DNB group)
(default: top 5% genes with the highest CI value) and (v) the
number of time points/stages (Figure 2). For users to easily learn
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Figure 2. The interface for the input of TPD. (A) The demo of the input for bulk data. (B) The demo of the input for single-cell data. User options of data
upload, survival analysis, species selection, methods selection and sample assignment to time points, are provided.

how TPD works, the proposed web tool contains a ‘run’ button for
each demo and clicking this button submits the inquiry directly.

Data upload based on samples
For the bulk dataset input, TPD works well with two situations
of samples that are mostly possible to arise in real-world
datasets, that is, (1) the multiple-sample situation when there
are replicates of case samples at each time point, and (2) the
single-sample situation when there is only one case sample
at each time point. For situation (1), TPD directly calculates
a series of statistical indices and the CI at each time point,
thus requiring at least three case samples/replicates so that
the output is statistically meaningful. For situation (2), TPD
requires users to specify some samples as the reference/control
samples. Then, it mixes the single case sample with the reference
samples at each time point, and characterizes the statistical
perturbation brought by each individual sample against the
group of given control/reference samples by either SLE or
cDNB. Thus, in this situation, it generally requires at least three

reference/control samples. TPD offers an option to users to select
‘Single-sample CI’ for situation (1), or ‘Multiple-sample CI’ for
situation (2).

Survival analysis
If the survival analysis is selected, the related clinical information
needs to be uploaded. The detailed format is shown in the embed-
ded TCGA examples. Usually, this option is provided together with
H. sapiens datasets.

Species selection
Users can choose the specific species for the uploaded dataset.
Currently, TPD provides two options: H. sapiens and M. musculus.

Methods selection
Three classical tipping point revealing methods are provided e.g.
cDNB and SLE for bulk data, and SGE for scRNA-seq data. The
detailed algorithms are described in Methods section.
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Figure 3. Output of TPD for bulk data based on the SLE method. (A) An average SLE curve for indicating the tipping point. (B) A landscape display for
demonstrating the dynamic change of the local entropy of specific genes. (C) The dynamic evolution of a network composed by the signaling genes. (D)
The lists of signaling genes with the top highest and lowest CI values. (E) Survival analysis based on the signaling genes.

Cutoff threshold
Users can decide the cutoff of key genes (a small group of dom-
inated genes) with the top highest and lowest index. The default
parameter is 5% i.e. the top 5% genes with the highest CI values.
This gene group plays a crucial role in the biological functional
analysis related to critical transition according to the DNB prop-
erties.

Analysis results
Upon receiving the input data and options, the web tool outputs
multifarious visualized results, including the global curve or land-
scape display of the local values of the TPD index with the sug-
gested tipping point and confidence scores (P value) (Figure 1D),
the identified signaling genes with the top highest and lowest CI
values in terms of the selected method (Figure 1G), the dynamic
change in the DNB/leading network that may drive the critical
transition (Figure 1E) and the survival analysis that may help
to identify ‘dark’ genes (nondifferential in terms of expression
levels but differential in terms of the CIs of cDNB/SLE/SGE).
For scRNA-seq data, TPD also displays the clustering results of

different cell types and fractional analysis of the identified key
genes (Figure 1F). While calculating, there is a progress bar of TPD
indicating the running condition of this task.

For the bulk data, TPD outputs time-dependent scores of a CI
according to the chosen detection method (for example, a SLE
score if SLE method is selected). Thus, a CI curve is visualized
which indicates the tipping point of the uploaded dataset by the
significant P value i.e. the pink zone with P < 0.05 is critical
state, and the blue zones with P ≥ 0.05 are non-critical states
(Figure 3A). By utilizing the underlying PPI network, each gene can
be assigned a local CI in its local network which is constructed by
this gene and its first neighbors. Thus, TPD provides the landscape
display of the local CIs (Figure 3B), which can also help to identify
the tipping point of the dynamic system.

Based on the DNB theory, a small group of dominant genes
which play a crucial role in detecting early warning signal of the
critical state are selected. TPD outputs the dynamic evolution of
the networks of these genes (Figure 3C). The blue and the red
nodes represent genes with low and high CI, respectively. It can
be found that most of the genes in this module are red in the
critical state. We demonstrated the key genes both with the top
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Figure 4. Output of TPD for single-cell data. (A) An average SGE curve for indicating the tipping point during the process of cell differentiation. (B) The
fraction of cells based on marker genes. (C) The clustering of cells based on all signaling genes. (D) The UMAP clustering of cells based on each specific
signaling gene.

highest and lowest CI values in Figure 3D, from which users can
check the CI values and related biological description of these
genes. If clinical information is uploaded, TPD outputs the results
of survival analysis for key genes (Figure 3E). Clearly, there is
a significant difference between the survival span with low CI
values and that with high CI values.

For the scRNA-seq data, TPD outputs an average entropy curve
which can indicate the tipping point of this dataset and show
the corresponding P value (the pink zone is critical state, and the
blue zone is non-critical state) (Figure 4A). Similarly, the genes
with the top highest local SGE values are selected as the signaling
genes. TPD illustrates the fraction of cells based on marker genes
(Figure 4B), the UMAP and hierarchical clustering of cells based
on all signaling genes or each specific gene (Figure 4C and D).

Conclusion
Generally, identifying the tipping point of a biological system is
important but also difficult and troublesome due to the high

complexity and nonlinearity of the system as well as the tedious
data analysis process. Supported by three TPD methods, which
are all theoretically based on the DNB concept, the proposed web
tool TPD provides a one-stop solution for users to achieve rapid
detection of the tipping point and accurate identification of the
signaling/key molecules and their dynamic networks from the
input time series data. Currectly, embedded with PPI networks of
H. sapiens and M. musculus, TPD can analyze the high-dimensional
time series of these two species, and output multifarious visual-
ized results. We demonstrate the versatility of TPD in the use-case
examples. These proposed web tools are user friendly and do not
require programming knowledge or installation.

In view of the effectiveness of tipping point identification, TPD
is expected to support users from academic and clinical fields.
Together with the dynamic prediction method [31], TPD may not
only detect the early warning signals of critical states based on
omics data, but reveal the dynamically differential information
that provides new insights of critical properties of a biological
system in the vicinity of its tipping point.
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Key points

• We present the tipping point detector (TPD) at http://
www.rpcomputationalbiology.cn/TPD, a web tool for the
detection of the tipping point during the dynamic pro-
cess of biological systems.

• TPD detects the potential tipping point/critical state
from the input omics data, and outputs multifarious
visualized results.

• TPD provides a suggested tipping point with a sta-
tistically significant P value, the identified key genes
and their functional biological information, the dynamic
change in the DNB/leading network and the survival
analysis based on DNB scores.

Data availability
All data are available at http://www.rpcomputationalbiology.cn/
TPD.
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